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Low-Frequency Scattering from 
Two-Dimensional Perfect 

Conductors 
Thorkild B. Hansen, Member, IEEE, and Arthur D. Yaghjian, Fellow, IEEE 

Abstract-Exact expressions are obtained for the leading terms 
in the low-frequency expansions of the far field scattered by an  
arbitrarily shaped cylinder with finite cross section, an  arbitrar- 
ily shaped cylindrical bump on a ground plane, and an  arbitrar- 
ily shaped cylindrical dent in a ground plane. By inserting the 
low-frequency expansions of the incident plane wave and Green’s 
function into exact integral equations for the surface current, 
integral equations are obtained for the leading terms in the 
low-frequency expansions of the surface current. Simple integra- 
tions of these leading terms of the current expansion yield the 
leading terms in the low-frequency expansions of the scattered 
fields. For the cylinder with finite cross section, the leading term 
in the low-frequency expansion of the TM scattered far field is 
explicitly given by an expression that is independent of the 
shape of the cylinder. The explicit expression for the low- 
frequency TE scattered far field contains three constants that 
depend only on the shape of the cylinder. These three constants 
are found from the solutions to two electrostatic problems. The 
explicit expressions for the low-frequency diffracted fields of a 
bump or dent contain one constant that  depends only on the 
shape of the bump or dent. Remarkably, this single constant is 
the same for both TM and TE polarization and can be found 
from the solution to either an  electrostatic or magnetostatic 
problem. The general low-frequency expressions are confirmed 
by comparing them to low-frequency results obtained from exact 
time-harmonic eigenfunction solutions. 

I. INTRODUCTION 

E study of low-frequency scattering was initiated by T” Rayleigh [l] in 1897 and today the term “Rayleigh 
scattering” is often used instead of “low-frequency scat- 
tering.” Kleinman [2] gives the following definition of 
Rayleigh scattering: 

We are dealing with Rayleigh scattering when the far-zone 
field may be expanded in a convergent series in positive 
integral powers of the propagation constant k. 

The starting point in a Rayleigh scattering calculation is 
the expansion of the unknown fields in powers of k and 
then the determination, from Maxwell’s equations and 
boundary conditions, of the unknown expansion coeffi- 
cients, which are functions of the geometry of the scat- 
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terer and the angles of incidence and observation. This 
procedure is used by Stevenson [3] and by Asvestas and 
Kleinman [4] to determine the low-frequency electromag- 
netic scattering from perfectly electrically conducting 
three-dimensional bodies. 

However, as noted in [2] this definition of Rayleigh 
scattering cannot be used for two-dimensional scattering 
problems since the scattered field in general does not 
have a convergent expansion in powers of k.  The two- 
dimensional fields cannot be expanded in powers of k 
because the two-dimensional free-space Green’s function 
is a Hankel function that has a branch point at k = 0, 
whereas the three-dimensional free-space Green’s func- 
tion is analytic in k .  

A great deal of work on low-frequency scattering from 
general three-dimensional bodies has been published [2], 
but it seems that only van Blade1 [SI and MacCamy [61 
have done work on low-frequency scattering from general 
two-dimensional bodies. In [5]  the low-frequency scatter- 
ing from arbitrarily shaped dielectric and conducting 
cylinders with finite cross sections is considered. For 
transverse magnetic (TM) polarization [5] uses a time- 
harmonic integral equation to obtain the low-frequency 
behavior of the total current from which the low-frequency 
scattered field is calculated. For transverse electric (TE) 
polarization an expansion of the current in integral pow- 
ers of k is assumed. As seen from the previous discussion 
and from the exact eigenfunction solutions for the circular 
cylinder [7, Chapter 21 and strip [7, Chapter 41 such an 
expansion does not exist. However, only the first two 
terms in this power series expansion are used in [5] ,  and in 
this paper it will be shown that the final TE results in [51 
for perfect conductors are also correct. Reference [61 
contains the formal low-frequency expansion of the scat- 
tered fields from two-dimensional perfect conductors with 
finite cross section in cases where the incident field can be 
expanded in even powers of k .  However, no explicit 
expressions for the expansion coefficients are given. 

There are several reasons for being interested in two- 
dimensional scattering solutions. They can be used di- 
rectly as approximate solutions to certain three-dimen- 
sional scattering problems. For example, the field close to 
the middle of a long finite rod can often be well approxi- 
mated by the field from the corresponding infinite rod. 
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Also, two-dimensional scattering solutions can be helpful 
for validating computer codes. 

Another important reason for being interested in two- 
dimensional solutions is that they can be used to deter- 
mine three-dimensional incremental length diffraction 
coefficients. These incremental length diffraction coeffi- 
cients can in turn be used to determine scattering contri- 
butions from, for example, curved ridges (bumps) and 
channels (dents) that have constant cross sections. The 
three-dimensional incremental diffraction coefficients can 
be found directly from the corresponding two-dimensional 
far fields using a direct substitution approach. No integra- 
tion, differentiation, or specific knowledge of the current 
on the conductor is needed. This direct substitution pro- 
cedure was first developed by Shore and Yaghjian [8] for 
planar surfaces and then extended by Hansen and 
Yaghjian [9] to general two-dimensional scatterers. To 
apply this procedure one must, in general, be able to 
evaluate the two-dimensional far fields for both real and 
complex angles of observation. Therefore, one needs ana- 
lytical expressions for the two-dimensional far fields. 

Analytical expressions for two-dimensional far fields 
from single cylindrical bumps and dents can also be used 
in conjunction with the work of Twersky [lo] to calculate 
the scattering from a random distribution of bumps or 
dents. 

The purpose of this paper is to determine the leading 
terms in the low-frequency expansions of the scattered 
electromagnetic far fields for the following three types of 
two-dimensional perfectly electrically conducting scatter- 
ers: 

1) An arbitrarily shaped cylinder with finite cross sec- 

2 )  An arbitrarily shaped cylindrical bump (protuber- 

3) An arbitrarily shaped cylindrical dent (indentation) 

The results of this paper apply to bumps and dents that 
are continuously lined by a conductor and thus they are 
not generally valid for bumps and dents that contain slits. 
The scatterers are illuminated by plane waves propagating 
in directions normal to the axis of the cylinders, and the 
two polarization cases, TM and TE, are treated sepa- 
rately. Since the scatterers are perfectly conducting, the 
low-frequency solutions for normal incidence can be im- 
mediately generalized to obtain low-frequency solutions 
for oblique incidence (see, e.g., [ll,  section 8.151 or [7, 
chapter 13). 

As mentioned above, the unknown field for two-dimen- 
sional scatterers, unlike for three-dimensional scatterers, 
cannot be expanded in powers of k.  Instead we take the 
following approach: the Green’s functions and incident 
field in the time-harmonic integral equation for the cur- 
rent is expanded for small k to obtain an integral equa- 
tion for the low-frequency current. From this low- 
frequency integral equation we find the leading terms in 
the low-frequency expansion of the current and calculate 

tion. 

ance) on a ground plane. 

in a ground plane. 

the low-frequency far field. 
The low-frequency expressions for the scattered fields 

from the cylinders with finite cross section are derived in 
Section 11. For the cylindrical bump and dent, the scat- 
tered fields are written as the sum of a known reflected 
field and a diffracted field. The low-frequency expressions 
for the diffracted field from the bump and dent are 
derived in Sections I11 and IV, respectively. In Section V, 
the low-frequency expressions are verified in cases where 
exact time-harmonic eigenfunction solutions exist. A sum- 
mary of this work was first presented in [121. 

