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Acoustic Radiation from Two Spheroids 

A. L. V^• BUlgES ̂ •r• B. J. 

Naval Research Laboratory, Washington, D.C. 20390 

The acoustic radiation from two spheroids whose surface normal velocity distributions are specified is cal- 
culated using a Green's function approach. To simplify the analysis only axially symmetrical problems are 
considered. The necessary Green's function is expanded in spheroidal wave functions about both spheroids. 
The unknown expansion coefficients are determined from the boundary condition that the normal derivative 
vanishes over both surfaces. An addition theorem which expresses spheroidal wave functions in one coordinate 
system in terms of spheroidal wave functions in another coordinate system was developed to facilitate ap- 
plication of this boundary condition. Numerical results for several different two-spheroid configurations and 
velocity distributions are presented and discussed. The straightforward extension to nonaxlsymmetrical 
problems and to more than two spheroids is also discussed. 

INTRODUCTION 

The Helmholtz scalar wave equation is separable in 
both prolate and oblate spheroidal coordinates. Thus 
the acoustic radiation from spheroidal surfaces vibrating 
with a known normal velocity distribution can be calcu- 
lated by use of eigenfunction expansions in terms of 
spheroidal wave functions. The large variety of shapes 
spanned by spheroidal geometry plus the recent de- 
velopment of rOR•RA2½ computer programs •-a which 
accurately and rapidly evaluate spheroidal wave func- 
tions over a wide range of parameters has promoted 
a detailed investigation of spheroid radiation. How- 
ever, previous studies have been restricted to single 
spheroids. •-9 

This paper considers the acoustic radiation from two 
spheroids. The acoustic radiation is calculated using a 
Green's function technique similar to the one used by 
New •ø for the corresponding two-sphere problem. Here 
the Green's function is expanded in spheroidal wave 
functions about both spheroids. An addition theorem 
which expresses spheroidal wave functions in one 
coordinate system in terms of spheroidal wave functions 
in another coordinate system was developed n to facili- 
tate application of homogeneous Neumann boundary 
conditions on the two spheroids in order to determine 
the unknown expansion coefficients. To simplify the 
analysis only axially symmetrical problems are con- 
sidered. However, the results can be extended in a 
straightforward way to include more than two spheroids 
with arbitrary positions and orientations and arbitrary 
normal velocity distributions. 
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The analysis is presented in Sec. I. Numerical results 
for several different two-spheroid configurations and 
velocity distributions are presented and discussed in 
Sec. II. Configurations corresponding to a single 
spheroid near an infinite plane wall that is either rigid 
or soft are included. The conclusions are given in Sec. 
III. 

I. ANALYSIS 

The prolate spheroidal coordinates (•,•,•) are related 
to Cartesian coordinates by the transformation 

d 

x=-(1-•2)t(•2--1) t cos•, 
2 

d 

y =-(1--•)•(•-- 1)• sin4, (1) 
2 

d 

where d is the interfocal distance, and where 1_< •< m, 
-1_•_<1, and 0_<4•<2r..This geometry is shown in 
Fig. 1. In the Cartesian coordinate system the surface 
of constant • is a prolate spheroid having a major axis 
of length •d and a minor axis of length (•--l)td. The 
surface of constant • is one sheet of a hyperboloid of 
two sheets. The surface of constant 4 is a half-plane, as 
in the spherical coordinate system. 
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The corresponding transformation for the oblate 
spheroidal coordinates is 

d 

x=-(1- •2)•(•2+ i)• co• 
2 

d 

y =-(1 - •2)i(•x+ 1)t sinq•, (2) 
2 

d 
z 

2 

where now 0_<•<oo, -l_<n_<l, and 0_<q•<2•r. 
The oblate geometry is shown in Fig. 2. Here the 

surface of constant • is an oblate spheroid having a 
major axis of length (•+ 1)td and a minor axis of length 
•d. The surface of constant n is a hyperboloid of one 
sheet. The oblate spheroidal coordinate system can beob- 
rained from the prolate spheroidal coordinate system by 
use of the interchange •--} i• and d--}--/d. Expressions 
developed for prolate spheroidal geometry can be con- 
verted into analogous expressions for oblate spheroidal 
geometry by use of the same interchange. Consequently, 
althongh only the prolate expressions are given explicitly 
in the following discussion, the corresponding oblate 
expressions are also valid. 

