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Abstract In this paper we formulate the boundary value problem of plane mi-
cropolar elasticity for a domain containing a crack in Sobolev spaces and prove
the existence and continuous dependence on the data of the corresponding weak
solutions. We consider the cases of both finite and infinite domain and find the
solutions in terms of modified single layer and modified double layer potentials with
distributional densities.
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1 Introduction

The micropolar theory of elasticity (also known as Cosserat or asymmetric theory of
elasticity) was introduced by Eringen in [1] (see [2] for a review of works in this area
and an extensive bibliography) to eliminate discrepancies between classical theory
of elasticity and experiments in cases when material microstructure was known to
have a significant effect on the body’s overall deformation, for example, materials
with granular microstructure such as polymers or human bones (see [3–5]). In the last
30 years various problems of Cosserat elasticity have been investigated by a variety of
methods. For example, three dimensional problems of Cosserat elasticity have been
formulated in a rigorous setting and solved by means of potential theory methods
by Kupradze in [6]. In [7–10], the corresponding boundary value problems for plane
deformations of a micropolar homogeneous, linearly elastic solid were shown to be
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well-posed and subsequently solved in a rigorous setting using the boundary integral
equation method.

In the case when a domain is weakened by a crack the nature of the boundary
conditions across the crack region presents formidable difficulties in the boundary
integral analysis in a classical setting. Several studies of a crack problem have been
undertaken in the classical elastic setting under assumptions of a simplified theory
of plane Cosserat elasticity [5, 11, 12] and recently there has been some activity
in the area of crack analysis in three-dimensional Cosserat elasticity [13–16]. The
rigorous analysis of the corresponding crack problems in plane Cosserat elasticity in
the general case still remains absent from the literature.

Recently, Chudinovich and Constanda [17] have used the boundary integral
equation method in a weak (Sobolev) space setting to obtain the solution for several
crack problems in a theory of bending of classical elastic plates. In spite of the fact
that the methods used are extremely complicated (mathematically) they seem to be
very effective and give very good results for applications. We continue to study the
effectiveness of these methods with a view to the analysis and solution of the plane
problems of interest here.

In this paper we formulate boundary value problems for both finite and infinite
domains which contain cracks in the case of plane micropolar elasticity when dis-
placements and microrotations or stress and couple stress are prescribed along the
two sides of the crack in Sobolev spaces and find the corresponding weak solutions
in terms of integral potentials with distributional densities.

2 Preliminaries

In what follows Greek and Latin indices take the values 1, 2 and 1, 2, 3, respectively,
the convention of summation over repeated indices is understood, Mm×n is the space
of (m × n)- matrices, En is the identity element in Mn×n, the columns of a (3×3)-
matrix P are denoted by P(i), a superscript T indicates matrix transposition, the
generic symbol c denotes various strictly positive constants, and (...),α ≡ ∂(...)/∂xα .
Also, if X is a space of scalar functions and v is a matrix, v ∈ X means that every
component of v belongs to X .

Let S be a domain in R
2 occupied by a homogeneous and isotropic linearly elastic

micropolar material with elastic constants λ, μ, α, γ and ε. We use the notations
‖ · ‖0;S and 〈·, ·〉0;S for the norm and inner product in L2(S) ∩ Mm×1 for any m ∈ N.

When S = R
2, we write ‖ · ‖0 and 〈·, ·〉0 .

The state of plane micropolar strain is characterized by a displacement field
u
(
x′)=(

u1
(
x′) ,u2

(
x′) ,u3

(
x′))T and a microrotation field φ

(
x′)=(

φ1
(
x′) , φ2

(
x′) ,

φ3
(
x′))T of the form

uα
(
x′) = uα (x) , u3(x′) = 0,

φα
(
x′) = 0, φ3(x′) = φ3 (x) , (2.1)

where x′ = (x1, x2, x3) and x = (x1, x2) are generic points in R3 and R2, respectively.
The equilibrium equations of plane micropolar strain written in terms of displace-
ments and microrotations are given by [7, 8]

L(∂x)u(x)+ q(x) = 0, x ∈ S, (2.2)



J Elasticity (2007) 86:19–39 21

in which now, denoting φ3 by u3,we have u(x) = (u,u3)
T , where u = (u1,u2)

T , the
matrix partial differential operator L(∂x) = L(∂/∂xα) is defined by

L (ξ ) = L (ξα)

=
⎛

⎝
(μ+ α)	+ (λ+ μ− α)ξ 2

1 (λ+ μ− α)ξ1ξ2 2αξ2

(λ+ μ− α)ξ1ξ2 (μ+ α)	+ (λ+ μ− α)ξ 2
2 −2αξ1

−2αξ2 2αξ1 (γ + ε)	− 4α

⎞

⎠ ,

where	=ξαξα , and vector q= (q1, q2, q3)
T represents body forces and body couples.

Together with L we consider the boundary stress operator T(∂x) = T (∂/∂xα)
defined by

T (ξ ) = T (ξα)

=
⎛

⎝
(λ+ 2μ) ξ1n1 + (μ+ α) ξ2n2 (μ− α)ξ1n2 + λξ2n1 2αn2

(μ− α)ξ2n1 + λξ1n2 (λ+ 2μ) ξ2n2 + (μ+ α) ξ1n1 −2αn1

0 0 (γ + ε)ξαnα

⎞

⎠ ,

where n = (n1,n2)
T is the unit outward normal to ∂S. To guarantee the ellipticity of

system (2.2), in what follows we assume that

λ+ μ > 0, μ > 0, γ + ε > 0, α > 0.

The internal energy density is given by

2E (u, v) = 2E0 (u, v)

+μ(u1,2 + u2,1)(v1,2 + v2,1)

+α(u1,2 − u2,1 + 2u3)(v1,2 − v2,1 + 2v3)

+(γ + ε)(u3,1v3,1 + u3,2v3,2),

2E0 (u, v) = (λ+ 2μ)
(
u1,1v1,1 + u2,2v2,2

)

+λ(u1,1v2,2 + u2,2v1,1).

Clearly, E(u, u) is a positive quadratic form.
The space of rigid displacements and microrotations F is spanned by the columns

of the matrix

F =
⎛

⎝
1 0 −x2

0 1 x1

0 0 1

⎞

⎠

from which it can be seen that LF = 0 in R
2, TF = 0 on ∂S and a general rigid

displacement can be written as Fk, where k ∈ M3×1 is constant and arbitrary.
A Galerkin representation for the solution of Eq. (2.2) when q(x) = −δ(|x − y|),

where δ is the Dirac delta distribution, yields the matrix of fundamental solutions [8]

D(x, y) = L∗(∂x)t(x, y), (2.3)
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where L∗ is the adjoint of L,

t(x, y) = a
8πk4

{[k2 |x − y|2 + 4] ln |x − y| + 4K0(k|x − y|)} , (2.4)

K0 is the modified Bessel function of order zero and the constants a,k2 are defined
by

a−1 = (γ + ε)(λ+ 2μ)(μ+ α), k2 = 4μα

(γ + ε)(μ+ α)
.

In view of Eqs. (2.3) and (2.4)

D(x, y) = DT (x, y) = D(y, x).

