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equations have an additional free term 

Abstract In this paper it is shown that hypersingular boundary 
integral equations may have an additional free term which has 
been erroneously omitted in former analyses. 

1 
Introduction 
Non-trivial free terms arise in boundary integral equations when 
the source (collocation) point is located at a non-smooth 
boundary point (see for example Hartmann (1981), Guiggiani 
and Gigante (1990), Mantid (1993)). 

Free terms for the hypersingular case were considered in 
Guiggiani et aL ( 1992 ), Guiggiani ( 1992 ) where, however, it was 
overlooked that in some particular cases (typically corner points 
between curved boundaries) some additional flee terms may 
arise. The aim of this paper is to correct that error thus 
providing hypersingular boundary integral equations (HBIE) 
of full generality. The same results have been obtained 
independently by Mantig and Paris (1995). 

The missing free terms are zero if the source point is located 
within one boundary element. The same is true if the collocation 
point is at a vertex but between flat (straight) elements. 
Therefore, results obtained so far by means of numerical 
algorithm employing HBIE's maintain their validity. 

2 
General form of boundary integral identities 
In this section the limiting process for the derivation of 
boundary integral equations with hypersingular kernels will be 
outlined. Without loss of generality the analysis will be 
presented for scalar problems (such as those governed by the 
Laplace equation). 

Let us consider the well-known boundary integral equation 
for a domain s (either 3D or 2D, including the axisymmetric 
case), bounded by a Kellog's regular surface Fwi th  unit outward 
normal n(x) = {hi} 

lim {!, [T(y,x)u(x)-U(y,x)q(x)]dF~}=O, (1) 
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where u and q = 8u/Sn = u ini denote the potential and its 
normal derivative, respectively, and/"8 = ( / ' -  G) + s~ is the 
boundary of the punctured domain [2~ = Q -  v~ (Fig. 1). 

If r = [ ( x j -  yj)(xj - - y  j)] m denotes the distance between the 
source point y = {yi} and integration point x = {x,}, the 
fundamental solution U has a weak singularity when r ~ 0, while 
the other kernel function T = 8 U/On (x) has a strong singularity. 

In Eq. (1) the source point y lies on the boundary F. Since 
Eq. (1) stems from Green's second identity, it may be only 
formulated on a domain not including the singular point y. 
Therefore, a (vanishing) neighbourhood v~ of y has been 
removed from the original domain ~2 (Fig. 1). 

Equation (1) can be differentiated with respect to any 
coordinate Yk of the source point. Since all functions of y in 
Eq. (1) are regular in the domain ~ (actually, U and T6C~), 
we can differentiate under the integral sign, to obtain the 
following boundary integral equation with hypersingular kernel 

lira f~ [G(y,x)u(x)- Wk(y, x)q(x)] dFx} = O, 
LG 

(2) 

where W~ = 8U/Sy~ and V k = 8T/Oy k. 
Differentiation rises the order of singularity of the kernel 

functions. Therefore, W~ have a strong singularity of O(r -2) in 
3D and of O(r -~) in 2D, whereas V k are hypersingular of O(r -3) 
in 3D and ofO(r  -z) in 2D, for r-*0. 

It is worth noting that in (2) the integral on F~ is identically 
zero for any e > 0. Therefore all singular terms have to cancel 
out (and without the recourse to any a-priori interpretation 
in the finite-part sense). 

Also note that the validity of identities (1) and (2) is by no 
means restricted to smooth boundary points. 

Since the continuity features of u at the point y never come 
into play in the limiting process in (1) or in (2), it follows that 
the density function u does not have to satisfy any continuity 
requirement at y for the limits to exist. In other words, the 
integrals on F~ in Eqs. (1) and (2) are identically zero provided 
the functions u (x) and U(y, x) are harmonic in the punctured 
domain /2 -v~ ,  which never contains the point y for any 
a > 0. Again, it is relevant the behaviour of u(x) (and of U) in 
any neighbourhood of y, but not at y. 