Consider two spheroidal surfaces St and S•, which are 
parallel and share a common z axis, as shown in 
Fig. 3. Spheroidal coordinate systems Ct(•,nt,q•t) and 
C•(•2,•,q•) are established which contain St (•= 

*/-- const 

•7-cons t I 

•=COilSt 

COilel' 

Fro. 2. The oblate spheroidal coordinate system. 

and S2 (•2=•20), respectively, as natural coordinate 
surfaces. The interfocal lengths of the two systems are 
da and d2, and the separation of their origins is rt2. The 
region outside both S• and S2 is assumed to be filled 
with an infinite homogeneous fluid of mass density p 
and sound speed ½. The surfaces St and S2 are assumed 
to be vibrating with rotationally symmetrical normal 

( - const 

•7 * - I • = Const 

Fro. 1. The prolate spheroidal coordinate system. 

S• (20•FIELD 
/ / POINT 

Fro. 3. The two-spheroid geometry. 
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velocity distributions whose spatial dependences are 
given by vffm) and v2(n•). The time dependence is taken 
to be harmonic, with the factor e i•t being suppressed. 

The acoustic pressure produced at a point r exterior 
to both S• and S• can be obtained by use of the integral 
formulation • 

4r LJ• 

+ L• v•(•')G(r,r')dS(r')}, (3) 
where the Green's function G(r,r') is the solution to the 
equation 

EV•(r') +k•G(r,r ') = - 4rb(r'-r) (4) 

which satisfies the radiation condition at infinity and 
whose outward normal derivative OG(r,r')/On vanishes 
over both S• and S•. Here k=2r/X, where X is the 
wavelength. The Green's function is obtained by a 
procedure analogous to that used by New TM for the 
two-sphere problem. 

First the Green's function is written as a sum of the 

free-space Green's function, which is the particular 
solution to Eq. 4, and scattering contributions from 
both S• and &, which form the complementary solution 
and are expressed as eigenfunctions of the homogeneous 
equation (V•+ k•)• = 0. The extension to more than two 
spheroids would require the addition of scattering con- 
tributions to include every spheroid. Since the normal 
velocity distribution is chosen to be rotationally sym- 
metrical, only the m=0 terms in the Green's function 
contribute to the resulting rotationally symmetrical 
acoustic pressure. To simplify the analysis, the m•0 
terms will be dropped, but the analysis could be ex- 
tended for an arbitrary normal velocity distribution. 
Thus, the effective Green's function is given by 

where the spheroidal wave functions for m=0 are 
given by 

ß •(4)(h; •,•)=Ro•(•)(h,•)Sotm(h,•) 
- iR•(•)(h,•)Sot (')(h,•) 

Here (•[,w',•') and (•g',•g',•2') are the spheroidal 
coordinates of r' in C• and C•, and the acoustic size 
parameters h•=kd•/2 and h•=kd•/2. The spheroidal 
angle wave function of the first kind S0t(U(h,•) and the 
spheroidal radial wave functions of the first and second 
kind Rot(U(h,•) and R0•(:)(h,•) used in this report are 
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defined by Flammer? The angle function can be ex- 
panded in a series in the corresponding Legendre 
functions 

s0i(u(h,n)- - 52' d(hlo1)en(n), (7) 

where the prime indicates that the summation is over 
even or odd values of n according to whether 1 is even 
or odd. The radial functions Roz(l)(h,•) and Rot(•)(h,•) 
correspond to spherical Bessel functions of the first and 
second kinds and are normalized so that •o•(•)(h; •,•) 
represents outgoing waves for e •t time dependence. 