Along with matrix D(x, y) we consider the matrix of singular solutions

P(x, y) = (T(∂y)D(y, x))T . (2.5)

It is easy to verify that D(i)(x, y) and P(i)(x, y) satisfy Eq. (2.2) with q(x) = 0 at all
x ∈ R

2, x 
= y.
First, we consider an infinite domain with a crack modelled by an open arc �0.We

assume that �0 is a part of a simple closed C2-curve � that divides R2 into interior
and exterior domains 
+ and 
−. In what follows we denote by the superscripts +
and − the limiting values of functions as x → � from within 
+ or 
−. We define

 = R

2\�0 and �1 = �\�0. Regarding the definition of 
, we can also use ‖ · ‖0 and
〈·, ·〉0 for the norm and inner product in L2(
).

We say that u ∈ Ck(
) if u ∈ Ck(

+
), u ∈ Ck(


−
) and (∂αu)+(x) = (∂αu)−(x),

x ∈ �1, for all two-component multi-indices α such that |α| � k.
For any m ∈ R, let Hm(R

2) be the standard real Sobolev space of three-component
distributions, equipped with the norm

‖ u ‖2
m=

∫

R2
(1 + |ξ |2)m |̃u(ξ )|2dξ,

where ũ is the Fourier transform of u. In what follows we do not distinguish between
equivalent norms and denote them by the same symbol; thus, the norm in H1(R

2)

can be defined by

‖ u ‖2
1=‖ u ‖2

0 +
3∑

i=1

‖ ∇ui ‖2
0 .

The spaces Hm(R
2) and H−m(R

2) are dual with respect to the duality induced by
〈·, ·〉0 .

We introduce the space L2
ω(R

2) of (3 × 1)-vector functions u = (u, u3)
T , where

u = (u1,u2)
T , such that

‖ u ‖2
0,ω=

∫

R2

|u(x)|2
(1 + |x|)2(1 + ln |x|)2 dx +

∫

R2

|u3(x)|2
(1 + |x|)4(1 + ln |x|)2 dx < ∞..
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Also, we consider the bilinear form b (u, v) = 2
∫

R2 E(u, v) dx. Let H1,ω(R
2) be the

space of three-component distributions on R2 for which

‖ u ‖2
1,ω=‖ u ‖2

0,ω +b (u,u) < ∞,

H−1,ω(R
2) is dual to H1,ω(R

2) with respect to the duality generated by 〈·, ·〉0 . The
norm in H−1,ω(R

2) is denoted by ‖ · ‖−1,ω .

Let
◦
Hm(


+) be the subspace of Hm(R
2) consisting of all u which have a compact

support in 
+. Hm(

+) is the space of the restrictions to 
+of all u ∈ Hm(R

2).

Denoting by π± the operators of restrictions from R
2 to 
±, respectively, we

introduce the norm of u ∈ Hm(

+) by ‖ u ‖m;
+= infv∈Hm(R

2):π+v=u ‖ v ‖m . If m = 1,

then the norms of u ∈ ◦
H1(


+) and u ∈ H1(

+) are equivalent to

{

‖ u ‖2
0;
+ +

3∑

i=1

∫


+
|∇ui(x)|2dx

}1/2

.

The spaces
◦
Hm(


+) and H−m(

+) are dual with respect to the duality induced by

〈·, ·〉0;
+ .

Let
◦
H1,ω(


−) be the subspace of H1,ω(R
2) consisting of all u which have a compact

support in 
−. H1,ω(

−) is the space of the restrictions to 
−of all u ∈ H1,ω(R

2).

The norm in H1,ω(

−) is defined by ‖ u ‖1,ω;
−= infv∈H1,ω(R2):π−v=u ‖ v ‖1,ω . From the

definition it follows that H1,ω(

−) is isometric to H1,ω(R

2)\ ◦
H1(


+). It can be shown
that the norm of u ∈ H1,ω(


−) is equivalent to

{‖ u ‖2
0,ω;
− +b−(u,u)

}1/2
,

where

‖ u ‖2
0,ω;
−=

∫


−

|u(x)|2
(1 + |x|)2(1 + ln |x|)2 dx +

∫


−

|u3(x)|2
(1 + |x|)4(1 + ln |x|)2 dx

and b−(u, v) = 2
∫

− E(u, v) dx. This norm is compatible with asymptotic class A

introduced in [8].

The dual of
◦
H1,ω(


−) with respect to the duality generated by 〈·, ·〉0;
− is the space

H−1,ω(

−), with norm ‖ · ‖−1,ω;
− ; the dual of H1,ω(


−) is
◦
H−1,ω(


−), which can be
identified with a subspace of H−1,ω(R

2).

Let Hm(�) be the standard Sobolev space of distributions on �, with norm
‖ · ‖m;� . Hm(�) and H−m(�) are dual with respect to the duality generated by the

inner product 〈·, ·〉0;� in L2(�).We denote by
◦
Hm(�0) the subspace of all f ∈ Hm(�)

with compact support on �0, and by Hm(�0) the space of the restrictions to �0 of
all f ∈ Hm(�). Let π0 and π1 be the operators of restriction from � to �0 and �1.

The norm of f ∈ Hm(�0) is defined by ‖ f ‖m;�0= infv∈Hm(�):π0v= f ‖ v ‖m;� . For any

m ∈ R,
◦
Hm(�0) and H−m(�0) are dual with respect to the duality generated by the

inner product 〈·, ·〉0;�0
in L2(�0).
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Let γ + and γ − be the continuous trace operators from H1(

+) and H1,ω(


−)
to H1/2(�). Also, let γ ±

i = πiγ
±, i = 0, 1. For any u defined in 
 (or R2) we write

u = {u+, u−}, where u± = π±u.
Let H1,ω(
) be the space of all u = {u+,u−} such that u+ ∈ H1(


+), u− ∈
H1,ω(


−) and γ +
1 u+ = γ −

1 u−. The norm in H1,ω(
) is defined by

‖ u ‖2
1,ω;
=‖ u+ ‖2

1;
+ + ‖ u− ‖2
1,ω;
− .

◦
H1,ω(
) is the subspace of H1,ω(
) consisting of all u such that γ +

0 u+ = γ −
0 u− = 0;

therefore,
◦
H1,ω(
) can be identified with a subspace of H1,ω(R

2).

We denote by H−1,ω(
) and
◦
H−1,ω(
) the duals of

◦
H1,ω(
) and H1,ω(
) with

respect to the duality induced by 〈·, ·〉0 . The norms in H−1,ω(
) and
◦
H−1,ω(
) are

denoted by ‖ · ‖−1,ω;
 and ‖ · ‖−1,ω .

Further, we introduce the corresponding area, single layer, and double layer
potentials given, respectively, by

(Uϕ)(x) =
∫

R2
D(x, y)ϕ(y) dy,

(Vϕ)(x) =
∫

�0

D(x, y)ϕ(y) ds(y),

(Wϕ)(x) =
∫

�0

P(x, y)ϕ(y) ds(y),

where ϕ ∈ M3×1 is an unknown density matrix.
It is not difficult to check that L(Uq) = q in R

2.

The properties of single and double layer integral potentials are well known and
may be formulated in the following theorem, which can be proved using technique
described in [8–10].

Theorem 1

(a) If ϕ ∈ C(∂S), then Vϕ, Wϕ are analytic and satisfy L(Vϕ) = L (Wϕ) = 0 in
S+ ∪ S−.

