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Calculations of the scattering of acoustic waves by rigid prolate spheroids of various aspect ratios 
were performed with both the T-matrix method (TMM) and the Helmholtz integral equation 
method (HIEM) on the same computer to compare the numerical stability of the two methods. 
For spherical targets the TMM converged more rapidly than the HIEM, but with increasing 
aspect ratio the rate of convergence of the TMM deteriorated rapidly while that of the HIEM was 
only slightly reduced. Moreover, roundoff error quickly became a serious problem for the TMM 
with increasing aspect ratio while for the HIEM it posed no problem at all in the cases considered. 
The numerical difficulties of the TMM were exacerbated by the fact that the matrices which had 
to be inverted became increasingly more ill-conditioned as the number of partial waves was 
increased. For the HIEM, on the other hand, the matrices to be inverted became increasingly 
better-conditioned as their dimension increased with the order of the calculation. 

PACS numbers: 43.20.Fn, 43.20.Bi 

INTRODUCTION 

The T-matrix method (TMM) has been widely used to 
calculate the scattering of acoustic, electromagnetic, and 
elastic waves from targets of irregular shape. The method 
was first developed by P. C. Waterman for electromagnetic 
waves? It was subsequently extended to acoustic wave scat- 
tering, 2 the scattering of acoustic waves by elastic targets, 3 
and to the scattering of elastic waves. 4 The Helmholtz inte- 
gral equation method {HIEM), has principally been used for 
radiation calculations. s An early application to scattering 
was carried out by G. B. Bundfit, a who calcuhted acoustic 
wave scattering by rigid spheroids when the d/recfion of inci- 
dence is parallel to the axis of symmetry. We have used the 
HIEM to calcnlate the scattering of aeonstic waves by rigid 
spheroids ? and by fluid spheroids s for arbitrary angles of 
incidence. Our results showed that the HIEM is a practical 
and efficient method for calculating wave scattering by/r- 
regularly shaped targets. 

One might expect that because the HIEM does not em- 
ploy an expansion of the wave field in a set of spherical or 
spheroidal waves, it would avoid some of the numerical 
problems that beset the TMM. Onr purpose in this paper is 
to investigate that question. We report the results of calcnla- 
tions of the scattering of acoustic waves by rigid spheroids 
performed by both the TMM and the HIEM on the same 
computer, a Digital Equipment Corp. VAX 11/780. Our 
calculations revealed that 

(1) The TMM converges more rapidly than the HIEM 
for spherical targets. 

(2) The rate of convergence of the TMM deteriorates 
very rapidly with increasing aspect ratio while the rate of 
convergence of the HIEM shows very litfie change. 

(3) The number of terms in the partial wave expansion 
used by the TMM was limited by the occurence of ovedlows 
or, equivalently, by devastating roundofferrors. This limita- 
tion became more onerous with increasing aspect ratio. No 
such difficulties were encountered with the HIEM as the 

integration mesh was refined. 
(4) The numerical difficulties of the TMM are exacer- 

bated by the fact that the matrix which must be inverted 
becomes rapidly more ill conditioned as one increases the 
number of partial waves. The opposite occurs for the HIEM; 
the matrix which is to be inverted becomes increasingly bet- 
ter conditioned as the integration mesh is refined. 

In Sec. I we present the TMM and HIEM formalisms. 
The results of our calculations are described in Sec. IL We 

discuss our results in Sec. III. 