11. CYLINDER WITH FINITE CROSS SECTION 
The cylinder with - -  finite cross section illuminated by the 

plane-wave field (EL, H’)  is situated in a rectangular coor- 
dinate system shown in Fig. 1. The scatterer extends 
uniformly to infinity in the +z and - z  directions, and the 
curve that describes the finite cross section of the scat- 
terer in the x - y  plane is denoted by S. The outward 
normal to the scatterer is iZ and the tangent unit vector to 
S is t^ = z  ̂ X i i. A characteristic dimension of the scatterer 
in the x - y  plane is denoted by d. In addition to the 
rectangular coordinates (x, y ,  z), circular cylindrical coor- 
dinates ( r ,  4, z )  given by x = r cos 4, y = r sin 4, and 
z = z will also be used. 

The incident plane-wave field propagates in a direction, 
designated by 4’, torma1 to the z-axis. As usual, the 
scattered field (ES, H S )  is - -  defined as the total field ( E ,  n) 
minus the incident field ( E ‘ ,  H ’ ) .  

Throughout the paper elwf time dependence is sup- 
pressed in all the time-harmonic equations. 

A. Transverse Magnetic (TM) Polarization 
The incident electric field is given by 

(1)  EL(?) = &jk(xcosd’+vsin+’)  

where k is the propagation constant. The low-frequency 
current is determined in Section 11-All, and in Section 
II-A2) it is integrated to  get the low-frequency far field. 

I )  Low-Frequency Current: The low-frequency TM far 
field for the cylinder with finite cross section can be 
determined, as will be shown, from the total current 
flowing in the z-direction on the cylinder. To find this 
current begin with the two-dimensional electric field inte- 
gral equation [131, [141 

E : ( f )  = j k i E  E S  /G(T.,Ff)Kz(T.’) ds’, F E S (2) 

where p and E are the free-space permeability and per- 
mittivity, and the bar on the integral sign indicates that 
the singularity at T. = T.’ is excluded. Here G(f ,? ’ )  is the 
two-dimensional free-space Green’s function 

(3 )  

and K(T.1 = 2K,(F) is the current on the cylinder. 
From the small argument approximation for the Hankel 
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Fig. 1. Cylinder with finite cross section. 

function one finds that 

l k d j  y 

21T 2 4 27r 
G ( f ,  f ’ )  = G o ( f ,  r‘ )  - - In - - - - - 

+ O( (kd)’ In k d )  (4) 

where Go(?,  f ’) is the static two-dimensional free-space 
Green’s function given by 

1 If - F’l 
G o ( i . , f ’ )  = --ln- 

27r d 
y is Euler’s constant, and d is a characteristic dimension 
of the cylinder. The term of order (kill2 In kd in (4) is 
nonsingular at f = f ’ ;  in fact, it tends to zero as f + f ‘ .  

Because the incident electric field in (1) for low fre- 
quencies is approximately equal to 2 on the circumfer- 
ence S of the scatterer it is assumed that the total current 
for low frequencies is nonzero, i.e., 

LKz(i . ‘ )  ds‘ # 0. (6) 

This assumption is confirmed by the eigenfunction solu- 
tions for the circular cylinder [7, chapter 21 and strip [7, 
chapter 41. 

Inserting the expansion (4) for the Green’s function 
into the integral equation (2) and using (6) yield the 
low-frequency behavior of the total current 

- l n k d E F / K , ( f ’ ) d s ’  21T E s - 1, kd -0 .  (7) 

2) Low-Frequency Scattered Far Field: The low- 
frequency far field is found by integrating the low- 
frequency current given in (7). From the asymptotic 
expansion of the Hankel function it is found that 

e - j v / 4  e - j k r  

G( f ,  F ’ )  - - - 
2 6  6 

r -  + w .  (8) 

. [ 1 + jk (  x ’ cos 4 + y ‘ sin 4 )  + O( (kd ) ’ ) ]  , 

The expression for the scattered field 

and the asymptotic formulas (7) and (81, combine to 
produce the final low-frequency expression for the far 
field [5] 

7T e - j ~ / 4  e - j k r  

E:( f )  N 6 ( 10) 2 T z T T *  
Note that In kd - In Akd as kd -+ 0 when A is a positive 
constant so that d can be any characteristic dimension of 
the cross section of the scatterer. Further note that the 
low-frequency scattered field does not depend on the 
shape of the finite cross section but only on its character- 
istic dimension. 

The expression (10) agrees with the low-frequency re- 
sults for the circular cylinder [7, chapter 21 and strip [7, 
chapter 41 obtained from exact eigenfunction solutions. 

It should be emphasized that the expression in (10) for 
the far field is not directly related to the solution to the 
purely electrostatic or magnetostatic problem in whkh the 
scatterer is situated in the static field E Z l k = 0  or H1h=o,  
respectively.’ This can be explained as follows. 

Since the total electrostatic field has only a z-compo- 
nent, Maxwell’s equations imply that it must be a constant 
and therefore zero because it is zero on the surface of the 
scatterer. Consequently, the scattered electrostatic field 
equals the negative of the incident field. The normal 
component of this electrostatic solution is zero every- 
where so that the charge on the conductor is zero. More- 
over, this electrostatic solution gives no information about 
the current on the conductor and thus no information 
about the scattered time-harmonic fields. 

As part of the2olution t c t h e  magnetostatic equations 
(V x a = 0, V - H  = 0, A S H  = 0, and A X H = K on S )  
we can have a total current on the conductor. However, 
the value of this current is not determined by these 
magnetostatic equations. 

B. Transverse Electric (TE) Polarization 
In this section the low-frequency far field is determined 

for TE polarization. The first two terms in the low- 
frequency expansion of the current are derived in Section 
IT-Bl), and these terms are integrated in Section II-B2) to 
get the far field. For TE polarization, the incident mag- 
netic field is given by the right-hand side of (1). 

1 )  Low-Frequency Current: The low-frequency current is 
obtained by inserting the low-frequency expansions for 
the Green’s function and the incident field into the two- 
dimensional magnetic field integral equation [14] 

H : ( f )  = f K , ( f ’ ) y G ( f , f ’ ) d s ’  - T K , ( f ) ,  
d 1 

F E S  
S dn 

(11) 

where the bar on the integral sign indicates a Cauchy 
principal value integration. The expansion (4) of the 

Recently, De Smedt has derived a higher order approximation that 
equals (10) with In kd replaced by In(r’kR/2) + j?r/2, and with the 
equivalent radius R determined from a static solution [23]. 