The free space Green's function can be expanded in 
terms of spheroidal wave functions in either C• or C:. 
The m = 0 term is given by 

where 

Not = [S0/(1)(h,•)]2dv = E' 2d,?(hlO1) 1 .=0,t (2n+l) (9) 
The effective Green's function which results from 

combining Eqs. 5 and 8 contains spheroidal wave 
functions in both coordinate systems C• and Ca. Applica- 
tion of the boundary conditions on S• or Sa in order to 
determine A t and Bt is difficult if G0(r,r') is not expressed 
entirely in C• or Ca, respectively. Fortunately, this can 
be accomplished by the use of a spheroidal addition 
theorem which expresses a spheroidal wave function 
with reference to one coordinate frame in terms of 

spheroidal wave functions with reference to a second 
coordinate frame. The general addition theorem for 
spheroidal wave functions which is derived in Ref. 11 
allows for arbitrary relative position and orientation of 
the two coordinate frames and is applicable whether 
the two spheroidal coordinate frames are both prolate, 
both oblate, or one prolate and one oblate. For the 
present application, the addition theorem reduces to 
the following form: 

where 

(11) 
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with the prime sign indicating that the summation is in 
steps of two, and that s or r is taken to be even or odd 
according to whether n or I is even or odd. The function 
ht(•)(krn) is a spherical Hankel function of the second 
kind. The angles 02• and 0n are equal to 0 and •r, respec- 
tively, so that Palcos020 = 1 and Pt(cos0n) = (-1) t. The 
coefficient a(s,t,r,O,O) is given by 

a(s,t,r,O,O) 

(- 1)x(2s+ 1)(2t+ 1)(2X)!(2X0 !(2M)!(A!) • 
, (12) 

(2A+ 1)!(X !X!Xd) 

where It= (rq-s-kt)/2, X =A--r, X•=A--s, X• =A--t. 
Use of the addition theoremf or i= 2 and j= 1 leads 

to the following form of the effective Green's function 
expressed entirely in C•: 

• /-- 2ik\ 
So(r,r')=• (--]xI'o/4)(h•; •l,•h)*0t(D(hl; •/,•/1') 

•=0 k No• / 

i/,./)], 03) 

where •>$•', as required for the present discussion. 
Differentiating Go(r,r') with respect to •', setting this 

equal to zero at •'= •0, multiplying by Soq(•)(h•,m')dm ', 
and integrating over •' from -1 to 1, the range of 
orthogonality for the spheroidal angle wave functions, 
one obtains the following set of equations: 

/=o 

2ik 

=(-'--]•o?)(h•,•,o)•o•t4'(h•; i•,m), q=0 to •, (14) 
kN0•/ 

where the dot indicates the derivative with respect to 
f. The effective Green's function can also be expressed 
entirely in Ca in order to apply the boundary condition 
on Sa. Use of the procedure indicated above leads to the 
additional set of equations: 

2ik 

In theory, the doubly infinite set of simultaneous equa- 
tions obtained by combining Eqs. 14 and 15 can be 
solved for the unknowns At and B•, /=0 to m. In 
practice, the summations over l in Eq. 13 are truncated 
at l= L and the resulting 2L+ 2 equations are solved for 
A• and Bt, /=0 to L. The choice for L depends on the 
normal velocity distributions vffm') and va(•a') and the 

required accuracy of the results. An estimate for L is 
given by the highest order that must be retained in the 
expansion of v•(•/•') and v•(,/•') in terms of the ap- 
propriate spheroidal angle wave functions in order to 
represent them to within the required accuracy. Equa- 
tions 14 and 15 can be written in the following truncated 
form: 