3 
Free terms in hypersingular boundary integral equations 
Now, let us assume (as, e.g., Gray et al. (1990), Krishnasamy 
et al. (1992), Schwab and Wendland (1992), Hildenbrand and 
Kuhn (1992), Cruse and Suwito (1993)) that the potential u is 
differentiable at y, with its derivatives satisfying a H61der 
condition, that is ueC ~'~ at y. 
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Fig. 1. Exclusion of the singular point y by a vanishing neighbourhood 
?~ 

As already shown at the end of Section 2, these (quite 
restrictive) continuity requirements are not strictly necessary 
for the existence of the limit in (2). However, they allow for the 
"extraction" of  the free terms which seems a necessary step for 
the subsequent solution by the boundary element method. 

The fulfilment of HOlder conditions makes it possible to 
expand u and q around y 

u(x) = u(y) + u h(y)(x h --Yh) + O(rl+"), 

q(x) = Uh(X)nh(x) = uh(y)nh(X) + O(r"), 
(3) 

At smooth boundary points these flee-term coefficients 
simply become Ckh = 0.5 6ka. 

So far, the analysis presented in Guiggiani et al. (1992) was 
correct. The error arose in the evaluation of the last kind of 
integrals on s~. The correct result should be 

y Vkdl '~--bk(Y)+ak(y)+O(e) .  (7) 
8 s~ 

The free term coefficients ak were missing in former analyses. 
They depend on the curvature of the boundary at y. Details on 
their evaluation are provided in the next section. 

According to this analysis, hypersingular boundary integral 
equations for scalar problems can be written in the following 
form 

a k (y) u (y) + Ckh (y) U,h (y) 

+ l i m {  ! [Vk(y,x)u(x ) -  W k ( y , x ) q ( x ) ] d G  
~ 0  (F e~) 

+ b~(y_2) u (y) l O. 
8 ) 

(8) 

where 0 < a < 1. 
By adding and subtracting in (2) the relevant terms of 

expansions (3), the following form is obtained 

f 
l im ~ .I [ Vk (Y, X) U (X) -- W k (y, x) q (x) ] d G 
~ 0  (.(F-_ e~) 

+ S (vk  [u (x) - u (y) - u h (y) (x~ - Yh) ] 
s, 

-- Wklq(x  ) -- U,h(y)nh(X)] ) dF~ 

+ U,h(Y) ~ [Vk(Xh --Yh) -- Wknh(X)] dFx s~ 

Note that, at non-smooth boundary points between curved 
elements it is not possible to obtain free-terms only involving 
potential derivatives. 

Similarly, HBIE's for vector problems (e.g., elasticity) 
become (cfr. Guiggiani et al. (1991)) 

a,kj(Y) uj(y) + Cikjh(Y) Uj, h (y) 

+ l ! m (  ~ [Gj (y ,x )u j (x ) -W,k j (y ,x )q j (x ) ]dG 
L(F-e~) 

b~k~ (y) } 
+ uj(y) = 0. (9) 

+ u(r) 5 V~dC} = o. sa 
(4) 

The free terms are given by the limit for ~ ~ 0 of the integrals 
on s~ in (4). 

The most convenient shape for v~ seems to be a ball of radius 
centered at y. As a matter of fact, this simple shape of s~ allows 

the analytical evaluation of all integrals on s~, for ~ ~ 0. 
Because of the expansions (3) and since on s~ we have that 

dF~ = O(e 2) in 3D or dF~ = O(~) in 2D, it follows that 

4 
Evaluation of the free term coefficients a k 
In this section the free term coefficients bk(y)/8 + aa(y) defined 
by expression (7) are derived. 