E i ( f )  = - j k F / G ( f , F ’ ) K z ( f r )  A’ (9) 
E S  
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Green's function shows that 

d d 

field. Thus, FP satisfies the integral equation (13) with 1 
and KP replaced by FP' and -F$, respectively. The 

-G(F,F') = 7Go(?,F')  + O((kd)'ln k d )  (12) impressed electrostatic field given in (15) corresponds to 
dn' dn the impressed vector potential F,"'(?) = x cos 4L + 

where the term of order (kd)' In kd is nonsingular at Y sin 4' + c where c is a constant. The integral equation 
U = ?'; in fact, it tends to zero as U -+ ?'. for FP is then 

Letting kd + 0 in the integral equation (11) and insert- 

x cos 4' + y sin 4i + C = - fF:( U')-Go( U ,  F ' )  ds' ing the expansion (12) reveals that the first term KP in d 

the low-frequency expansion of the current K, satisfies S dn 
the integral equation 

1 
+ y F P ( ? ) ,  F E  S.  (16) 

(13) 

The uniqueness of the solution to this integral equation 
has been proven in [15]. 

Equation (13) is the integral equation for the static 
current when the scatterer is situated in the impressed 
magnetostatic field &&tic = H i l k = o  = 2. To prove this, 
write the magnetostatic - field go as the curl of the vector 
potential An, i.e., H" = V X An, and use the simple rela- 
tion A" = Is GoKo ds' along with the boundary condition 
that K: = -H," on S .  

Since V X H') = 0 we find that If," is a constant. Fur- 
thermore, the impressed magnetostatic field 2 satisfies the 
boundary condition i? . H o  = 0 on the conductor, and 
since the scattered field must vanish far away from the 
scatterer it follows that the scattered magnetostatic field 
is zero and therefore H," = 1. Consequently, we have that 

To get the second term Kj  in the low-frequency expan- 
sion of the current K,,  insert the expansion (12) of the 
Green's function and (13) into the integral equation (11) 
to obtain 

K:= -1. 

d 
j k ( x c o s 4 ' + y s i n  @) = fK:(F ' )zGn(?,? ' )ds '  

S 

1 
-yK:(U), F €  S (14) 

which implies that K: is of order kd. 
It will now be shown that K j  can be found from the 

solution to the electrostatic problem in which the scat- 
terer is situated in the impressed electrostatic field 

Let the electrostatic solution be denoted by E". In [16, 
appendix A] it is proven from V X E" = 0 and the total 
charge on the conductor being zero, that the field -E:.; 
+ E:f is conservative. Therefore, it can be written as 
the gradient of a scalar potential, -E:; + E:f 
= 4 m V F : ' .  Defining F o  = F:2 one finds that Eo 
= 4 m V  X F o  and that the scalar potential F," satis- 
fies the same differential equation (Laplace's equation) 
and the same boundary conditions on the conductor 
(Neumann type) as the z-component of a magnetostatic 

Using the result from [14, appendix] of the integration 
near the singularity at F' = U and the divergence theorem 
in the region bounded by S one finds that 

d 1 
r , r  )Cds' + -C, F E S.  (17) c =  -{-Go(- s dn' - - I  2 

Consequently, the constant function C on the left-hand 
side of the integral equation (16) simply adds the constant 
C to the solution to (16) with C = 0. Because a constant 
may be added to the potential F: without changing the 
field E", C can be set equal to zero in the integral 
equation (16). 

Comparing the integral equations (14) and (16) (with 
C = 0) and recalling that the solutions are unique [151, 
shows that K:(F) = -jkF,"(?>, 7 E S; thereby completing 
the proof that the second term in the low-frequency 
expansion of the current can be found from the electro- 
static solution. The current can thus be written 

K,( ?) = - 1 - jkF,"( U )  + K:( U )  ( 18) 

where F," satisfies the electrostatic integral equation (16) 
and (l/kd)K: + 0 as kd + 0. 

In summary it has been shown that the first and second 
terms in the TE low-frequency expansion of the current 
are of order (kd)" and kd, respectively. Since the second 
term in the low-frequency expansion (12) of the derivative 
of the free-space Green's function is of order (MI2 In kd, 
the integral equation (11) implies that the third term in 
the low-frequency expansion of the current, in general, 
will be a function of kd and In kd. Therefore, as noted in 
the Introduction, the current cannot be expanded in a 
power series in kd. 

2) Low-Frequeticy Scattered Far Field: To calculate the 
far field scattered by the current given in the expansion 
(18), insert the asymptotic expansion of the derivative of 
the Green's function 

-G( F ,  ?') - k- - 
an' 2 t G  QG 

[1 +jk(x 'cos  $+y ' s in  4 )  +O((kd) ' ) ] i? ' . i  (19) 
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as r + fm, and the current expansion (18) into the 
expression 

the scalar potential i,b for the electrostatic field. The 
potential i,b satisfies Laplace's equation and the potential 
for the impressed electrostatic field is given by i,bi = -x 
+ C ,  where C is a constant. Noting that the potential for 
the scattered field is given by i,bs = ls GouO"/c ds' and 
that the total potential is constant on S ,  one obtains an 
integral equation involving an unknown constant. This 
constant is evaluated at an arbitrarv observation point 

d 
H,"( Y )  = -1 K,(  Y ' )  -G( Y ,  Y') ds' (20) 

S dn 

for the scattered magnetic field to obtain the scattered 
field to order (kdI2 as given by 

e - - j ~ / 4  e - j k r  1 
H i ( ? )  - - ( k d ) 2 - - -  

2 6  v% d 2  

I F -  L ( x r  cos 4 + y'sin + ) f i r  ds' 

From the divergence theorem it is found that the first 
term in the brackets of (21) equals the area bounded by S, 
i.e., the area of the cross section of the scatterer. If we 
introduce the electrostatic potential F')" satisfying 

and the electrostatic potential F;' satisfying (22) with x 
replaced by y ,  the total electrostatic potential may be 
written as F: = cos @F:" + sin 4'F;Y. Using this result 
in (21) along with the dipole moment reciprocity theorem 
proven in [16, appendix B], one finds that the scattered 
magnetic far field may be written as 

where 

dX 

S ds 
C ,  = -1 F;"( Y )  - ds 

and A s  is the area of the cross section of the cylinder. 
The integral equation (22) for F:" and the correspond- 

ing one for F:' are of the same form as the time-harmonic 
magnetic field integral equation. Therefore they should be 
easy to solve numerically when no part of the scatterer is 
infinitesimally thin [17, p. 1681. When a part of the scat- 
terer is infinitesimally thin they degenerate and cannot be 
used to determine the constants in (24). 

Alternative expressions for these constants can be found 
that remain valid when part or all of the scatterer is 
infinitesimally thin. To do this, introduce vox and (TO?, 

which are the electrostatic charges on the cylinder situ- 
ated in the impressed electrostatic fields i? and j ,  respec- 
tively. An integral equation for t ~ " ~  can be derived from 

Y o  = ( x 0 , y O )  E S so that uox satisfies the integral equa- 
tion 

f, [Go(?,?') - 

Y E S. (25) 

In [15] it is shown that the integral equation (25) along 
with the condition that the total charge on the conductor 
is zero, i.e., vox  ds = 0, determine the electrostatic 
charge u On uniquely. Similarly, (T ('Y is determined by (25) 
with x replaced by y .  