2L+l 

• M•b•'--g•, q=0 to 2Lq-1, (16) 
l=o 

where the elements M•z form a square matrix and 
depend only on the frequency and the geometry of the 
two spheroids, the elements b•=Az for /=0 to L and 
bt=B•_•_• for /=L+I to 2L+l; and the right-hand 
side elements g• are the functions •0•(•)(h•; $•,m) for 
q=0 to L and •o,•_,_l(4)(ha; •,•) for q=L+l to 
2L+ 1. The symbol :a indicates that L is chosen large 
enough to ensure the desired accuracy in the final 
results. Note that A• and Bt depend on the field point 
only through the right-hand side. Equation 16 can be 
inverted to give 

2L4 l 

b,• • M•q-•gq, (17) 
q:o 

so that once the •nverse elements have been obtained 
for a given frequency and geometry, Az and B• and, 
consequently, the effective Green's function can be 
calculated for any field point by simple matrix 
multiplication. 

The acoustic pressure is now evaluated from Eq. 3. 
Consider the first term, where the area element is 
given by 

dS=(dla/4)(•:,?-l)l(•oa-•'a)•d•/d•, '. (18) 

Expressing the r' dependence of the effective Green's 
function entirely in C1 and integrating, one obtains 

L 

pffr) • E D*+•+•o/4)(h•; •a,•a) 

L 

+E 09) 

where 
L 

Dt = [ih•Sac(•o •- 1)i/'2k ] • [M•t-IR0, (•) (hl,•10)/0q 
q:o 

+M•+•+,.F 4 Z Cqn21Ron(1)(hl,•lO)IOn•, (20) 

E•=D,+h,aoc(•:,o a--1)lRa/')(h,,•,o)Io,/No•, (21) 

with 

Io•= (•oa-m'a)«vffm')So/'>(h,,•[)dm '. (22) 
1 

These expressions give the acoustic pressure when S• 
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is vibrating and v•(•2') is identically zero, so that S• 
acts only as a rigid scatterer. When S2 is vibrating also, 
the second term in Eq. 3 must be included. The corre- 
sponding expressions for this contribution to the 
acoustic pressure can be obtained from Eqs. 19-22 by 
the simple interchange of subscripts 1 and 2. In order 
to simplify the resulting mathematical expressions the 
remainder of the analysis will be restricted to the case 
where only S• vibrates, i.e., where the total acoustic 
pressure is given by pffr). 

The acoustic pressure in the farfield is obtained from 
Eq. 19 with the use of the limiting form for the 
spheroidal wave functions. This gives 

e--ikrl 

p•.r(r•,O•) -' f(O•), (23) 

where 

L 

f(O•) = • i•+•[Dt+L+t exp(ikrl• cosO•)Sot(X)(h•, cos0•) 
l=O 

+EtSot(')(h•, cos0•)], (24) 

and where (r•,0t, •) are the spherical coordinates of the 
farfield point relative to St. The function I f(&)l is 
called the farfield pressure distribution. 

In the following discussion the region of the spheroidal 
surface S• bounded by the curves • = • and • = me is 
assumed to vibrate with uniform normal velocity V1, 
while the remainder of S• is assumed to be rigid. For the 
case of uniform vibration, the normalized self-acoustic 
radiation impedance z is defined by 

XOc V•S/ 

where the real quantities r and x are the normalized 
self-acoustic radiation resistance and the normalized self- 

acoustic radiation reactance, respectively, and where S 
is the area of the vibrating region. The less descriptive 
names radiation impedance, radiation resistance, and 
radiation reactance will be used in the remainder of the 

paper. Note that the use of Eq. 25 requires a knowledge 
of the acoustic pressure over the surface S•. Although 
the free-space Green's function and, consequently, the 
effective Green's function is singular at the point r= r' 
so that the expansions given in Eq. 8 do not converge 
at that point, the singularity is integrable, and the 
resulting expression for the acoustic pressure given in 
Eq. 19 converges to the correct value for field points on 
St. Expressing p•(r) entirely in Ct by use of the addition 
theorem given in Eq. 10 and integrating, one obtains 

z• • [E•Rot(•)(h•,•o)Iot 
2• V•S t•o 

+Dt+•+• • Ct•21Ro•(•)(h•,•o)Io•. (26) 
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II. l•11JMERICAL RESULTS AI•ID DISCIISSIObl 