(b) If ϕ ∈ C0,α(∂S), α ∈ (0,1), then the direct values V0ϕ,W0ϕ of Vϕ, Wϕ on ∂S
exist (the latter as the principal value), the functions V+(ϕ) = (Vϕ)|S

+ , V−(ϕ) =
(Vϕ)|S

− are of class C1,α(S
+
) and C1,α(S

−
), respectively, and TV+(ϕ) =

(W∗
0 + 1

2 I)ϕ, TV−(ϕ) = (W∗
0 − 1

2 I)ϕ on ∂S, where W∗
0 is the adjoint of W0 and

I - the identity operator.
(c) If ϕ ∈ C1,α(∂S), α ∈ (0,1), then the functions

W+(ϕ) =
{
(Wϕ)|S+ , in S+,
(W0 − 1

2 I)ϕ, on ∂S,
, W−(ϕ) =

{
(Wϕ)|S− , in S+,
(W0 + 1

2 I)ϕ, on ∂S,

are of class C1,α(S
+
) and C1,α(S

−
), respectively, and TW+(ϕ) = TW−(ϕ) on ∂S.
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3 Boundary Value Problems

We consider two types of boundary values problems: Dirichlet and Neumann bound-
ary value problems. The first one consists of finding u ∈ C2(
) ∩ C(
), u− ∈ A∗ such
that

Lu(x)+ q(x) = 0, x ∈ 
,
u+(x) = f +(x), u−(x) = f −(x), x ∈ �0, (D)

where f + and f − are prescribed on �0.

The second problem consists of finding u ∈ C2(
) ∩ C1(
), u− ∈ A such that

Lu(x)+ q(x) = 0, x ∈ 
,
(Tu)+(x) = g+(x), (Tu)−(x) = g−(x), x ∈ �0, (N)

where g+ and g− are prescribed on �0.Asymptotic classes A∗ and A were introduced
in [8].

The variational formulations are based on the Betti formulae [18] and [19]. The
variational formulation of (D) is as follows. We seek u ∈ H1,ω(
) such that

b (u, v) = 〈q, v〉0 ∀v ∈ ◦
H1,ω(
),

γ +
0 u+ = f +, γ −

0 u− = f −, (3.1)

where q ∈ H−1,ω(
) and f +, f − ∈ H1/2(�0) are given.
The variational formulation of (N) is as follows. We seek u ∈ H1,ω(
) such that

b (u, v) = 〈q, v〉0 + 〈
g+, γ +

0 v+
〉
0;�0

− 〈
g−, γ _

0 v−
〉
0;�0

∀v ∈ H1,ω(
), (3.2)

where q ∈ ◦
H−1,ω(
) and g+, g− ∈ H1/2(�0) are given.

In what follows we write δ f = f + − f − and δg = g+ − g− for the jump of these
quantities across the crack.

Theorem 2 Problem (3.1) has a unique solution u ∈ H1,ω(
) for any q ∈ H−1,ω(
)

and any f +, f − ∈ H1/2(�0) such that δ f ∈ ◦
H1/2(�0), and this solution satisfies the

estimate

‖ u ‖1,ω;
� c
(‖ q ‖−1,ω;
 + ‖ f + ‖1/2;�0 + ‖ δ f ‖1/2;�

)
. (3.3)

Proof Assume first that f + = f − =0. To prove this assertion it is sufficient to verify

that b (u, v) is coercive on
◦
H1,ω(
). In [18] and [19] it was shown that any u = {u+,

u−}∈ ◦
H1,ω(
) satisfies ‖ u+ ‖2

1;
+�cb+(u+, u+) and ‖ u− ‖2
1,ω;
−�cb−(u−,u−),where

b±(u, v) = 2
∫

± E(u, v)dx; consequently,

‖ u ‖2
1,ω;
=‖ u+ ‖2

1;
+ + ‖ u− ‖2
1,ω;
−� c

[
b+(u+,u+)+ b−(u−,u−)

] = cb (u,u).
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By the Lax–Milgram lemma, (D) with f + = f − = 0 has a unique solution u ∈
◦
H1,ω(
) and

‖ u ‖1,ω� c ‖ q ‖−1,ω;
 . (3.4)

In the full problem (D), we consider an operator l0 of the extension from �0 to
�, which maps H1/2(�0) continuously to H1/2(�). Let F+ = l0 f + and let F− be the
extension of f − to � such that π1 F+ = π1 F−. We denote by l± operators of the
extension from � to 
±, which map H1/2(�) continuously to H1(


+) and H1,ω(

−),

respectively. Let w+ = l+ F+ ∈ H1(

+) and w− = l− F− ∈ H1,ω(


−). Clearly, w =
{w+, w−} ∈ H1,ω(
). We seek a solution to (D) in the form u = u0 +w, where

u0 ∈ ◦
H1,ω(
) satisfies

b (u0, v) = 〈q, v〉0 − b (w,u) ∀v ∈ ◦
H1,ω(
). (3.5)

Since for all v ∈ ◦
H1,ω(
)

|b (w, v)| � |b+(w+, v+)| + |b−(w−, v−)| � c(‖ w+ ‖1;
+ + ‖ w− ‖1,ω;
− ) ‖ v ‖1,ω

� c(‖ F+ ‖1/2;� + ‖ F− ‖1/2;�) ‖ v ‖1,ω

� c(‖ f + ‖1/2;�0 + ‖ f − ‖1/2;�0) ‖ v ‖1,ω

� c(‖ f + ‖1/2;�0 + ‖ δ f ‖1/2;�) ‖ v ‖1,ω,

the right-hand side L(v) =< q, v >0 −b (w,u) in Eq. (3.5) defines the continuous

linear functional on
◦
H1,ω(
) and ‖ L‖−1,ω;
�c

(‖q‖−1,ω;
+‖ f + ‖1/2;�0 +‖δ f ‖1/2;�
) ;

therefore Eq. (3.5) has a unique solution u0 ∈ ◦
H1,ω(
) and

‖ u0 ‖1,ω;
� c
(‖ q ‖−1,ω;
 + ‖ f + ‖1/2;�0 + ‖ δ f ‖1/2;�

)
.

The theorem now follows from this inequality and the estimate ‖ w ‖1,ω;
�
c(‖ f + ‖1/2;�0 + ‖ δ f ‖1/2;�). �

We proceed with problem (3.2). It is clear that, in view of the properties of rigid
displacements,

〈q, z〉0 + 〈
g+, z

〉
0;�0

− 〈
g−, z

〉
0;�0

= 0 ∀z ∈ F (3.6)

is a necessary solvability condition for (N).

Theorem 3 Problem (3.2) is solvable for any q∈ ◦
H−1,ω(
) and any g+, g− ∈ H−1/2(�0)

such that δg ∈ ◦
H−1/2(�0), satisfying Eq. (3.6). Any two solutions differ by a rigid

displacement, and there is a solution u0 that satisfies the estimate

‖ u0 ‖1,ω;
� c
(‖ q ‖−1,ω + ‖ δg ‖−1/2;� + ‖ g− ‖−1/2;�0

)
. (3.7)

Proof We notice that the expression

L(v) = 〈
g+, γ +

0 v+
〉
0;�0

− 〈
g−, γ _

0 v−
〉
0;�0

= 〈
δg, γ +

0 v+
〉
0;�0

+ 〈
g−, δv

〉
0;�0

, ∀v ∈ H1,ω(
),
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where δv = γ +
0 v+ − γ

_
0 v−, defines a continuous linear functional on H1,ω(
). Con-

sequently, there is q1 ∈ ◦
H−1,ω(
) such that L(v) = 〈q1, v〉0 for all v ∈ H1,ω(
), and

‖ q1 ‖−1,ω� c
(‖ g− ‖−1/2;�0 + ‖ δg ‖−1/2;�

)
. (3.8)

We set q + q1 = q̃ and write Eq. (3.2) in the form b (u, v) = 〈̃q, v〉0 , v ∈ H1,ω(
).