From the definition of the potentials F:' and F:' it is 
easy to show that ( a " ' / € )  = -(d/ds)F:" and that 
( u o n / ~ )  = (d/ds)F:v. From these relations and integra- 
tion by parts in (24), the following alternative formulas 
are obtained for the three constants C , ,  C,, and C, 

Combining the expression (23) for the scattered field 
with the expressions (26) for the three constants shows 
that the scattered field consists of a magnetic dipole in the 
z-direction (the term with A, )  plus an electric dipole in 
the x - y plane (the terms with C, ,  C,, and C,) [ll, 
section 3.81. 

We have now given the exact analytical expressions for 
the first terms in the TM and TE low-frequency far fields 
scattered from the cylinder with finite cross section. The 
TM expression is independent of the shape of the cylin- 
der. The TE expression is completely determined by cal- 
culating three constants that depend only on the shape of 
the cross section of the cylinder. These three constants 
are found from the electrostatic solutions for x and y 
directed impressed electrostatic fields. 

111. CYLINDRICAL BUMP ON AN INFINITE GROUND 
PLANE 

In this section the low-frequency expressions are de- 
rived for the field diffracted by a cylindrical bump on a 
ground plane illuminated by a plane wave. Both the bump 
and the ground plane are perfectly conducting. The bump 
extends uniformly to infinity in the +z and -z directions 
and the curve that describes the cross section of the bump 
in the x - y plane is denoted by B as shown in Fig. 2. The 
outward normal to the bump is i2 and the tangent unit 
vector to B is t^ = 2 X A. The equation for the ground 
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Fig. 2. Cylindrical bump on a ground plane. 

plane is y = 0 and the intersections between the bump 
and the ground plane are given by y = 0, x = k d .  

The incident field ( E ,  H ' )  and the cylindrical coordi- 
nates ( r ,  4, z )  are the same as in Section 11. The field 
reflected in the ground plane y = 0 when there is no 
bump is denoted by (p, H'). We write the total field as 
( E ,  p) = ( F ,  H ' )  + ( E r ,  H' )  + ( E d ,  H d ) ,  where 
( E d ,  p d )  is by definition the diffracted field. 

It will be shown that the diffracted field is the scattered 
field in an equivalent scattering problem where the scat- 
terer is the bump plus its imagein the ground plane, and 
the incident field is (E' + E', H' + H') as shown in Fig. 
3. The curve that describes the image of the bump in the 
y = 0 plane is denoted by B, and the cross section of the 
equivalent scatterer is therefore B U B,. 

By considering the TM and TE polarizations separately 
it is easily seen that the scattered field in the equivalent 
scattering problem satisfies the boundary conditions on 
the ground plane. Since (E' + E', e' + H')  also satisfies 
these boundary conditions it is clear from the uniqueness 
of the solution that the scattered field in the equivalent 
scattering problem is the diffracted field in upper half- 
space of the bump scattering problem. This method of 
images for constructing an equivalent scattering problem 
was first used by Rayleigh [18] when he solved for scatter- 
ing from the semicircular bump. 

A. Transverse Magnetic (TM) Polarization 
The TM incident electric field is given by (l), and the 

reflected electric field is also given by (1) with 2 and y 
replaced by -2 and -y, respectively. 

If we use the formula (10) for the scattered far field, the 
contributions from the incident field E' and the reflected 
field E' cancel. Consequently, the diffracted field is zero 
to order (l/lnkd), and we cannot use the results from 
Section 11-A because we need higher order terms. There- 
fore we must start a new investigation of the low-frequency 
current on the equivalent scatterer given by B U B,. 

1) Low-Frequency Current: The current K ,  on the 
equivalent scatterer satisfies the integral equation (2) with 
E: replaced by E: + E:, and S replaced by B U B,. Be- 
cause E: + El is an odd function of y and the equivalent 
scatterer is symmetric about the y = 0 plane, it follows 
that the current K ,  is also an odd function of y ,  i.e., 
K,(x,  y )  = -K,(x,  -y). Consequently, the total current 
flowing along the equivalent scatterer is zero, i.e., 
Is B ,  K,(i;) ds = 0. Expanding E: + E: in powers of k ,  
and using the expansion (4) of the Green's function in the 

Fig. 3. Equivalent bump scattering problem. 

integral equation for K ,  shows that the first term K: in 
the low-frequency expansion of K ,  satisfies the integral 
equation 

2y  sin 4' = f Go(i ; , i ; ' )K:(? ' )  ds', 
E BUB, 

? E  B U B,. (27) 

In [15] it is proven that the integral equation (27) along 
with the condition that K: is an odd function of y 
determine K," uniquely. 

We will show that K," is the current in the magneto- 
static scattering problem with the equivalent scatterer 
situated in the impressed magnetostatic field 

Introduce a vector potential = A:?, A: = (s K:G0 ds' 
and use the boundary condition that a magnetostatic field 
has zero normal component on B U B, to prove that A: 
is constant on B U B,. This boundary condition for A:, 
along with the fact that the potential for the impressed 
magnetostatic field (28) must be - 2 y d m  sin 41 + C 
where C is a constant, now give an integral equation for 
K,". Since K: is an odd function of y and B U B, is 
symmetric about y = 0, C is equal to zero and we obtain 
the integral equation (27). 

The leading term in the low-frequency expansion of the 
current is thus of order (MIo.  From the integral equation 
for K ,  it follows that the next term, in general, is a 
function of kd and In kd so that the current cannot be 
expanded in powers of kd. 

It is convenient to define a current K:' equal to the 
magnetostatic current when the equivalent scatterer is 
situated in the impressed magnetostatic field 2. From the 
expression (28) for the impressed magnetostatic field and 
from the integral equation (27) it follows that the current 
K,OB is determined by 

-y = f B U B ;  GO(i;,i;')K,OB(i;') ds', i; E B U B, (29) 

and the condition that K,OB must be an odd function of y .  
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We then can write the current as (33) becomes 

where K: + 0 as kd -+ 0. 
2) Low-Frequency Diffracted Far Field: The low- 

frequency diffracted far field from the bump is the scat- 
tered far field in the upper half-space of the equivalent 
scattering problem of the bump and its image. 

The electric field expression (91, the far-field approxi- 
mation (8) to the Green's function, and the fact that the 
current is an odd function of y, show that the diffracted 
far field to order (hi)' is given by 

where 

Bo = 1 yKfB( 7 )  ds. 
B 

The magnetostatic current KPB is an odd function of y 
and satisfies the static integral equation (29). 

It is seen from the formula (31) that the diffracted field 
is the field of a magnetic dipole in the x-direction [ll, 
section 3.81. 

B. Transverse Electric (TE) Polarization 
In the TE case the incident magnetic field is given by 

the right-hand side of (11, and the reflected magnetic field 
is given by the right-hand side of (1) with y replaced by 
- y .  Because the contributions from the incident and 
reflected fields in the TE case do not cancel, the results of 
Section 11-B apply directly, so we do not have to investi- 
gate the current on the equivalent scatterer. 