The calculation of the acoustic radiation from two 

spheroids by use of the expressions derived in Sec. I 
requires numerical values for the spheroidal angle and 
radial wave functions and for the integrals lot given 
in Eq. 22 with v(•)=V for •/L_<•/<•/t:, and v(•)=0 
elsewhere. Accurate values for the spheroidal wave 
functions were obtained using PRAD, 10BRAD, • and 
ANGLFN, 3 FORTRAN computer programs written in double 
precision arithmetic for the CDC 3800 computer at the 
Naval Research Laboratory. These computer programs 
were developed recently to evaluate spheroidal wave 
functions with greater accuracy over a wider range 
of parameters than previously available. Extensive 
tables t4.•5 of both prolate and oblate spheroidal radial 
wave functions obtained using VRAr> and O•R^O have 
recently been published. These tables contain entries 
for values of m=0, 1, 2; l=m(1)m+49 for a wide range 
of values of • and h. The integrals 10t were evaluated by 
a procedure involving expansion of the spheroidal angle 
wave functions in a series of Legendre polynomials, as 
shown in Eq. 7, subsequent expansion of the Legendre 
polynomials in a series in terms of cosr0 where 0 = cos-•, 
and computation of the resulting integrals 

Jr = (•o:•--•) • cosrOd•, r=0, 1, ..., (27) 
L 

by use of Gaussian quadrature. 
In the first example, consider two disks with ka = 1.0, 

where a is the radius, which are parallel, coaxial, and 
separated by a distance rx2 = 2a so that kr•: = 2.0. Note 
that the disk is a limiting shape for the oblate spheroid 
and corresponds to the shape parameter •=0. The 
acoustic size parameter h is equal to 1.0, since h and ka 

4 

Fro. 4. The nearfield pressure distribution in decibels for a disk 
vibrating in the presence of a rigid disk. 



ACOUSTIC RADIATION FROM TWO SPHEROIDS 

Fro. 5. The farfield pressure distribution for 
a disk vibrating in the presence of a rigid 
disk. 

0.70 I I I i i i I i 20 40 60 80 I00 120 140 160 180 
8 (DEGREES) 

are equivalent for a disk. The top surface of the lower 
disk is vibrating uniformly with a velocity amplitude 
of 1.0 rn/sec. The bottom surface of the lower disk 
and the entire upper disk are rigid. The acoustic pres- 
sure field in the vicinity of the disks is shown in Fig. 4. 
The lines represent isobars and connect points of equal 
pressure amplitude. The numbers labeling the isobars 
have the units of decibels relative to a pressure of 1 bar. 
Note that the isobars approach the rigid surfaces at 
right angles. If this were not true, the normal gradient 
of the pressure at the surface would be nonzero and 
wouht produce a nonzero normal component of the 
particle velocity, in contradiction with the assumed 
boundary condition. The moderately large pressure 
that exists in the so-called shadow region immediately 
behind the rigid disk is not surprising since ka is not 
very large. 