I. THE TMM AND HIEM SCATTERING FORMALISMS 

We consider a plane aeonstic wave of wavenumber k 
propagating in a medium M and scattered by a rigid body B 
surrounded by the medium M. Let $be the interface between 
the scatterer B and the medium M. Then the Helmholtz inte- 

gral formula ø for the wave field •b is 

•ø•(r) + • dS' •r')n' ß V'G(r, r') = •r), r•M, (la) 
= «•r), r•_S, (lb) 

= 0, r_B, (lc) 

where •o• is the incident plane wave, n' is the unit outward 
normal to S at the point r', and G is the Green's function 

G(r, re) = (4rlr - r'l)-' exp(ik Ir - r'l). (2) 
The Helmholtz integral equation method {HIEM} ufdizes 
Eq. (lb) as an integral equation for the wave field • on the 
interface $. The solution of this equation, the Helmholtz 
integral equation, is then substituted into the expression 

T(k) = -- (4qr)- • dS e - •'•in. k•r) (3) 
for scattering amplitude. The scattering amplitude is defined 
by the requirement that far from the target B the scattered 
wave field assumes the purely outgoing asymptotic form 
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•. (r) = •(r) - •ø•(r)-•T(k•)r-• exp(ikr), (4) 
where r is the magnitude of r and • ---- r/r. 

The T-matrix method (TMM), on the other hand, is 
based on Eq. (ia). Partial wave expansions for the incident 
wave 

•ø•(r) = exp(tko. r)-- • i t Y?(•o)* Y?(•)Jt (/cr), 
where the/c o --/c, the scattered wave 

(5) 

•, (r) -- •(r) - ½/ø*(r) -- 4• • / r?(hn ?(/cr)t,m, (6) 
•d •e Gr•n's f•ction 

G(r,r') • ik•Y•(•)Y•(F)*h ?•(kr> )jdkr• ), (7) 
•e •tr•u• • •. (la). H•e Y• is the sphefi• h•- 1 

mo•c, Jt is •e sphefi• •sel •nction, •d h ? is the. 
sphefi• Hankel •ction of •e •t •nd. •en, p•d• 
that the •t r • l•t• ou•ide a sphere •ncentfic wi• 
ß e o• •d encl•g •e •get B, •. (la) •om• 

• i t Y ?(•)h ? •(kr)tt• • • ik Y ?(•)h $•(kr) 

x r?'(r)[ 

+ (4•)- 't,• n ?(/c,')]. (s) 
Since this equation holds for • valu• ofr ou•ide the sphere 
encl•g B •d s• the f•ctions Y•(•) •e o•hogon•, 
•. (8) mint hold te• by te•. 

t,• = ,•, [•.. ,,•, r?'(•o)* + H•.,•,., t•,., ], (9a) 

•,•,•, = i •' - • + • k • dS 
ß v' r •(•)*]• (k•), (9b) 

Hz=,•,=, = i v-•+ 
ß v'r?(y}*• ?(•). ß (9•) 

In matrix notation Eq. (9a) reads 

t ---- flY* + Ht. (10) 

Upon truncation of the sum on partial waves, Eq. (10) can be 
solved by matrix inversion. 

• ---- (1 -- H )- •o r is the T-matrix. The result is then used to 
calculate the scattering amplitude by means of 

T(k) = (• (k)lt) = .• •',(k)h,•, (12a) 
where 

•,,, (k) = 4.a'/k - ' Y •'(•c )*. (12b) 
As the number of terms included in the partial wave sum is 
increased and the dimension of the matrices,/and H increase 
accordingly, we expect the solutio n of Eq, (11} to converge to 
the exact values. 

Return now to the Helmholtz integral equation [Eq. 
(lb)]. To solve it we eraply a discretization process to trans- 
form it into a matrix equation which is subsequently solved 
by matrix inversion. The discretization process consists in 
dividing the interface Sinto N patches of roughly equal area. 
Let the area of the ath patch bed,, and let r• be a point near 
its center. Eq. (lb) is then approximoted by 

N 

where 

and 

(13a) 

•b• = •(r•), •ol: •O,(r•) ' (13b) 

K• = n• ß Vo G(r•,rokl•, a•/•, (13c) 

K,• = f dS'n'. V'G(r•,r'). (13d) 
J• 

In •. (13d) the •te•fion is •nfin• • the a• path. •e 
•g• is ev•t• • clo• fo• us•g the low•t o•er 
te• of Taylor's •fi• exp•ions a•ut r•. Simii•ly, •. 
(3} is appm•a• by 