I )  Low-Frequency Diffracted Far Field: If we let A ,  
denote the area of the region bounded by B and the line 
y = 0, 1x1 5 d (see Fig. 2) then the diffracted far field is 
given by 

The diffracted field therefore consists of the contribution 
from a magnetic dipole in the z-direction and an electric 
dipole in the y-direction [ l l ,  section 3.81. 

We will now show that, remarkably, the integral in the 
expression (35) for the TE diffracted field equals the 
negative of the constant BO in (32) occurring in the 
expression (31) for the TM diffracted field. To do this, 
introduce a scalar potential for the electrostatic field and 
use the fact that the impressed scalar potential must be 
C - y where C is a constant. Furthermore, the boundary 
condition of zero tangential electric field requires that the 
total scalar potential be constant on the equivalent scat- 
terer, and the charge uoy therefore must satisfy the 
integral equation 

U O Y ( F ' )  
y - C = f G o ( ? , ? ' ) y  ds', F E B u B ~  

B U B ,  

(36) 

where the constant C is undetermined at this point of the 
derivation. 

Because the impressed electrostatic field is symmetric 
about the ground plane y = 0, the electrostatic charge 
uoY must be an odd function of y. Consequently, the 
integral in (36) must be an odd function of y and the 
constant C must be zero. 

Comparing the integral equation (36) (with C = 0) to 
the integral equation (29) for the current K,OB, and noting 
that the solutions are unique [15], one finds that e K f B  = 
- U@ and therefore the TE diffracted field is given by 

H,d( r> = r )  (As=  ZA, + H,"( IA,$ = ZA,,  4'- - 4' (33) e - j k r  

. [ A B  - Bo cos 4cos  47 - (37) where H," is the scattered field given in (23). The first ?G -. - .  
term in (33) is the contribution from ( E ' , H ' )  and the 
second term is the contribution from ( E r ,  Rr).  Because of 
the symmetry of the scatterer we find that 

where BO is given in (32). 
We have now derived the exact expressions for the 

leading terms in the low-frequency expansions of the 
diffracted far fields from arbitrarily shaped bumps. Our 
general analysis has proven the rather remarkable result 
that the constant in the TM magnetic dipole term equals 
the negative of the constant in the TE electric dipole term 

~ u B ~ u o y ( i )  ds = 2/ B y u o Y ( 7 )  ds (34) for arbitrarily shaped bumps. In the following section we 
will show that this result also holds for diffraction from a 
two-dimensional dent in a ground plane. 

/BuBz~uoy(? )  ds = 0, 

where U O x  and OY are the electrostatic charges in the 
electrostatic problems with the equivalent scatterer situ- 
ated in the impressed electrostatic fields .i? and j ,  respec- 
tively. 

With substitution of (34) into the field expression (231, 

Iv. CYLINDRICAL DENT IN A GROUND PLANE 

In this section we derive the low-frequency expressions 
for the fields diffracted by a cylindrical dent in a ground 
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plane illuminated by a plane wave. Both the dent and the 
ground plane are perfectly conducting. The dent extends 
uniformly to infinity in the +z and - z  directions and the 
curve that describes the cross section of the dent in the 
x - y  plane is denoted by D as shown in Fig. 4. The 
ground plane is given by y = 0 and the dent intersects the 
ground plane at y = 0, x = +d.  The line segment given 
by y = 0, 1x1 I d that caps the dent is called the aperture 
and is denoted by A .  The image of D with respect to the 
ground plane y = 0 is denoted by D,, and the part of the 
upper half plane ( y  > 0) outside the image D, is called F. 
The normal to D is f i  and the tangent unit vector to D is 
t^ = 2 x f i .  Normal and tangent unit vectors to A are 9 
and -f, respectively. The incident field ( E ,  EL), the 
reflected field ( F ,  Rr),  the diffracted field (Ed ,  I f d ) ,  and 
the cylindrical coordinates ( r ,  6, z )  are defined as in the 
previous section. 

Although the dent problem is very similar to the bump 
problem, the analysis of the dent is much more compli- 
cated and thus warrants a separate analysis. The main 
reason for the complication is that the dent problem, 
unlike the bump problem, cannot be reduced using image 
theory to an equivalent problem that involves only a 
cylinder of finite cross section without a ground plane. 
One therefore has to deal with integral equations more 
complicated than the usual two-dimensional electric and 
magnetic field integral equations. It is essential to the 
derivation that the integral equation involves only fields 
and currents in a region whose maximum dimension tends 
to zero as the characteristic dimension of the dent tends 
to zero. We found that the most convenient integral 
equations for this purpose were coupled integral equa- 
tions first derived by Asvestas and Kleinman [19]. Here we 
give an alternative derivation of these coupled integral 
equations directly from the two-dimensional Stratton-Chu 
formulas [20, p. 4661: 

_ -  

E(F) - E ‘ ( ? )  = [ j w p ( f i ‘  X H(F’))G(F,T.’) 
R 

- (h ’  X E( F’)) X V’G( F ,  F’) 
- ( f i ’  . E( ?’))V’G( F, F’)] d ~ ’  (38) 

and 

+(h ’  X I?(?’)) X V’G(F, F’) 
+ ( f i ‘  . H (  F’))V’G( F, F’)] ds’ (39) 

where R is a curve enclosing free space and the sources 
of the incident field, f i  is the outward normal to R, and F 
is a point inside R. If R does not enclose the sources of 
the incident field (only free space) the right-hand sides of 
(38) and (39) equal simply the total fields. 

A. Transverse Magnetic (TM) Polarization 
The incident electric field is given by (11, and the 

reflected electric field is also given by (1) with 2 and y 
replaced by -2 and -y ,  respectively. 

X 

Fig. 4. Cylindrical dent in a ground plane. 

1) Low-Frequency Current: To get the first integral 
equation let R consist of the surface of the perfect 
conductor and the semicircle of infinite radius above the 
ground plane. (The radiation condition on the fields can 
be used to prove that the integration over the semicircle 
of infinite radius is zer:) Inseging the boundary condi- 
tions f i  X E = 0, f i  x H = -K, and f i  . H  = 0 on the 
conductor into (39), placing the observation point in the 
aperture A ,  and using the fact that (J/dy’)G(F,F’) = 0 
when y = y’ = 0, x # X I ,  yields 

d 
L K , ( F f ) ~ G ( f ,  F’) ds’ = H:(F) - H,(F), 

F E A  (40) 

which is a relation between the current in the dent and 
the magnetic field in the aperture. 

To determine the current in the dent we need one more 
relation of this kind. Let R = A U D, so that the formula 
(38) without the incident field (since 1R here does not 
enclose the sources of the incident field) and with the 
free-space Green’s function replaced by the Neumann 
Green’s function G, 

G,v(F,F’) = G(F,F’) + G(F,F;), Fi =S -J$ (41) 

produces a relation between the current in D ,  the mag- 
netic field in A ,  and the electric field in the interior of 
A U D. With the observation point on D and the bound- 
ary condition that E = E,2 = 0 on D,  this relation be- 
comes 

fUGN(F,F‘)K,(F‘)ds’ + 2 G(F,F’)H,(F‘) ds’ = 0, 

F E D .  (42) 

The relations (40) and (42) constitute a pair of coupled 
integral equations that determine the current K ,  in D 
and the magnetic field H, in A .  These coupled integral 
equations will now be used to determine the first term in 
the low-frequency expansion of the current in the dent. 