We consider the factor space H1,ω(
) = H1,ω(
)\F with the norm ‖ U ‖H1,ω(
)=
infu∈H1,ω(
),u∈U ‖ u ‖1,ω;
 and define on it a bilinear form B(U,V) and a linear
functional L(V) by

B(U,V) = b (u, v), L(V) = L(v) = 〈̃q, v〉0 , (3.9)

where u and v are arbitrary representatives of the classes U,V ∈ H1,ω(
). Since
b (z, z) = 0 and < q̃, z >0= 0 for any z ∈ F , definitions (3.9) are consistent.

We now consider the problem of finding U ∈ H1,ω(
) such that

B(U,V) = L(V), ∀V ∈ H1,ω(
). (3.10)

We claim that Eq. (3.10) has a unique solution. First, from Eq. (3.8) it follows that

|L(V)| � c
(‖ q ‖−1,ω + ‖ δg ‖−1/2;� + ‖ g− ‖−1/2;�0

) ‖ v ‖1,ω;
 v ∈ V,

which gives |L(V)| � c
(‖ q ‖−1,ω + ‖ δg ‖−1/2;� + ‖ g− ‖−1/2;�0

) ‖ V ‖H1,ω(
); this
means that L(V) is continuous. The continuity of B is clear. In every class U we
choose a representative u such that

〈
γ +

0 u+, z
〉
0;�0

= 0 for all z ∈ F . By Theorem 7 in
[18] and Theorem 4 in [19]

‖ u− ‖2
1,ω;
− � c

[
b−(u−, u−)+ ‖ γ −

1 u− ‖2
0;�1

]

� c
[
b−(u−, u−)+ ‖ γ +

1 u+ ‖2
0;�1

]

� c
[
b−(u−, u−)+ ‖ u+ ‖2

1;
+
]

and‖ u+ ‖2
1;
+�cb+(u+,u+),where ‖·‖0;�1 is the norm in L2(�1).Hence, ‖U ‖H1,ω(
)�

‖u‖2
1,ω;
�B(U,V),which proves that B is coercive on H1,ω(
).By the Lax–Milgram

lemma (3.10) has a unique solution U ∈ H1,ω(
) and

‖ U ‖H1,ω(
)� c
(‖ q ‖−1,ω + ‖ δg ‖−1/2;� + ‖ g− ‖−1/2;�0

)
.

Clearly, any element u in U is a solution of Eq. (3.2). If u1 and u2 are two solutions
of Eq. (3.2), then w = u1 − u2 satisfies

b (w,w) = 0, w ∈ H1,ω(
).

We conclude that w ∈ F . To complete the proof, we choose u0 ∈ U such that
‖ u0 ‖1,ω;
=‖ U ‖H1,ω(
) . �
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We can describe H−1,ω(
) explicitly. If we define

Def u = (∂1u1, ∂2u2, ∂2u1 + ∂1u2)
T , Div u = (∂1u1 + ∂2u3, ∂2u2 + ∂1u3)

T ,

Gradσ = (∂2σ,−∂1σ)
T , where σ ∈ M1×1,

R =
⎛

⎝
λ+ 2μ λ 0
λ λ+ 2μ 0
0 0 μ

⎞

⎠ ,

then we can write

Lu =
(

Div (R Def u)+ αGrad(2u3 − (curl u)3)
(γ + ε)div∇u3 − 2α(2u3 − (curl u)3)

)

and

b (u, v) = 〈R Def u,Def v〉0 + α〈2u3

−(curl u)3, 2v3 − (curl v)3〉0 + (γ + ε)〈∇u3,∇v3〉0.

Theorem 4 H−1,ω(
) consists of all q of the form

q = Div P + Grad Q, q3 = div V − 2Q, (3.11)

where P ∈ L2(R2) ∩ M3×1, Q ∈ L2(R2) ∩ M1×1, V ∈ L2(R2) ∩ M1×1.Also there are
constants c1 > 0 and c2 > 0 such that

c1 ‖ q ‖−1,ω;
�‖ P ‖0 + ‖ Q ‖0 + ‖ V ‖0� c2 ‖ q ‖−1,ω;
 .

This assertion can be proved using technique described in [17].
We now show that (D) and (N) can be reduced to similar problems for the

homogeneous equilibrium equation by means of area potential.
Let H−1,ω(R

2) be the subspace of H−1,ω(R
2) consisting of all q such that 〈q, z〉0 = 0

for all z ∈ F . We choose an L2
ω(R

2)-orthonormal basis {z(i)}3
i=1 for F and introduce

a modified area potential of density ϕ ∈ C∞
0 (R

2) ∩ H−1,ω(R
2) by

(Uϕ)(x) = (Uϕ)(x)− 〈
Uϕ, z(i)

〉
0,ω

z(i)(x), x ∈ R
2,

where 〈·, ·〉0,ω is the inner product in L2
ω(R

2). It can be shown (see [17] for details)
that Uϕ ∈ H1,ω(R

2) and satisfies

b (Uq, v) = 〈q, v〉0 ∀v ∈ H1,ω(R
2). (3.12)

The defined operator U can be extended by continuity from C∞
0 (R

2) ∩ H−1,ω(R
2) to

H−1,ω(R
2). The extended operator U is continuous from H−1,ω(R

2) to H1,ω(
). For
any q ∈ H−1,ω(R

2), U(−q) is a solution of Eq. (3.12).
We start with (D). By Theorem 4, any q ∈ H−1,ω(
) can be represented in the

form (3.11), where the equality is understood in S ′(
). Let q̂ ∈ H−1,ω(R
2) be defined

by the same formula (3.11), in which the equality is understood in S ′(R2). We



J Elasticity (2007) 86:19–39 29

represent the solution of (D) in the form u = U (−q̂)+w. Since b (U (−q̂) , v) =
〈̂q, v〉0 = 〈q, v〉0 for v ∈ ◦

H1,ω(
), we conclude that w ∈ H1,ω(
) satisfies

b (w, v) = 0 ∀v ∈ ◦
H1,ω(
),

γ +
0 w+ = f + − γ +

0 (U (−q̂))+ , γ
−
0 w− = f − − γ −

0 (U (−q̂))− .

Let γ0 be the trace operator defined on H1,ω(
) by γ0v = {γ +
0 v+, γ +

0 v+ − γ −
0 v−}. It

is clear that γ0 is continuous from H1,ω(
) to H1/2(�0)× ◦
H1/2(�0). Consequently,

without loss of generality, in what follows we consider the problem (D) that consists
in finding u ∈ H1,ω(
) such that

b (u, v) = 0 ∀v ∈ ◦
H1,ω(
), γ0u = { f +, δ f }. (3.13)

In problem (N) we seek u ∈ H1,ω(
) such that

b (u, v) = 〈̃q, v〉0 , ∀v ∈ H1,ω(
), (3.14)

where q̃ ∈ ◦
H−1,ω(
) satisfies

〈̃q, z〉0 = 0, ∀z ∈ F . (3.15)

Since H1,ω(R
2) is a subspace of H1,ω(
),we may consider q̃ belonging to H−1,ω(R

2);
in addition, from Eq. (3.15) it follows that q̃ ∈ H−1,ω(R

2). We represent the solution
of Eq. (3.14) in the form u = U q̂ +w, then Eq. (3.14) becomes

b (w, v) = 〈̃q, v〉0 − b (U q̂, v), ∀v ∈ H1,ω(
).