N 

T(k) = - (•)-'•,• e-•"-in•. k•.. (14) 
In matrix no•tion •s. (13) •d (14) •me 

• = 2•ø' + 2tO, (15) 
and 

N 

T(k) = (X (k)l•) = • X. (k)*•., (16a) 
where 

x,(k) = in,• ß k(4,rr)-'.4,, exp(tk. r•). (16b) 
Equation (15) is solved by matrix inversion 

•b = (1 -- 2K )- '2• •ø', (17) 
and the solution is substituted into Eq. (16) to get the scatter- 
ing amplitude. We expect that as N is 'mcreased and the di• 
mension of the matrix K increases accordingly, the solution 
of Eq. (17) will converge to the exact values. 

Thus Eqs. (1 I} and (12) constitute the T-matrix method 
(TMM) and Eqs. (16) and (17) constitute the Helmholtz inte- 
gral equation method (HIEM). For the general case we ex- 
pect that the HIEM calculation will be much faster than the 
TMM because the elements of the matrix K in Eq.'(17) are 
given by simple algebraic expressions from Eqs. (13c) and 
(1 ld) while the elements of the matrices J and H which ap- 
pear in Eq. (11) must be calculated by two-dimensional inte- 
grals from tables of spherical harmonics and spherical Bessel 
and Hankel functions as shown in Eqs. (9}. However, for an 
axially symmetric target like our spheroids the TMM has the 
advantage over the HIEM in that the TMM can exploit the 
axial symmetry of the target. It does this by taking thez axis 
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i,O • N'64,108,158 

•NPW.2 

• •NPW-3.4,5 O• 

• X 

•O. I.••pHm• I T(O )l .a•onft•t•eO for 

along the symmetry axis and •ding in consequene that the 
matrices J and H ate diagomd in m: 

Jrrn',t,n = 8rnm'J'rm,t,n , (18a) 

H,.m..,. : . ( 1 aN 
Thus in calculating the inverse of 1 - H in Fxl. (11 ) we need 
only invert the submatrices associated with each value of to. 
In addition, the integrals shown in Eqs. (9) reduce to one- 
dimensional integrals simplifying their evaluation consider- 
ably. 

II. CALCULATION OF THE SCATTERING BY RIGID 
SPHEROIDS 

To compare the TMM and HIF_• we apply them to the 
calculation of the scattering of acoustic waves by a rigid pro- 
late spheriod. An example of the application of the T-matrix 

go 

o.8 

0.6 

o.4' 

0.2 

0 ß 

FIG. 3. Same ns Fig 2 except that a = 0.2. 

method to this problem is found in the article by Varadan et 
aL, iø which also contains references to earlier calculations 
using the separation of variables technique. 

In Figs. 1-4, we display the results of calculating the 
scattering amplitude IT{k)l for a plane acoustic wave of 
wavenumber k = 1.0 incident on a rigid prolate spheroid. 
The major semiaxis is c = 1.0 while the minor semiaxis is set 
equal to a = 1.0in Fig. 1, a ----- 0.5 in Fig. 2, a ---- 0.2 in Fig. 3, 
and a = 0.1 in Fig. 4. The direction of incidence was taken to 
be perpendicular to the major axis of the spheroid. The scat- 
tering plane was taken to be the plane of the direction of 
incidence and the major axis. 

In Fig. 1, the curve represents the exact scattering am- 
plitude calculated by imposing the rigid body boundary con- 
dition in spherical coordinates. In the othcr three figures the 
curves have been drawn merely to aid the eye and are not the 
result of any calculation. However, the curves in Figs. 3 and 
4 will be found to agree pretty well with scattering ampli- 
tudes calculated by Spence and Oranger ]l using boundary 
condition matching in spheroidal coordinates. 