With the low-frequency expansion (12) of the derivative 
of the Green’s function, the integral equation (40) be- 
comes 

F E A  (43) 
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where K: and H,” are the first terms in the low-frequency 
expansions of the current in the dent and the magnetic 
field in the aperture, respectively. G” is the static two- 
dimensional free-space Green’s function given in (5). In- 

(43)-(45) it follows that K O D  and goo satisfy the static 
integral equations 

d 1 
K : D ( ? ’ )  7 ~ O ( ? ,  ?’) ds’ = - - H , O D ( ? ) ,  ? E A 

serting the low-frequency expansion of the free-space ’ JY 2 
Green’s function (4) and the corresponding expansion of 

(42) leads to 

(48) 

(49) 
the Neumann Green’s function in the integral equation 

jDK:D(?’)  ds’ + 1 H-f”(?’) ds‘ = 0 
A 

’$if) ds’ + H,O(?’) ds’ = 0 (44) and 
’A 

and fnCir ( i ,  ?’)K,“D(?’) ds’ 

fUGL(?,?’)KP(?’) ds‘ + 2 G”(?,?‘)H;(?’) ds’ = 0, 
’A 

? E D. (45) 

Equations (43)-(45) constitute a set of coupled integral 
equations that determine the low-frequency current on D. 
In [15] it is proven that these three coupled integral 
equations have a unique solution. 

We will now show that they are the integral equations 
for the magnetostatic current when the scatterer is situ- 
ated in the impressed magnetostatic field 

For the dent problem we consider the magnetostatic prob- 
lem in which the total magnetostatic field H” satisfies 
A .  go = 0 and A X g” = -Eo on the conductor. Fur- 
thermore, it can be proven that these boundary conditions 
make the total static field zero below the ground plane 
and dent. 

satisfies 
the Stratton-Chu formula (39) with replaced by no, C 
replaced by GO, and w = 0. One may now repeat the 
derivation that led to (40) and show that (43) is indeed 
satisfied by the magnetostatic field and current when the 
impressed field is given by (46). To get (44) and (45) 
introduce a vector potential 2 = A:.^ for the magneto- 
static field H o  so that E” = V X A, and use the bound- 
ary condition A . Po = 0 on D to find that At is constant 
on D. Choosing At = 0 on D and using Green’s second 
identity one finds that (44) and (45) are satisfied by every 
magnetostatic field and current. Since the solution to 
(43)-(45) is unique [15], Ro and KO are the magneto- 
static field and current in the static problem with the dent 
situated in the impressed field (46). 

If we let ,OD and ,OD be the magnetostatic current 
and field in the magnetostatic field problem when the 
scatterer is situated in the impressed magnetostatic field 
(1/2)P, we obtain from (46) that the current in the dent 
can be written as 

It is easy to show that a magnetostatic field 

K ,  = -2  - sin qbiK,OD + K: (47) c 
where K i  + 0 as kd + 0. From the integral equations 

+ 2 G’(?,?’)H:D(?’) ds’ = 0,  ? E D. (50) 

In the next section the low-frequency current is integrated 
to get the low-frequency diffracted far field. 

2) Low-Frequency Diffracted Far Field: To determine an 
expression for the low-frequency diffracted far field we 
will first derive a relation between the current in the dent 
and the diffracted field in F ,  the region in the upper half 
plane ( y  > 0) outside the image of the dent. When 7 E F 
and ?’  E int(A U 0)  the Dirichlet Green’s function 

’A 

GD( ?, ?’) = G(?, ?‘) - G( ?, F t ’ ) ,  Fi = .G - J$ (51) 

satisfies the homogeneous Helmholtz equation. Then 
Green’s second identity along with the boundaly condi- 
tions E, = 0 on D and G, = 0 on A give 

? E  F .  (52) 

Because the right-hand side of (52) is the standard ex- 
pression for the diffracted field, and K ,  equals 
( j / k ) d m ( d / d n ) E ,  one finds 

E:(?) = -jkF j Go(?, F r ) K z ( ? f )  ds’, r E F 
E D  

(53) 

which is the relation between the current in the dent and 
the diffracted field in F. This expression was first derived 
by Asvestas and Kleinman [191. 

From the asymptotic expansion of the Hankel function 
one finds that 

GD( ?, ?’) N - -k sin +[y’  + O ( k d ) ] ,  
&77/4 e - i k r  

r + W .  GvG 
(54) 

The expansion (54) and the current expansion (47) in- 
serted into the field expression (53) yield the diffracted far 
field to order 
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with and 

Do = / K,OD(?’)y’ds’ 
D 

where K,OD is the solution to the coupled static integral 
equations (48)-(50). Equation (55)  is the final expression 
for the TM low-frequency diffracted far field of the dent 
D in the ground plane. We see that this TM low-frequency 
far field is that of a magnetic dipole in the x-direction [ll, 
section 3.81. 

B. Transverse Electric (TE) Polarization 
For TE polarization, the incident magnetic field is given 

by the right-hand side of (11, and the reflected magnetic 
field is given by the right-hand side of (1) with y replaced 

1) Low-Frequency Current: We will start by giving a 
short alternative derivation of Asvestas and Kleinman’s 
[19] coupled TE integral equations for the current in the 
dent and the magnetic field in the aperture. 

Using exactly the same procedure that led to (40) we 
obtain 

by -Y .  

(57) 

which is a relation between the current in the dent and 
the magnetic field in the aperture. To determine the 
current in the dent we need one more relation of this 
kind. Applying the Stratton-Chu formula (39) with fl = 

A U D and the Dirichlet Green’s function (51) replacing 
the free-space Green’s function gives a relation between 
the magnetic field and the current in D. Letting the 
observation point in this relation approach D with K ,  = 

H, on D produces 

1 d 
-Kt(F)  = - f D K , ( ? ‘ ) y G D ( ? 7 F ‘ )  dn ds‘ 
2 

d 
- 2 /  H,O(?’)-G’(F,?’) ds’, F E D  (60)  

where K; and H,” are the first terms in the low-frequency 
expansions of the current K ,  and magnetic field H,, 
respectively. In [15] it is proven that these two coupled 
integral equations have a unique solution. 

By a derivation similar to the one explained after (46) 
one finds that a static magnetic field H,“ and current KP 
satisfy (57) and (58) with G replaced by GO, GD replaced 
by G i ,  and H: replaced by H:t,tic, z .  Here Hitatic, , is the 
z-component of the impressed magnetostatic field. There- 
fore, (59) and (60) show that H,” and KP are the magne- 
tostatic field and current in the case where the scatterer is 
situated in the impressed magnetostatic field 2. 