Lemma 5 For all q̃ ∈ ◦
H−1,ω(
) satisfying Eq. (3.15), the expression

L(γ0v) = 〈̃q, v〉0 − b (U q̃, v), v ∈ H1,ω(
) (3.16)

defines a continuous linear functional on H1/2(�0)× ◦
H1/2(�0); therefore, L(γ0v) can

be written in the form

〈̃q, v〉0 − b (U q̃, v) = 〈
δg, γ +

0 v+
〉
0;�0

+ 〈
g−, δv

〉
0;�0

, v ∈ H1,ω(
),

where {δg, g−} ∈ ◦
H−1/2(�0)× H−1/2(�0).

Proof Let v1, v2 ∈ H1,ω(
) such that γ0v1 =γ0v2. The difference v1 − v2 ∈ ◦
H1,ω(
) ⊂

H1,ω(R
2), and since b (U q̃, v1 − v2) = 〈̃q, v1 − v2〉0 , we find that L(γ0v1) =

L(γ0v2).This means that definition (3.16) of L on H1/2(�0)× ◦
H1/2(�0) is consistent.

Let { f +, δ f } ∈ H1/2(�0)× ◦
H1/2(�0). Repeating the proof of Theorem 2, we choose

v ∈ H1,ω(
) so that γ0v = { f +, δ f } and ‖ v ‖1,ω;
� c(‖ f + ‖1/2;�0 + ‖ δ f ‖1/2;�). We
have

∣∣L
({ f +, δ f })∣∣ � c ‖ q̃ ‖−1,ω‖ v ‖1,ω;
� c ‖ q̃ ‖−1,ω (‖ f + ‖1/2;�0 + ‖ δ f ‖1/2;�),

which shows that L is continuous on H1/2(�0)× ◦
H1/2(�0); since

◦
H−1/2(�0)×

H−1/2(�0) is the dual of H1/2(�0)× ◦
H1/2(�0), this completes the proof. �
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Lemma 5 implies that, without loss of generality, we may consider (N) only for the
homogeneous equilibrium equation; that is, we seek u ∈ H1,ω(
) such that

b (u, v) = 〈
δg, γ +

0 v+
〉
0;�0

+ 〈
g−, δv

〉
0;�0

, ∀v ∈ H1,ω(
). (3.17)

We remark that Eq. (3.17) is solvable only if

〈z, δg〉0;�0
= 0, ∀z ∈ F . (3.18)

4 The Poincaré–Steklov Operator

For F = { f +, δ f } ∈ H1/2(�0)× ◦
H1/2(�0) and G = {δg, g−} ∈ ◦

H−1/2(�0)× H−1/2(�0)

we use the notation
[
F,G

]
0;�0

= 〈
f +, δg

〉
0;�0

+ 〈
δ f, g−〉

0;�0
.

We define the Poincaré–Steklov operator T on H1/2(�0)× ◦
H1/2(�0) by

[
T F,�

]
0;�0

= b (u, v) ∀� ∈ H1/2(�0)× ◦
H1/2(�0),

F ∈ H1/2(�0)× ◦
H1/2(�0), (4.1)

where u is the solution of Eq. (3.13) and v is any element in H1,ω(
) such that γ0v =
� = {ψ+, δψ}. The definition is independent of the choice of v. In particular, we may
take v = l�, where l is an operator extension from �0 to 
 which maps H1/2(�0)×
◦
H1/2(�0) continuously to H1,ω(
).

We identify F with the subspace of H1/2(�0)× ◦
H1/2(�0) consisting of all Z =

{z, 0}, z ∈ F . We also introduce the spaces

Ĥ1/2(�0) = {F ∈ H1/2(�0)× ◦
H1/2(�0) : 〈 f +, z

〉
0;�0

= 0, ∀z ∈ F},

Ĥ−1/2(�0) = {G ∈ ◦
H−1/2(�0)× H−1/2(�0) : 〈δg, z〉0;�0

= 0, ∀z ∈ F}.

Theorem 6

(a) T : H1/2 (�0) × ◦
H1/2 (�0) → ◦

H−1/2 (�0) × H−1/2 (�0) is self-adjoint and
continuous.

(b) The kernel of T coincides with F .
(c) The range of T coincides with Ĥ−1/2(�0).

(d) The restriction N of T to Ĥ1/2(�0) is a homeomorphism from Ĥ1/2(�0) to
Ĥ−1/2(�0).

Proof

(a) If u is the solution of Eq. (3.13) and v = l�, then, by definition of T , for F, � ∈
H1/2(�0)× ◦

H1/2(�0)

∣
∣[T F,�

]∣∣2 = |b (u, v)|2 ≤ b (u,u)b (v, v) � cb (u,u) ‖ � ‖2

H1/2(�0)×
◦
H1/2(�0)

.
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Consequently, T F ∈ ◦
H−1/2(�0)× H−1/2(�0) and

‖ T f ‖2
◦
H−1/2(�0)×H−1/2(�0)

≤ cb (u,u) = c
[
T F, F

]
0;�0

≤ c ‖ T f ‖ ◦
H−1/2(�0)×H−1/2(�0)

‖ F ‖
H1/2(�0)×

◦
H1/2(�0)

.

(4.2)

From Eq. (4.2) it follows that

‖ T F ‖ ◦
H−1/2(�0)×H−1/2(�0)

≤ c ‖ F ‖
H1/2(�0)×

◦
H1/2(�0)

, (4.3)

which proves the continuity of T . The definition of T shows that it is self-adjoint
in the sense that

[
T F,�

]
0;�0

= [
�,T F

]
0;�0

∀F, � ∈ H1/2(�0)× ◦
H1/2(�0).

(b) It is clear that T Z = 0 for Z ∈ F . If F ∈ H1/2(�0)× ◦
H1/2(�0),T F = 0 and u is

the solution of Eq. (3.13), then b (u,u) = 0; therefore, u ∈ F , which implies that
F = γ0u ∈ F . This also proves that N is injective.

(c) By Eq. (4.3), the range of T is a subset of Ĥ−1/2(�0). Let {̃z(i)}3
i=1 be an L2(�0)-

orthonormal basis for F . From Theorem 7 in [18] and Theorem 4 in [19] it
follows that any u ∈ H1,ω(
) satisfies

‖ u ‖2
1,ω;
� c

[

b (u,u)+
3∑

i=1

〈
γ +

0 u+, z̃(i)
〉2
0;�0

]

. (4.4)

Let F ∈ Ĥ1/2(�0). By the trace theorem and Eq. (4.4)

‖ F ‖2

H1/2(�0)×
◦
H1/2(�0)

� c ‖ u ‖2
1,ω;
� cb (u,u) = c

[
T F, F

]
0;�0

;

hence,

‖ F ‖
H1/2(�0)×

◦
H1/2(�0)

� c ‖ T F ‖ ◦
H−1/2(�0)×H−1/2(�0)

,

which shows that N−1 is continuous. If the range of T is not dense in

Ĥ−1/2(�0) then there is a nonzero F̂ in the dual
[
H1/2(�0)× ◦

H1/2(�0)
]\F of

Ĥ−1/2(�0) such that 〈T F,�〉0;�0
= 0 for all representative F of the class F̂

and all � ∈ H1/2(�0)× ◦
H1/2(�0). Taking F ∈ Ĥ1/2(�0) and � = F, we find that[

T F, F
]