For simplicity, let us consider two-dimensional potential 
problems, whose hypersingular kernel functions are given by 

~ U(y ,  X) ~Xi~Yk l i a r  1 V k ( y , x ) =  n i ( x ) = - - - -  2rk~n- -nk(x  ) , (I0) 2ZEF 2 

( G  [u (x)  - u (y) - u h (y) (xh - Yh) ] 
se 

- W k [q(x) - u h(y) n~(x)]) dF~ = O(~), 

so that we only have to consider the other integrals. 
The second kind of integrals on s~ gives rise to the following 

free term coefficients 

[ Vk (Xh -- Yh) -- Wknh (x) ] d l ~  = Ckh (Y) + 0(~) .  se 

where r = I x -  Yl, ri = Or/Sxi and U(y, x) = - (112~)in r is the 
fundamental solution of the Laplace equation. 

(5) For convenience, it was assumed s~ to be an arc of a circle 
centered at the source point y and of radius ~ (Fig. 2). Let (r, q~) 
be a set of polar coordinates centered at y. Hence the integration 
point x on so has coordinates (a, ~p), with ~01(e) < 9 < ~P2(e). 
Notice that, because of the (possible) curvature of the boundary 
around y, the interval for ~o does depend also on the radius e, 

(6) that is on the radial size of  s~ (this is essentially the aspect 
which was overlooked in Guiggiani et al. (1992), Appendix A). 



Owing to the simple shape of s t the following relations hold computed with the following expression (e.g., Farin (1992), page 
when x~s~ 386 with sign reversed) 

r = e, ~r /~n = - 1, 

r~ = cos 69, r2 = sin 69, 

n 1 ~ - -  C O S  69 ,  n 2 = - -  s i n  69, 

Xl --Yl = g COS 69, X 2 --Y2 = g sin 69. 

and dF~ = ed69. 
Accordingly, the hypersingular kernel functions become 

(11) 

rt t it ! 
K(~) = --X~X2 + x 2 x ~  (16) 

..t )2"13/2 ~ [(x'y + (.~ 

the prime denoting differentiation with respect to the parameter 

We can also expand F~(q0 (e)) as a function of 

dFk d69t 
F~(691 (0 )  = F~(69~ (o)) + Y~-~-G~ o=o ~ + ~  
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cos 69 sin 69 

V 1= 2roe 2, V 2 -  27ze 2. (12) 
/C1(0) r x 

= F~(69~o) + --~-]~(69,o) e + o(e:), 

In both cases we can set 

fk(69) 
Vk = ~2 (13) 

The integral in (7) can now be set in the following form 
(Fig. 2). 

~'2(e) f [ -~ 
i =  ~ V k ( y , x ) d F ~  = r Jk,qJJ . j ~ ea69 

Fk(692(e)) =Fk(69~(0)) + d69 2 de ~=0 e + O(e2) 

= F~(69~o) - ~ f k ( 6 9 ~ o )  e + O(e:). (17) 

where expansions (15) of%(e) were taken into account. We also 
set 69i(0) = (Pi0. 

The integral (14) becomes 

1 
= -- [Fk (692 (e))  - -  F k ( 6 9  1 (G))], (14) 

8 

where f k ( 69 ) = dFk/ dq~ 
Since we are interested in the limit of Eq. (14) for ~ ~ 0, we 

can resort in Taylor series expansions. From differential 
geometry we obtain (e.g., Farin (1992), chapter 1 1) 

S~l(O ) 
(Pl (~) = (~l (0) q- ~ e "-}- O(e2) ,  

~(0)  
69~(e) = 69~(o) - e + o ( ~ ) .  

2 

(15) 

where K~(0) are the signed curvatures of the boundary F around 
y (positive curvature means a convex contour). 