The farfield pressure distribution for this two-disk 
configuration is given by the curve labeled kr12 = 2.0 in 

Fig. 5. The polar angle O is measured in the customary 
way so that the center of the rigid disk is in the direction 
of zero degrees (called the forward direction). Figure 5 
also shows the farfield pressure distribution for the two 
disks when the separation is such that kr•2 = 1.5, 4.0, or 
200.0. Results obtained for values of kr•2 greater than 
200.0 are indistinguishable from those for kr•2=200.O, 
indicating that the effect of the rigid disk is negligible 
for these large separations. Thus the curve for 
kr•2= 200.0 is also the farfield pressure distribution for 
the vibrating disk alone. The farfield pressure distribu- 
tions are normalized so that the value in the forward 

direction is equal to unity for this free-field case. As 
expected, the effect of the rigid disk is greater when 
the two disks are closer together. When krn = 1.5 or 2.0, 
the farfield radiation is increased in both the forward 

and backward directions but remains virtually un- 
changed in the lateral direction. For kr,2=4.0, phase 

Fro. 6. The normalized radiation re- 
sistance as a function of the distance of 
separation kr• for a disk vibrating in 
the presence of • rigid oblate spheroid. 
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krl•, 

Fro. 7. The normalized radiation re- 
actance as a function of the distance 

of separation krt: for a disk vibrating 
in the presence of a rigid oblate sphe- 
roid. 

cancellation decreases the backward radiation although 
the radiation is increased in the forward direction. 

The effect that the rigid disk has on the radiation 
impedance of the source is indicated in Figs. 6 and 7. 
Here the radiation resistance r and the radiation re- 

actarice x are plotted as a function of the separation of 
the disks krx: for 1.5<kr•:<10.0. Because of slow 
convergence in the calculation of the transformation 
coefficient C•, ii for small values of kr•2, economical 
computation of the radiation impedance for krl2< 1.5 
would require more core storage than was available in 
the computer used for these calculations. The curves for 
•:0=0 correspond to the two-disk configuration de- 
scribed above. The other curves give the radiation 
impedance when the rigid disk is replaced by a rigid 
oblate spheroid with a shape parameter •2•=0.2, 1.0, 
or SOD. These shape parameters correspond to major 
to minor axis ratios of 5.0990, 1.4142, and 1.0002, so 
that the spheroids can be described as moderately thin, 
moderately fat, and nearly spherical, respectively. 
Values for the acoustic size parameter/t• were chosen so 
that the semimajor axis of each rigid oblate spheroid 
b2(/•:0:+ 1)t/k is equal to the radius of the source 1.O/k. 

The periodic variations in both the radiation resist- 
ance and the radiation reactance are produced by 
interference with the radiation scattered from the rigid 
oblate spheroid. The effect of this scattering decreases 
rapidly with increasing krx: so that the impedance at 
kr•: = 10.0 is nearly equal to that of the vibrating disk 
alone. The primary effect produced by changing the 
shape of the rigid oblate spheroid while keeping its 
projected area constant is to move the effective scatter- 
ing center. Since most of the radiation scattered back 
onto the source comes from the half of the rigid oblate 
spheroid that is facing the source, the effective separa- 
tion between the two spheroids is less than krx: unless 

•0=0. Thus the interference maxima and minima are 
shifted toward larger values of krxz, the maximum 
displacement occurring for/•o= 50.0. 

An important class of radiation problems that can be 
solved using two-spheroid geometry concerns the radia- 
tion of a single spheroid in the presence of an infinite 
plane wall that is either rigid or soft (zero acoustic pres- 
sure). The solution for the rigid-wall case can be 
obtained by replacing the wall by an image spheroid 
vibrating in phase with the original spheroid and then 
solving the resulting two-spheroid problem. Similarly, 
the soft or pressure release wall is replaced by an image 
spheroid vibrating 180 ø out of phase with the original 
spheroid. 

As an example, consider a disk with ka = 1.0, vibrating 
uniformly on both sides and situated parallel to and a 
distance s from an infinite plane wall. Solution of the 
corresponding two-disk problems leads to the radiation 
resistance and teacrance for both a rigid and a soft wall, 
as plotted vs/es in Figs. 8 and 9. The interlacing of the 
curves is related to the fact that a plane wave which is 
reflected at a nongrazing angle from an infinite plane 
wall undergoes a phase shift of 0 ø when the wall is rigid 
and 180 ø when it is soft. The values of the radiation 

resistance and reactance at the crossing points are in 
good agreement with the radiation impedance of the vi- 
brating disk when no wall is present, z0=0.423+0.647i. 