The calculated points are identifed with respect to the 

i.o 

0'8 

O.6 

FI(3.2. SameasFigr lexceptthata O. S and the curve is merely drawn to 
aid the eye• 

•o 

0.8 

o•6 

0.4 

0.2 

FIG. 4. Same ns Fig 2 except that a = O. 1. 
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TABLE I. Same as Fi& I • that k = 6.0. C. No. i_q the condition-number and NGP is the number of meshpoints used in the Cxaussian quadrature 

a= 1.0 

HIEM k -- 6.0 TMM 

,v CNo. I T(0'}I IT{18O'}I .NGP NPW C No. [ T{0'} I IT(IS0ø}[ 

12 5.97 1.202 1.269 48 5 1.01 1.796 0.6001 
34 1.65 4.325 ' 1.957 48 6 1.01 1.844 0.1084 
64 1.46 '2.545 0.8494 48 7 317 2.114 0.7595 

108 1.28 2.344 0.3991 48 8 1.1 X 10 • 2.235 0.4769 
158 !.19 2.316 0.5085 56 8 1.8 X 10 • 2.235 0.4769 

104 $ 5.0 X 10 • 2.235 0.4769 
Exact 2.267 0.5309 48 9 6.0 X 10 ? 2.262 0.5399 

48 10 overflow 

Exact 2.267 0.5309 

number of partial waves (NPW) employed in the case of the 
TMM and the number of surface patches (N} employed in 
the case of the HIEM. For the TMM calculation we found 

that our matrix inversion subroutine found I -- H [Eq. (11 }] 
to be singular for NPW > 7 when a = 1.0, for NPW > 6 
when a ---- 0.5, and for NPW > 4 when a ---- 0.2 or 0.1. This is 

a consequence of the fact that the matrix elements Ht,,,. r,,,. 
defined in Eq. (9c} become greater in magnitude as ! is in- 
creased due to the presence of the irregular Bessel function 
h ?) in the integrand. This effect becomes more serious with 
increasing aspect ratio c/a. When the matrix elements in the 
higher I rows get to be too large, the elements in those of 
lower I are effectively zero due to roundoff. The matrix is 

Sometimes instead of finding 1- H singular when 
NPW was too large the program would come to a halt be- 
cause of an overflow. Of course, these difficulties could be 
alleviated to a certain degree by doing the calculation with 
double precision arithmetic or using a computer with a larg- 
er word size. For the.HIEM calculation we encountered no 
such numerical problems in increasing N to 158, which was 
adequate for the cases considered here. 

From Fig. 1, we see that for the spherical case the TMM 
calculation has converged at NPW = 3, so a breakdown at 
NPW = 8 is of no consequence. From Fig. 2, we see that for 
the aspect ratio = 2 case the breakdown of the TMM calcu- 
lation at NPW = 7 means that it has failed by a small 
amount to converge to the correct value. In Figs. 3 and 4, we 
see that the breakdown of the TMM results in increasingly 

more serious error as the aspect ratio is increa.•l. 
We have repeated the series of calculations just de- 

scribed for k = 6.0 in place of k = 1.0. The deterioration of 
the convergence of the TMM calculation with increasing 
aspect ratio turns out to be even more serious for k = 6.0 
than it is for k = 1.0. The immttnity to ineTeases ofc/a of the 
convergence rate of the HIEM, on the other hand, remains 
intact. We have chosen to present the k ---- 6.0 results as 
bles of the scattering amplitude I T I at scattering angles 0' 
and 180 ø as a function of N and NPW in Tables I-IV. For the 

TMM results we also show the number of mesh points NGP 
used in the Gaussian quadrature procedure for evaluating 
the matrix elements Ht,,.r,,, and Jt,,,,r,,, . 