Applying the divergence theorem to VG’, and convert- 
ing the integration near the singularity to a principal 
value [14, Appendix] result in the relations 

A dY 

and 
1 d d 
-C = -f C-G:(F, F ’ )  ds’ - 2/ C y G o ( F ,  ?’) ds’, 
2 D dn‘ A a y  

? E D  (62)  

where C is an arbitrary constant. Comparing (61) and (62) 
with C = 2 to (59) and (60), and recalling the uniqueness 
of the solution [15], reveals that the first term in the 
low-frequency expansion of the current in the dent is 
KP = H,“ = 2. 

The second term in the low-frequency expansion of the 
current in the dent can be determined as follows. From 
the static integral equations (59) and (601, as well as the 
low-frequency expansions of the Green’s functions in the 
integral equations (57) and (581, one obtains 

which is the second relation between the current in the 
dent and the magnetic field in the aperture. The relations 
(57) and (58) constitute a pair of coupled integral equa- 
tions for the current in the dent. 

We can use these coupled integral equations to deter- 
mine the first two terms in the low-frequency expansion of 
the current in the dent. Inserting the low-frequency ex- 
pansion (12) for (d/dn’)G and the similar expansion for 
(d/dn’)G, into the integral equations (57) and (58) yields 

d 
/ D K ~ ( i ’ ) ~ G ’ ( ? , ? ’ ) d s ‘  dn = -H,O(?) + 1 ,  F E A  

(59) 

? E A  (63) 
and 

1 d 
-K:(F) = -f K ; ( F ’ ) y G i ( F 7 F ’ )  ds‘ 
2 D dn 

d 
- 2 / H j ( ? ’ )  -G d y ,  ’ ( r , r  - - ’  ) ds‘,  ? E D  (64)  

where K,‘ and H,’ are the second terms in the low- 
frequency expansion of the current in the dent and the 
magnetic field in the aperture. 

We have shown that the first two terms in the low- 
frequency expansion of the current in the dent are of 
order (kd)’ and kd. Because the second term in the 

A 
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expansion of the derivative of the Green's function [see 
(12)] is of order In kd, the third term in the expan- 
sion of the current will in general be a function of both kd 
and In kd. Consequently, the current cannot be expanded 
in a power series in k, as mentioned in the Introduction. 

The current K: can be found from the solution to the 
electrostatic problem with the scatterer situated in the 
impressed electrostatic field 

To prove this, introduce a vector potential F o  = F;i for 
the - electrostatic solution Eo so that Eo = { m V  X 
F a .  The scalar FP satisfies Laplace's equation and the 
Neumann boundary condition on the conductor like the z 
component of a magnetostatic field. Thus F," satisfies (59) 
and (60) with KP, H:, and 1 replaced by F,", FP, and F,"', 
respectively. Here FP' is the potential for the impressed 
electrostatic field (65). This potential is given by FP' = 

cos 4j.x + C where C is a constant. Therefore, the cou- 
pled integral equations for F o  are 

since the current can thereby be written as 

K, = 2 + 2jk cos @FPD + K i  (70) 
where (l/kd)K: -+ 0 as kd --j 0. 

2) Low-Frequency Diflucted Fur Field: Having derived 
the first two terms of the low-frequency expansion of the 
current in the dent, we will integrate these terms to get 
the low-frequency diffracted far field. We start by deriving 
a formula that expresses the TE diffracted field in the 
region F in terms of the current in the dent. 

Since the Neumann Green's function G,(F,F') in (41) 
satisfies the homogeneous Helmholtz equation when f E F 
and F'  E int (A U D),  Green's second identity along with 
the facts that G, and H, satisfy the Neumann boundary 
condition on A and D, respectively, give 

d 
/ D H z ( F ' ) z G , ( F 7 7 ' )  ds' 

d 
= 2/ G ( F , F ' ) y H , ( F ' )  ds ' ,  

A dY 

F E F .  (71) 
d 

d n  
F P ( f ' ) 7 G o ( F , ~ ' )  ds' = -F,"(F) + xcos 4' + c, Noting that the right-hand side of this equation is the 

negative of the standard expression for the diffracted field 
and that H, = K, on D ,  we get the relation T. E A (66) 

and 

1 d 
-F,"(F) = - F ; ( F ' ) 7 G E ( F 7 F ' )  ds' 2 f, dn 

From (61) and (62) one finds that the constant C on the 
right-hand side of the integral equation (66) adds only the 
constant C to the solution to (66) and (67) with C = 0. 
Because an arbitrary constant may be added to the poten- 
tial F," without changing the electrostatic solution Eo,  it 
is permissible to let C = 0 in (66). Therefore, comparing 
the integral equations (63) and (64) to (66) and (67) (with 
C = 0) and recalling that the solution is unique [15], 
shows that K:(F) =jkFP(F) when F E D. This completes 
the proof that the second term in the low-frequency 
expansion of the current can be found from the corre- 
sponding electrostatic solution. 

It is convenient to introduce a potential FPD as the 
solution to the equations 

d 1 

dn 2 
F,OD(?')-Go(F,F') ds' = -F,OD(F) + - x ,  

F E A  (68) 
and 

d 
- 2/ FPD(F')-Go(F,F') ds ' ,  F E D  (69) 

A dY 

d 

D dn H,d(F) = -/ K t ( F ' ) ~ G , ( V , f f )  ds ' ,  V E F (72) 

between the diffracted field and the current in the dent 
first derived in [19]. 

From the asymptotic expansion of the Hankel function 
it is found that 

d e j?r /4  e - j k r  

7 G N ( F ,  F') N k- - 
d n  \/z;F d' 

.[ f cos 4 + fj'loc' cos2 4 

+jjky'sin2 4 + " ( ( l ~ d ) ~ ) ] ,  r -+ m. 

(73) 

Substituting the expansion (70) of the current and the 
expansion (73) of the Green's function into the field 
expression (72) shows that to order (kd)2 the diffracted 
far field is given by 

.[/D(ik'cosz 4 +-@'sin2 4 )  ec 'ds '  

+COSC$COSC$'/ 
D 

The divergence theorem can be used to prove that the 
first integral in this equation simply equals the area of the 
region bounded by A U D, i.e., the area of the cross 
section of the dent. The second integral in (74) may be 
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written as 

where we have integrated by par? once and have intro- 
duced the electrostatic solution EOD to the problem in 
which the scatterer is situated in the impressed electro- 
static field (1/2)J. 

Before writing down the final expression for the 
diffracted far field let us prove the relationship 

h *EO”(F) = K Y D ( F ) ,  r E D  (76) 

between the TE electrostatic solution in (75) and the TM 
magnetostatic solution in (56). 

Consider the scalar potential 9 such that ,OD = -0Q 
with I,/J satisfying Laplace’s equation and the Dirichlet 
boundary condition on the conductor. Following the pro- 
cedure explained after (46) shows that q!~ satisfies the 
coupled integral equations 

r E A  (77) 
d 

J -*(?’) ds’ = 0 (78) 
A U D  dn’ 

and 

{ D G i ( F , ? ’ ) y ~ ( ? ’ ) d s ’  d 

d n  

Making use of the relation 2 * EOD(?) = - ( d / d n ) $ ( r ) ,  
i. E D, and comparing (771479) to (48)-(50), respectively, 
shows that (76) is indeed a valid identity. 