If the vibrating disk were very small acoustically, 
monopole theor), could be used to calculate the contribu- 
tion of the wall to the radiation impedance. The only 
effect of the wall to be considered when using monopole 
theory is that due to radiation which is scattered once 
from the wall back onto the source. Multiple scattering 
is not considered. In the corresponding two-disk 
problem, the single scattering from the wall is replaced 
by the direct radiation from the image disk. Straight- 
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Fro. 8. The normalized radiation resist- 
ance as a function of the distance of 
separation ks for a disk vibrating in the 
presence of an infinite plane wall that is 
either rigid or soft. 
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forward calculation using monopole theory yields 

Z = Zo + ZXz 

= zo4- O. 5i(ka) •ho (2>(2ks), (28) 

where ho(2>(2ks) is the spherical Hankel function of the 
second kind, and where the + or - sign is used when 
the wall is rigid or soft, respectively. Although the 
monopole approximation is not strictly valid for the 
present case where ka=l.O, it does qualitatively de- 
scribe: the behavior of the curves. As expected, the 
agreement improves as ks increases and the contribution 
from multiple scattering decreases. 

As a final example, consider a prolate spheroid whose 
entire surface is vibrating uniformly. Its shape param- 
eter • is equal to 1.1, corresponding to a major to minor 
axis ratio of 2.4004:. The acoustic size parameter h is 
chosen equal to 2.1822 so that k times the semiminor 
axis is equal to unity. The farfield pressure distribution 
as a function of the.. polar angle 0 is given by the solid 
curve in Fig. 10. Because of even symmetry about 
0=90 ø , the broadside direction, only half of the dis- 
tribution is shown. The other two curves in this figure 
show the farfield pressure distribution when an infinite 
plane wall that is rigid or soft is placed a distance 
ks=3.0 from the origin of the prolate spheroid and is 

1.0 

0,9 

0.8 

Fro. 9. The normalized radiation re- 0.? 
actance as a function of the distance of 
separation ks for a disk vibrating in the • 
presence of an infinite plane wall that is 0.6 
either :rigid or soft. 
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Fro. 10. The farfield pressure distribution 
for a prelate spheroid vibrating alone or in 
the presence of an infinite plane wall that is 
either rigid or soft. 

oriented so that it is perpendicular to the major axis of 
the prelate spheroid. The farfield pressure distributions 
are normalized so that the value at 0=90 ø for the 

no-wall case is equal to unity. The wall has a significant 
effect on the farfield. Both the minimum for the rigid 
wall and the maximum for the soft wall which occur at 

about 0=60 ø are in qualitative agreement with the 
farfield pressure distribution calculated using monopole 
theory. Here the corresponding two-spheroid problem 
reduces to that of two point sources separated a distance 
kr•2 = 6.0. Note that the behavior of the curves around 

0=90 ø (the farfield direction along the wall) is con- 
sistent with the boundary conditions imposed on 
the wall. 

III. CONCLUSIONS 

The acoustic radiation from two spheroids whose 
surface normal velocity distributions are specified was 
calculated using a Green's function technique. To 
simplify the analysis only axially symmetrical problems 
were considered. At the heart of the calculation is an 

addition theorem which expresses spheroidal wave 
functions in one coordinate system in terms of spheroidal 
wave functions in a second coordinate system with 
arbitrary relative position and orientation. This theory 
is applicable whether the two systems are both prelate, 
both oblate, or one prelate and one oblate. The gen- 
erality of the addition theorem allows for the solution 
for any two-spheroid configuration. Of course, the 
Green's function must be written to include m•0 terms 

when the problem does not have axial symmetry. The 
solution for more than two spheroids can be obtained by 
including in the Green's function an eigenfunction 
expansion about each spheroid. 
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