0;�0
= 0; therefore, F ∈ F and F̂ = 0. This contradiction proves the

third statement.
(d) This assertion follows from the preceding ones. �

5 Boundary Equations

Let
◦
H−1/2(�0) be the subspace of

◦
H−1/2(�0) of all g such that 〈g, z〉0;�0

= 0 for all
z ∈ F .
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We define the modified single layer potential V of density ϕ ∈ ◦
H−1/2(�0) by

(Vϕ)(x) = (Vϕ)(x)−
〈
(Vϕ)0,

∼

z
(i)
〉

0;�0

∼

z
(i)
(x), x ∈ R

2,

where Vϕ is the single layer potential and V0 is the boundary operator defined by

(Vϕ)0 = γ ±
0 π

±Vϕ. Let V0ϕ be the operator defined on
◦
H−1/2(�0) by ϕ → (Vϕ)0 =

γ ±
0 π

±Vϕ. From the results established in [18] and [19] V0 is continuous from
◦
H−1/2(�0) to the subspace H1/2(�0) of all f + ∈ H1/2(�0) such that

〈
f +, z

〉
0;�0

= 0 for

all z ∈ F . Let Ṽ be the continuous operator from
◦
H−1/2(�0) to Ĥ1/2(�0) defined by

Ṽϕ = {V0ϕ, 0}.

Theorem 7 The operator V0 is a homeomorphism from
◦
H−1/2(�0) to H1/2(�0).

Proof The continuity of V0 is proved in [18] and [19]. From the jump formula for the
normal boundary stresses and couple stresses of the single laye potential (Theorem 1)
it follows that the first component of NṼϕ ∈ Ĥ−1/2(�0) is ϕ. By Theorem 6

‖ ϕ ‖−1/2;�0 � ‖ NṼϕ ‖ ◦
H−1/2(�0)×H−1/2(�0)

� c ‖ Ṽϕ ‖
H1/2(�0)×

◦
H1/2(�0)

= c ‖ V0ϕ ‖1/2;�0 ,

which shows that V−1
0 is continuous. Next, we claim that the range of V0 is H1/2(�0).

Let f + ∈ H1/2(�0), F = { f +, 0} ∈ Ĥ1/2(�0) and let u ∈ H1,ω(
) be the solution of
Eq. (3.13) with δ f = 0. We take G = {δg, g−} = N F ∈ Ĥ−1/2(�0) and ϕ = δg ∈
◦
H−1/2(�0). Then w = u − V0ϕ satisfies γ0w = { f + − V0ϕ, 0} = �. By the jump for-
mula the first component of N� is zero; consequently, b (w,w) = [

N�,�
]

0;�0
= 0.

This means that w ∈ F so γ +
0 w+ is a rigid displacement on �0. Since γ +

0 w+ =
f + − V0ϕ ∈ H1/2(�0), we have f + = V0ϕ, therefore, the assertion is proved. �

Also we introduce modified double layer potential W of density ψ ∈ ◦
H1/2(�0)

(Wψ)(x) = (Wψ)(x)−
〈
π0W+ψ,

∼

z
(i)
〉

0;�0

∼

z
(i)
(x), x ∈ 
.

Clearly, ifψ ∈ ◦
H1/2(�0) then Wψ ∈ H1,ω(
) and ‖ Wψ ‖1,ω;
� c ‖ ψ ‖1/2;� .Hence,

for ψ ∈ ◦
H1/2(�0) we can define the operators W± of the limiting values of the

modified double layer potential on � from within 
± by writing W±ψ = γ ±π±Wψ.

It is obvious that W± are continuous from
◦
H1/2(�0) to H1/2(�) and satisfy the jump

formula

W+ψ − W−ψ = −ψ. (5.1)

For ψ ∈ ◦
H1/2(�0) we now define the operator W0 of the limiting values of the

modified double layer potential on �0 from within 
 by writing

W0ψ = {
π0W+ψ,π0(W+ψ − W−ψ)

} = {
π0W+ψ,−ψ}

.
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Clearly, W0 is continuous from
◦
H1/2(�0) to Ĥ1/2(�0).

Let G̃ = NW0. From the jump formula for the normal boundary stresses and
couple stresses of the double layer potential it follows that the first component

of G̃ψ is zero for any ψ ∈ ◦
H1/2(�0); therefore, we can write G̃ψ = {0,Gψ} for all

ψ ∈ ◦
H1/2(�0).

Theorem 8 G is a homeomorphism from
◦
H1/2(�0) to H−1/2(�0).

Proof The continuity of G follows from the properties of W0 and N . We claim that

G−1 is continuous. Letψ ∈ ◦
H1/2(�0).By Eq. (5.1) and the trace theorem we conclude

that

‖ ψ ‖2
1/2;� = ‖ W+ψ − W−ψ ‖2

1/2;�� c ‖ Wψ ‖2
1,ω;


� cb (Wψ,Wψ) = −c 〈Gψ,ψ〉0;�0

� c ‖ Gψ ‖−1/2;�0‖ ψ ‖1/2;�;
consequently, ‖ ψ ‖1/2;�� c ‖ Gψ ‖−1/2;�0 . If the range of G is not dense in H−1/2(�0)

then there is a nonzero ψ in the dual
◦
H1/2(�0) such that 〈ψ,Gξ 〉0;�0

= 0 for all ξ ∈
◦
H1/2(�0). We take ξ = ψ and obtain 〈ψ,Gψ〉0;�0

= 0, which means that Wψ ∈ F ;
hence, ψ = W−ψ − W+ψ = 0. This contradiction completes the proof. �

We represent the solution of Eq. (3.13) in the form

u = (Vϕ)
 + Wψ + z, (5.2)

where ϕ ∈
◦
H−1/2(�0) and ψ ∈ ◦

H1/2(�0) are unknown densities, (Vϕ)
 is the restric-
tion of Vϕ to 
 and

z =
〈

f + − π0W+ψ,
∼

z
(i)
〉

0;�0

∼

z
(i)
.

Representation (5.2) leads to the system of boundary equations

{
V0ϕ + π0W+ψ + γ +

0 z,−ψ} = { f +, δ f }. (5.3)

Theorem 9 For any { f +, δ f }∈ H1/2(�0)×
◦
H1/2(�0), system (5.3) has a unique solution

{ϕ, ψ} ∈
◦
H−1/2(�0)× ◦

H1/2(�0),

respectively, and

‖ {ϕ, ψ} ‖ ◦
H−1/2(�0)×

◦
H1/2(�0)

≤ c ‖ { f +, δ f } ‖
H1/2(�0)×

◦
H1/2(�0)

.

In this case, Eq. (5.2) is the solution of problem (3.13).
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Proof From Eq. (5.3) ψ = −δ f ∈ ◦
H1/2(�0), and the equation for ϕ becomes

V0ϕ = f + + π0W+δ f −
〈

f + + π0W+δ f,
∼

z
(i)
〉

0;�0

∼

z
(i)
. (5.4)

The right-hand side in Eq. (5.4) belongs to H1/2(�0). By Theorem 7, Eq. (5.4) has a

unique solution ϕ ∈ ◦
H1/2(�0) and

‖ ϕ ‖−1/2;� � c
(‖ f + ‖1/2;�0 + ‖ π0W+δ f ‖1/2;�0

)

� c
(‖ f + ‖1/2;�0 + ‖ δ f ‖1/2;�

) = c ‖ { f +, δ f } ‖
H1/2(�0)×

◦
H1/2(�0)

.