Finally, we display on these tables the condition 
numbers C No. of the matrices to be inverted, 1 -- H for the 
TMM and 1 -- 2K for the HIEM. The condition number of a 

matrix.4 was defined by Turing •2 to be 
C No. = n-'N• )'/2N• -,),la, {19a) 

where n is the dimension of.4 and 

(19h) 
i--lj--I 

is the norm of.4. It serves as a measure of how much small 

changes in .4 are amplifed in the calculation of.4 - •. Thus it 
serves to indicate how seriously the value of the scattering 
amphtude I T I is affected by the small numerical inaccuracies 
present in H or K. The condition number provides a measure 
of the calculational stability. 

An ideally well-conditioned matrix has C No.----1 

TABLE H. Same as Tnbl½ I except that a = 0.5. 

a 0.$ 

HIEM k = 6.0 

s CNo. Ir(O•l Ir(lSO•l NGP NPW C No. Ir(•l Ir(lSO')l 

10 2.97 i.674 0.5991 
24 1.31 1.086 0.9565 
46 1.21 1.166 0.3570 
78 1.13 1.128 0.4651 

114 1.09 !.!20 0.4624 
156 !.07 1.116 0.4625 

48 3 1.05 0.5322 0.4815 
48 4 1.11 0.7297 0.3961 
48 6 2.26 0.9845 0.7304 
48 8 8.2 X 10 • 0.9800 0.4678 
56 8 5.6 X 10 • !.065 0.5567 
64 8 1.8 X 10 • 1.165 0.4368 
48 9 6.3 X 106 0.9979 0.4828 
48 10 ov• 
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TABLE III. Same as Table I except that a -- 0.2. 

HIEM 

•v CNo. Ir(0')l IT(I•Y)I 

a --0.2 

k = 6.0 TMM 

N•P NPW c • IT(ODI IT(180")1 

8 1.82 0.3940 0.3318 
16 1.55 0.3525 0.5745 
26 1.31 0.3660. 0.5350 
40 1.19 0.3699 0.4757 
60 I. i 3 0.3711 0.$006 
82 1.09 0.3705 0.5028 

106 1.07 0.3707 0.5043 
134 1.06 0.3706 0.•47 

104 3 1.67 0.1800 0.2854 
104 4 3.92 0.2329 0.3614 
72 4 3.92 0.2329 0.3614 
64 4 3.92 0.2329 0.3614 

104 5 17.5 0.2478 0.3800 
104 6 117 0.3731 O. 1441 
104 7 994 0.5373 0.3739 
104 8 1.0 X 104 0.3830 0.5394 
88 8 1.0 X 104 0.8631 0.5119 

120 8 1.0 X 104 1.048 0.7245 
80 9 1.8 X l0 s overflow 

whereas an ill-conditioned matrix has C No.), 1. From the 
tables we see that the condition number of 1 -- 2K of the 

HIEM becomes smaller with increasing N and very quickly 
assumes a value close to one. On the other hand, the condi- 
tion number of l -- H of the TMM grows rapidly greater 
with increasing NPW and very quickly attains values several 
orders of magnitude greater than one. The condition number 
is relatively independent of the aspect ratio c/a for l -- 2K 
but for I -- Hits growth with NPW is amplified by inereaa- 
ing c/a. 

Examination of the values of[T[ displayed on Tables I- 
IV reveals that they tend to converge quite smoothly with 
increasing N for all values of the aspect ratio for the HIEM. 
The convergence rate of the TMM is better than that of the 
HIEM for the spherical ease, but it is worse than that of the 
HIEM for the three nonspherical eases, becoming rapidly 
worse as the aspect ratio is increased. 

The stability of the TMM calculation can be gauged by 
how sensitive the result for IT[ is to changes in NGP, the 
number of mesh points used in the gaussian quadrature pro- 
eedure for evaluating the elements of the matrices J and H. 
Results for such variations of NGP are shown on each of the 

four tables. There is no sensitivity seen in the spherical case, 
but the sensitivity increases noticeably with increasing as- 
peet ratio. 