In general, given the parametric equations (x~ (~), x 2 (~)) of  
a curve F, the signed curvature ~c of  a planar curve can be 

f I 

Fig. 2. Local geometry at a non-smooth boundary point 

I = ~ IF~(69~o) - Fk(691o) 

fk(6920) K2(0) -~ fk(6910) l r  e + O & ) ]  

=Fk(69~o) --G(~0~o) L(69R0)~cdo) +L(69,o)~,(0) + o(~) 
2 

= bk + a k + 0(~). (18) 

Equation (18) shows that the free-term coefficients ak 
depend on the local geometry o f / "  at y but in a more subtle 
way than the other coefficients. They are affected not only by 
the inner angle at y but also by the curvature of_F. 

The same computation can be performed in a slightly 
different, although equivalent, way. Just observe that 

I =  j + + . 
~p~(~) e r %0 r qho t_ o O2@)/ 

(19) 

It is now natural to define 

bk(y) ~~ j Fk(692o) --Fk(69,o) 
e j - - 7 -  ea69 - 

r 
(20) 

which coincides with Eqs. (A4) and (A5) in Guiggiani et al. 
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(1992), and 

a k (y) := -- lim - j - -  ea~o + 

= - �89 [f~ (%0) ~2 (0) + f~ ((~910)/~1 (0)], (21) 

which are the so far missing free-term coefficients. 
It is worth noting that the coefficients a k are certainly zero 

in the following important cases: 

1. k~ = k 2 = O, that is the con tou r / "  is piecewise straight 
around the source point y, regardless of y being at a corner 
or not; 

2. kl = k2 and ~020 = %0 + n, that is the curvature and the 
tangent vector are continuous at y. This condition can be 
summarized as F having a geometric continuity of order 
2 at y, as defined, e.g., in Farin (1992), chapter 12 
( r e  G ~ (y)). 

Since all applications of HBIE's presented so far (e.g., Gray 
et al. (1990), Krishnasamy et al. (1990), Guiggiani et al. (1991), 
Hildenbrand and Kuhn (1992), Mi and Aliabadi (1992), Huber 
et al. (1993), R~go Silva et al. (1993), Guiggiani (1994), Gallego 
and Dominguez (submitted), to mention but a few) fall within 
these two cases, the oversight of ak's hasn't  had any practical 
relevance. 

Notice, however, that a k may be non-zero at a smooth 
boundary point with discontinuous curvature. 

5 
Three-dimensional problems 
Analysis for 3D problems is basically the same (Eq. (7)). Of 
course, it is somehow more involved, but it follows the same 
steps as for the 2D case. 

Since the free-term coefficients % and bk/e are not affected 
by the curvature of the boundary, their evaluation can be 
performed using the procedure described in Hartmann (1981) 
or in Guiggiani and Gigante (1990) where the solid angle formed 
by the tangent planes at y was considered. 

For the evaluation of the other set of coefficients a k it is useful 
to introduce a system of spherical coordinates (r, (p, r  for each 
boundary element (patch) F e matching at y so that the 
integration point xEs, has coordinates (~, % r On each patch 
F ,  it is convenient to refer the spherical coordinates to 
a cartesian system (z,  z2, z3) with its third axis coinciding with 
the inward normal re(y) to the tangent plane (hence m = - n). 

The part of s~ relative to the patch F that contributes to 
a k is therefore delimited by ~1 (e) ~ ~ = ~2(e) and (pe(~, ~b) = q~ 

~/2, (or ~/2 =< ~ __< %(~, ~p), depending on whichever is 
bigger) with (cf. Eq. (15)) 

(pe(~, ~) -- g + O(g2). (22) 
2 2 

According to Euler's theorem, the normal curvature k (~) 
as defined, e.g., in Farin (1992) pp. 372-376, is given by 
k($) = k~ cos 2 (~b) + k 2 sin 2 ($), where k~ and k 2 are the principal 
curvatures. 

The coefficients a k can now be defined as an element- 
by-element summation of integrals 

a k + O ( e ) = - -  ~ / (  ~2 fk(O,q~ 2si n ) 

= -- ? ~~ fk(O, nl2)dO + O(e), (23) 

where V k = f(•, 9)/e 3 for x~s~. 
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