The uniqueness of the solution is now obvious. �

We represent the solution of problem (3.17) in the form

u = (Vϕ)
 + Wψ + z, (5.5)

where ϕ ∈ ◦
H−1/2(�0) andψ ∈ ◦

H1/2(�0) are unknown densities and z ∈ F is arbitrary.
Representation (5.5) leads to the systems of boundary equations

NṼϕ + G̃ψ = {δg, g−}. (5.6)

Theorem 10 For any {δg, g−} ∈ ◦
H−1/2(�0)× H−1/2(�0) satisfying Eq. (3.18), system

(5.6) has a unique solution {ϕ, ψ} ∈ ◦
H1/2(�0)× ◦

H1/2(�0) and

‖ {ϕ, ψ} ‖ ◦
H−1/2(�0)×

◦
H1/2(�0)

≤ c ‖ {δg, g−} ‖ ◦
H−1/2(�0)×H−1/2(�0)

.

In this case, Eq. (5.5) is the solution of problem (3.17).

Proof Comparing first components on both sides of Eq. (5.6), we see that ϕ = δg;
therefore, Eq. (5.6) takes the form

Gψ = g− − (
NṼδg

)−
, (5.7)

where
(
NṼδg

)−
is the second component of NṼδg.By Theorems 6, 7 and 8, Eq. (5.7)

has a unique solution ψ ∈ ◦
H1/2(�0) and

‖ ψ ‖1/2;�� c
(‖ g− ‖−1/2;�0 + ‖ δg ‖−1/2;�

)
. ��

6 The Boundary Equations for a Finite Domain

Let ∂S be a simple closed C2-curve that divides R2 into interior and exterior domains
S+ and S−. We assume that S+ contains inside an auxiliary simple closed C2-curve
� = �0 ∪ �1, where �0 is an open arc modeling the crack. We write 
 = S+\�0. Let

+ be the interior domain bounded by � and let 
− = S+\
+

.

If u is defined in 
 then we denote by u+ and u− its restrictions to 
+ and 
−,
respectively, and write u = {u+, u−}. The spaces H1(


±) are introduced in the usual
way. The traces of the elements u± ∈ H1(


±) on � are denoted by γ +u+ and γ −u−.
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We denote by πi, i = 0, 1, the operators of restrictions from � to �i and write γ ±
i =

πiγ
±, i = 0, 1. The space H1(
) consists of all u = {u+,u−} defined in
 and such that

u+ ∈ H1(

+), u− ∈ H1(


−) and γ +
1 u+ = γ −

1 u−. The norm in H1(
) is defined by
‖ u ‖2

1;
=‖ u+ ‖2
1;
+ + ‖ u− ‖2

1;
− . Let γ0 be the trace operator that acts on u ∈
H1(
) according to the formula γ0u = {γ +

0 u+, γ +
0 u+ − γ −

0 u−}. Clearly, γ0 is continu-

ous from H1(
) to H1/2(�0)× ◦
H1/2(�0). The trace of u ∈ H1(
) on ∂S is denoted

by γ +
∂Su.

◦
H1(
) is the subspace of H1(
) consisting of all u ∈ H1(
) such that

γ0u = {0, 0} and γ +
∂Su = 0.

Let �̂=�0∪∂S. In what follows we make use of spaces H1/2(�̂) = H1/2(�0)×
◦
H1/2(�0)×H1/2(∂S) of all F̂ ={F, f∂S}, where F ={ f +, δ f }, and H−1/2(�̂)=

◦
H−1/2

(�0)× H−1/2(�0)×H−1/2(∂S) of all Ĝ = {G, g∂S}, where G = {δg, g−}. It is clear
that these spaces are dual with respect to the duality

[
F̂, Ĝ

]
0;�̂ = [

F,G
]

0;�0
+

〈 f∂S, g∂S〉0;∂S , where
[
F,G

]
0;�0

is the form defined in Section 4. This duality is
generated by the inner product [·, ·]0;�̂ in L2(�̂) = L2(�0)× L2(�0)× L2(∂S).

We consider the following boundary value problems.
Given F̂ = {F, f∂S} ∈ H1/2(�̂), we seek u ∈ H1(
) such that

b
(u, v) = 0 ∀v ∈ ◦
H1(
), γ0u = F, γ +

∂Su = f∂S, (6.1)

where b
(u, v) = ∫



E(u, v)dx.
Given Ĝ = {G, g∂S} ∈ H−1/2(�̂), we seek u ∈ H1(
) such that

b
(u, v) = [
G, γ0v

]
0;�0

+ 〈g∂S, γ∂Sv〉0;∂S , ∀v ∈ H1(
). (6.2)

Clearly, Eq. (6.2) is solvable only if

〈δg, z〉0;�0
+ 〈g∂S, z〉0;∂S = 0, ∀z ∈ F . (6.3)

In what follows we assume that Eq. (6.3) holds. The proofs of the unique solvability
of Eq. (6.1) and Eq. (6.2) repeat those of Theorems 2 and 3 with the obvious changes,
so we omit them.

We introduce the Poincaré–Steklov operator T̂ by
[
T̂ F̂, �̂

]
0;�̂=b
(u, v), where

F̂, �̂∈ H1/2(�̂) are arbitrary, u is a solution of Eq. (6.1) and v∈ H1(
) is any extension
of �̂ to 
. Let F(�̂) be the space of all Ẑ ={Z , z}, Z ={z, 0}, where z∈F is
arbitrary. We define the spaces

H1/2(�̂) =
{

F̂ ∈ H1/2(�̂) : [F̂, Ẑ
]

0;�̂ = 0 ∀Ẑ ∈ F(�̂)
}
,

H−1/2(�̂) =
{

Ĝ ∈ H−1/2(�̂) : [Ĝ, Ẑ
]

0;�̂ = 0 ∀Ẑ ∈ F(�̂)
}
.

Theorem 11

(a) T̂ is self-adjoint and continuous from H1/2(�̂) to H−1/2(�̂).
(b) The kernel of T̂ coincides with F(�̂).
(c) The range of T̂ coincides with H−1/2(�̂).

(d) The restriction N̂ of T̂ from H1/2(�̂) to H1/2(�̂) is a homeomorphism from
H1/2(�̂) to H−1/2(�̂).
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The proof of this theorem is identical to that of Theorem 6.

Let
◦
H−1/2(�̂) be the subspace of

◦
H−1/2(�0)× H−1/2(∂S) of all ϕ = {ϕ0, ϕ∂S} such

that 〈ϕ0, z〉0;�0
+ 〈ϕ∂S, z〉0;∂S = 0 for all z ∈ F . Ĥ1/2(�̂) is the subspace of H1/2(�0)×

H1/2(∂S) consisting of all f = { f +, f∂S} such that
〈
f +, z

〉
0;�0

+ 〈 f∂S, z〉0;∂S = 0 for all
z ∈ F .