According to the relations (75) and (76) the diffracted 
far field in (74) may be written as 

H,d(?) - (kd)2e-j””’4 

where A, is the area of the cross section of the dent and 

dY’ 
F p D ( F ‘ ) y d s ‘ .  (81) Do = 1 K,DD(F‘)y’ds’ = 

D ds 

The magnetostatic current is found from the cou- 
pled integral equations (481-450) and the electrostatic 
vector potential Eo” is found from the coupled integral 
equations (68) and (69). 

We see that the diffracted far field in (80) consists of 
the contribution from a magnetic dipole in the z-direction 
(the term with A,) and an electric dipole in the y-direc- 
tion (the cosine term) [ll, section 3.81. Furthermore, the 

constant in the TE electric dipole term in (80) is the same 
as the constant in the TM magnetic dipole term (55). 

Remarkably, the TM and TE low-frequency scattering 
from a two-dimensional dent in a ground plane, like that 
for the bump, reduces to the evaluation of a single con- 
stant Do. This constant is determined from a static solu- 
tion and depends only on the shape of the cross section of 
the dent. 

Throughout the derivation that led to (80) it was as- 
sumed that the dent was continuously lined by a conduc- 
tor so that the results in this paper do not apply per se to 
the slit in a ground plane. However, since the slit is the 
compliment of the strip it is seen from (10) that the 
low-frequency fields diffracted by a slit for TE polariza- 
tion must be of order (l/ln kd)  where d is the width of 
the slit [7, ch. 41, [8]. Thus, the low-frequency fields 
diffracted by slits and dents are of different order and, in 
particular, the slit scatters more strongly than the dent at 
low frequencies. The physical reason for this larger scat- 
tering by the slit is that the slit completely “stops” the 
currents on the ground plane while the dent only “diverts” 
them. 

v. VERIFICATION OF LOW-FREQUENCY EXPRESSIONS 
We will verify our general low-frequency expressions by 

comparing them to low-frequency results obtained from 
exact time-harmonic eigenfunction solutions. 

Begin by considering the circular cylinder with radius d. 
The low-frequency results obtained from the exact time- 
harmonic eigenfunction solution [7, sections 2.2.1.2 and 
2.2.2.21 are in agreement with our general results (10) and 
(23) provided that 

(82) 
- c2 

d2 
d2 = 2rr, c, = 0. - _ -  

Solving the problem of the circular cylinder in a static 
electric field by the method of separation of variables, it is 
easily shown that cox = 2~ cos 4 and uoY = 2~ sin 4. 
Inserting these expressions for the charge density into 
(26) one recovers (82). 

We also solved numerically the static integral equation 
(25) for (T O x  and the corresponding equation for u OY and 
inserted the numerical solutions into (26). Again the re- 
sults agreed with (82). Furthermore, the static integral 
equation (22) for F:” and the corresponding equation for 
FpY were solved numerically for the circular cylinder. The 
numerical results were inserted into (24) and agreement 
with (82) was obtained. 

Next we consider the semicircular bump of radius d. 
Rayleigh [18] used the exact eigenfunction solution for the 
circular cylinder to find the low-frequency expressions for 
the diffracted field. Rayleigh’s expressions agree with our 
general low-frequency expressions (31) and (37) provided 
that 

- 7T. (83) 
BO - =  
d2  
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Using the method of separation of variables to solve the 
equivalent statics problem, one finds that K,OB = - 2 sin 4. 
Substitution of this current into (32) recovers the value of 
B, given in (83). We also solved numerically the simple 
integral equation (29) for the static current K,OB, which 
upon integration in (32) again produced (83). 

Finally consider the semicircular dent with radius d. 
The dual-series eigenfunction solution [21] agrees with 
our general results (55) and (80) provided 

Do 
- = 0.58. 
d 2  

We solved numerically the coupled integral equations 
(481450) for the magnetostatic current K,OD used in (56) 
to calculate Do. The result agreed with (84). We also 
solved numerically the coupled integral equations (68) 
and (69) for the electrostatic vector potential 2F,0D; used 
in (81) to calculate D,. Again the result agreed with (84). 

VI. CONCLUSION 
We have evaluated the low-frequency electromagnetic 

scattering from the perfectly conducting cylinder with 
finite cross section and the perfectly conducting cylindri- 
cal bump and dent in a ground plane. 

For the cylinder with finite cross section the low- 
frequency scattered far field for TM polarization is inde- 
pendent of the shape of the cross section of the cylinder 
and is of order (l/ln k d )  where d is a characteristic 
dimension of the cylinder. This low-frequency result is not 
related to a corresponding static field problem; see Foot- 
note 1. 

For TE polarization the scattered field is of order (Id)’ 
and it consists of a contribution from a magnetic dipole 
along the axis of the cylinder and an electric dipole in a 
direction normal to the axis of the cylinder. The magnetic 
dipole moment is found directly from the area of the cross 
section of the cylinder. The electric dipole moment is 
found by solving an electrostatic problem, i.e., a two- 
dimensional potential problem, for two impressed fields 
and integrating these two electrostatic solutions around 
the cylinder. These electrostatic solutions are determined 
from simple static integral equations and depend only on 
the shape of the cylinder. 

For both the cylindrical bump on a ground plane and 
dent in a ground plane the low-frequency diffracted field 
for TM and TE polarization is of order (kd)*,  where d is a 
characteristic dimension of the bump or dent. The low- 
frequency TM diffracted far field is that of a magnetic 
dipole normal to the axial direction and parallel to the 
ground plane. 

The low-frequency TE diffracted far field for both the 
cylindrical bump and dent consists of a contribution from 
a magnetic dipole in the axial direction and an electric 
dipole normal to both the axial direction and the ground 
plane. The TE magnetic dipole moment is found directly 
from the area of the cross section of the bump or dent. 

Both the TM magnetic dipole field and the TE electric 
dipole field can be written as a constant times a known 
simple function. It is proven that, remarkably, this con- 
stant, which depends only on the shape of the bump or 
dent, is the same for both the TM and TE polarizations. 
This constant can be found by solving either a mag- 
netostatic or electrostatic field problem, i.e., a two- 
dimensional potential problem, and performing an inte- 
gration of these solutions over the bump or dent. This 
means that both the TM and TE low-frequency diffracted 
far fields for an arbitrarily shaped bump or  dent are 
completely determined by calculating a single constant for 
the bump or dent. 

The low-frequency expressions were confirmed from 
exact time-harmonic eigenfunction solutions to the circu- 
lar cylinder, the semicircular bump, and the semicircular 
dent. As mentioned in the Introduction, the low-frequency 
expressions derived in this paper are given in closed form 
and can therefore be used directly to determine incre- 
mental length diffraction coefficients for calculating the 
scattered fields from curved narrow ridges and channels in 
conductors [9]. These incremental length diffraction co- 
efficients determined from the low-frequency expressions 
derived in this paper have been applied recently to calcu- 
late the effects of ridges and channels on the fields of a 
reflector antenna [22]. 
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