Curiously enough, the stability does not always seem to 
be correlated with the C No. Thus comparison of the 
NPW = $ results on Tables I and II shows that the a ---- 1.0 

resttits are stable while the a ---- 0.5 results are somewhat un- 

stable although the C No. values are about the same in the 
two cases. On the other hand, the comparison of the 
NPW --- 4 results with the NPW = 8 results, both on Table 
Ill, reveals that the NPW = 4 results have C No. ---- 4 and 
are stable while the NPW ---- 8 results have C No. ---- 10 4 and 
are unstable. 

IlL DIS4•U•SION 

The numerical difficulties of the TMM are well known. 

Methods for dealing with [hese difficulties have been sug- 
gested by several people? -•ø The purpose of our calcula- 
tions was to get some measure of the significance of the free- 
dom from such numerical difficulties of the HIEM by 
programming the TMM and HIEM,in a similar way and by 
using those programs on the same computer to analyze the 
same problems. 

One method for overcoming the poor convergence of 
the TMM found here would be to base it on an expansion in 
terms of a set of spheroidal waves instead of spherical 
waves. 2• This would be ideally efficient for the calculation of 
scattering by spheroidal targets. It would be more efficient 
than the HIEM just as our calculations show the TMM us- 
ing a spherical basis is superior to the HIEM for scattering 
by spheres. However, we can expect that the convergence of 
the spheroidal basis TMM would deteriorate to the extent 
that the shape of the target departs from that of a spheroid 

TABLE IV. Same as Table I except that a -- 0. i. 

a=O.l 

HIEM k = 6.0 

•r Crqo. IT(0'11 IT(!S0')I NOP r•Pw c • IT(0•I IT(lS0•I 

18 2.60 0.1448 0.2487 
24 2.01 0.1382 0.2670 
34 1.62 O. 1284 0.2785 
44 1.43 0.1315 0.2930 

60 !.28 0.1365 0.•018 
74 1.21 0.1368 0.3003 
92 1.61 0.1355 0.2986 

114 1.13 0.1344 0.2967 

132 1.11 O. 1348 0.2974 

96 2 1.60 0.0306 0.0993 
96 3 4.83 0.0269 0.1356 
96 4 29.2 0.0474 0.1780 
96 $ 299 0.041 i 0.1933 
96 6 4.2 X 10 s 0.2749 0.1164 
96 7 6.7 X 104 0.5212 0.1928 
88 7 6.5 X 104 1.481 1.099 

104 7 6.9 X 104 0.9770 0.5898 
88 8 1.7 X 106 overflow 
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whereas the convergence of the HIEM would be affected 
very little. 

There is one problem that the HIEM encounters at 
higher frequencies than we have employed in the calcula- 
tions done here. That is the problem of characteristic fre- 
quencies. When the scattering is characterized by homogen- 
eous boundary conditions on the surface of a scatterer, as it is 
for rigid body scattering, then the solution of the Helmholtz 
integral equation becomes nonunique at those frequencies at 
which standing waves consistent with the homogeneous 
boundary conditions could exist in the volume occupied by 
the scatterer. At those frequencies the Helmholtz integral 
equation becomes numerically unstable. 

There are several methods s that have been shown to be 

effective in overcoming that numerical instability. In a re- 
cently published test 7 of the HIEM we verified that the 
method of H. A. Schenck, S called the combined Helmholtz 
integral equation formulation (CHIEF) is easily employed 
for the purpose. In the CHIEF the HIEM is supplemented 
by a few null-field equations, Fredholm integral equations of 
the first kind derived from the same Heknholtz formula used 

to derive the HIEM, and these serve to eliminate the numeri- 
cal instability. 

The superiority of the HIEM over the TMM for nu- 
merical calculations of the scattering of waves by nonspheri- 
cal targets is certainly very striking. We expect that the fu- 
ture will see extensive application of the HIEM to a wide 
variety of scattering problems. 
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