We define the single layer potential of density ϕ ∈
◦
H−1/2(�̂) by

(Vϕ)(x) = (V0ϕ0)(x)+ (V∂Sϕ∂S)(x), x ∈ R
2,

where V0ϕ0 and V∂Sϕ∂S are the single layer potentials defined on �0 and ∂S,
respectively. Let

{
Ẑ (i)

}3

i=1 be an L2(�̂)-orthonormal basis for F(�̂), where Ẑ (i) ={
Z (i), z(i)

}
and Z (i) = {z(i), 0}. The rigid displacements z(i) satisfy Eq. (6.1) with

boundary data F = Z (i), f∂S = z(i). We introduce the modified single layer potential

(Vϕ)(x) = (Vϕ)(x)−
[〈
(Vϕ)0 , z(i)

〉
0;�0

+ 〈
(Vϕ)∂S , z(i)

〉
0;∂S

]
z(i)(x), x ∈ R

2,

where (Vϕ)0 and (Vϕ)∂S are the restrictions of Vϕ to �0 and ∂S. The corresponding
boundary operator V�̂ is defined by V�̂ϕ = {

γ +
0 (Vϕ)+ , γ +

∂S (Vϕ)

}
, where (Vϕ)± are

the restrictions of Vϕ to 
±. We also introduce a boundary operator V̂ by writing
V̂ϕ = {

γ +
0 (Vϕ)+ , 0, γ +

∂S (Vϕ)

}
.

Theorem 12 V�̂ is a homeomorphism from
◦
H−1/2(�̂) to Ĥ1/2(�̂).

Proof The proof of this theorem makes use of already studied properties of the
modified single layer potential and the Poincaré–Steklov operator for the exterior
region [19] and Theorem 11. �

Let H1/2(∂S) be the subspace of H1/2(∂S) consisting of all f such that 〈 f, z〉0;∂S = 0
for all z ∈ F . H−1/2(∂S) is the subspace of H−1/2(∂S) of all g such that 〈g, z〉0;∂S = 0
for all z ∈ F .

We define the double layer potential of density ψ = {ψ0, ψ∂S} ∈ ◦
H1/2(�0)×

H1/2(∂S) by

(Wψ)(x) = (W0ψ0)(x)+ (W∂Sψ∂S)(x), x ∈ 
,
where W0ψ0 and W∂Sψ∂S are the double layer potentials defined on �0 and ∂S,
respectively. We introduce the modified double layer potential

(Wψ)(x) = (Wψ)(x)−
[〈
(Wψ)+0 , z(i)

〉
0;�0

+ 〈
(Wψ)+∂S , z(i)

〉
0;∂S

]
z(i)(x), x ∈ 
,

where (Wψ)+0 and (Wψ)+∂S are the limiting values of Wψ on �0 and ∂S from
within 
+ and S+. We also define the limiting values W± of the modified double
layer potential on � from within 
± by writing W±ψ = γ ±π±Wψ. The corre-
sponding boundary operator Ŵψ = {

π0
(
W+ψ

)
, π0(W+ψ − W−ψ), γ +

∂S (Wψ)

} ={

γ +
0 π

+ (Wψ) ,−ψ0, γ
+
∂S (Wψ)


}
.

Let Ĝ = N̂ Ŵ . From the jump formula for the normal boundary stresses and
couple stresses of the double layer potential it follows that the first compo-

nent of Ĝψ is 0 for any ψ ∈ ◦
H1/2(�0)× H1/2(∂S); therefore, we can write Ĝψ =
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{
0,

(
Ĝψ

)−
,
(
Ĝψ

)
∂S

}
for all ψ ∈ ◦

H1/2(�0)× H1/2(∂S). We also define boundary oper-

ator G�̂ψ = {(
Ĝψ

)−
,
(
Ĝψ

)
∂S

}
from

◦
H1/2(�0)× H1/2(∂S) to H−1/2(�0)× H−1/2(∂S).

Theorem 13 G�̂ is a homeomorphism from
◦
H1/2(�0)× H1/2(∂S) to H−1/2(�0)×

H−1/2(∂S).

Proof The proof of this assertion makes use of already studied properties of the
modified double layer potential and the Poincaré–Steklov operator for the exterior
region [19] and Theorem 11. �

We represent the solution of Eq. (6.1) in the form

u = (Vϕ)
 + W0ψ + z, (6.4)

where ϕ ∈
◦
H−1/2(�̂), W0ψ is the double layer potential of density ψ ∈ ◦

H1/2(�0),

z =
[〈

f + + γ +
0 (W0δ f )+, z(i)

〉
0;� + 〈

f∂S + γ +
∂S(W0δ f )
, z(i)

〉
0;∂S

]
z(i) (6.5)

and (W0δ f )+ and (W0δ f )
 are the restrictions of W0δ f to 
+ and 
. This represen-
tation yields the system of boundary equations

V̂ϕ + {
γ +

0 (W0ψ)+,−ψ, γ +
∂S(W0ψ)


} = F̂ − {z, 0, z}. (6.6)

Theorem 14 For any F̂ ∈ H1/2(�̂), system (6.6) has a unique solution {ϕ, ψ} ∈
◦
H−1/2(�̂)× ◦

H1/2(�0), which satisfies the estimate

‖ {ϕ, ψ} ‖ ◦
H−1/2(�0)×H−1/2(∂S)× ◦

H1/2(�0)
� c ‖ F̂ ‖H1/2(�̂)

.

In this case, u defined by Eq. (6.4) is a solution of Eq. (6.1).

Proof We take ψ = −δ f and reduce Eq. (6.6) to the system

V�̂ϕ = { f +, f∂S} + {
γ +

0 (W0δ f )+, γ +
∂S(W0δ f )


} − {z, z}. (6.7)

By Eq. (6.5), the right-hand side in Eq. (6.7) belongs to Ĥ1/2(�̂). The assertion now
follows from Theorem 12. �

We represent the solution of Eq. (6.2) in the form

u = V�0ϕ + Wψ + z, (6.8)

where V�0ϕ is the modified single layer potential of density ϕ ∈ ◦
H−1/2(�0), ϕ and

ψ ∈ ◦
H1/2(�0)× H1/2(∂S) are unknown densities and z ∈ F is arbitrary. This repre-

sentation yields the system of boundary equations

N̂
{
γ +

0 (V�0ϕ), 0, γ +
∂S(V�0ϕ)


} + Ĝψ = Ĝ. (6.9)
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Theorem 15 For any Ĝ ∈ H−1/2(�̂), system (6.9) has a unique solution {ϕ, ψ} ∈
◦
H−1/2(�0)× ◦

H1/2(�0)× H1/2(∂S), which satisfies the estimate

‖ {ϕ, ψ} ‖ ◦
H−1/2(�0)×

◦
H1/2(�0)×H1/2(∂S)

� c ‖ Ĝ ‖H−1/2(�̂)
.

In this case, u defined by Eq. (6.8) is a solution of Eq. (6.2).

Proof From the jump formula for normal boundary stresses and couple
stresses of the single layer potential (Theorem 1) the first component of
N̂

{
γ +

0 (V�0ϕ), 0, γ +
∂S(V�0ϕ)


}
is equal to ϕ. Comparing the first components on the

both sides of Eq. (6.9) we see that ϕ = δg. The assertion now follows from Theorems
11, 12 and 13. �

Remark 16 In this paper we have assumed that � and ∂S are C2 -curves. It can be
shown that all the above results remain valid for piecewise-smooth C0,1-curves that
consist of finitely many C2-arcs [20].

7 Summary

In this paper we have formulated Dirichlet and Neumann boundary value problems
of plane Cosserat elasticity for a domain weakened by a crack in Sobolev spaces
and showed these problems to be well-posed and depend continuously (in a suitable
Sobolev-type norm) on the data. This result is important for practical purposes, since
it validates further applications of numerical procedures. We have also shown that
the corresponding weak solutions can be represented in terms of modified integral
potentials with unknown distributional densities, which facilitate the construction of
appropriate boundary element methods for finding these distributional densities and
solving the problem numerically.
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