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Multiple Scattering of Elastic Waves by Two 
Arbitrary Cylinders 

N. R. ZrTt•ox 

Division of lIathematical Sciences, Purdue U•iz'ersity, Lafayette, Indiana 47907 

A perturbation method for the treatment of multiple scattering of acoustic waves by two arbitrary cylinders 
is extended to the case of elastic waves of plane strain. Interaction terms of monopole and dipole type are 
given explicitly. 

INTRODUCTION 

HIS paper deals with the multiple •cattcring of plane elastic waves of plane strain by two homo- 
geneous parallel cylinders of arbitrary shape and com- 
position embedded in an :trbitrary, homogeneous elastic 
medium. The method described here applies to a wide 
class of boundary conditions and includes free bound- 
aries, rigid boundaries, and cases where both the stresses 
and displacements are continuons across the boundaries. 

The scattering of elastic waves by a single circular 
cylinder has been treated bv numerous authors, in- 
cluding: Sezawa) Kuskov, • Kato, • Tyutekin, l White,* 
Miles, 6 and GolubevJ Sezawa I has also considered 
elliptic cylinders. However, as far as the author can 
determine, no one has treated multiple scattering of 
elastic waves by two arbitrary cylinders. In the present 
paper, a method developed by Zitron and Karp 8 for the 
scalar or acoustic case is extended to the elastic case 
where one is confronted with both a scalar and a vector 

wavefunction which are coupled at the boundary 
between two media. In the elastic case, the expressions 
obtained are somewhat analogous to those obtained in 
the scalar case, but are much more complicated, and 
the number of terms of each tylve in the elastic case will 

• K. Sezawa, Bull. Earthquake Res. Inst., Tokyo Cniv. 3, 19-41 
(1927). 

a A.M. Kuskov, Dokl. Akad. Xauk SSSR, 79, 2, 197-200 (1950). 
• K. Kato, Mere. Ins. Sci. Ind. Res. Osaka Univ. 9, 16-20 (1952). 
• V. V. T3 utekin, Akust. Zh. 5, 1, 106-110 (1957) [Soviet Phys. 

--Acoust. 5, 105-109 (1958)']. 
• R. M. White, I- Acoust. Soc. Am. 30, 771-785 (1958). 
e J. W. Miles, J. Acoust. Soc. Am. 32, 1656-1659 (1960). 
• A. S. Golubev, Akust. Zh. ?, 2, 174-180 (1961) [Soviet Phys.-- 
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be 2 •-• times the number of terms of corresponding 
type in the acoustic case where n is the number of times 
the wave is scattered. Terms are said to be of the same 

type if they represent the same polarity and the same 
number of scatterings. For example, all monopole terms 
that have been scattered re, ice are o[ the same type. 

I. STATEMENT OF THE PROBLEM 

The displacement • of an elastic medium may be de- 
composed into two elementary types of displacements, • 
a compressional or longitudinal displacement 

• • = gradq6, (1) 

and a shear or transverse displacement 

a• = curie, (2) 

where qS(x,y,z) and ½(x,y,z) are scalar and vector po- 
tentials, respectively, which are sufficient to determine 
fly and •,. Thus 

a = av-{- a, = grad4•n t- curl½. (3) 

For time dependence e -i•t, 4 and ½ satisfy Helmholz 
equations: 

V'q,+fi)4= 0, (4) 
and 

where •j,=w(p/u) •x, fi•=w•o/(X+2•)]•, • is the density 
of the medium, and u and X are the Lami constants of 
the medium. fi• and tS, are the respective propagation 
constants of the compressional and shear waves. 

• A. Sommerfeld, "Mechanics of Deformable Bodies," Lecture• 
Theoret. Phys. 2, 4 (1950). 



SCATTI.• RI XG OF I'2I. ASTIC 

I%'•lent •1on e 
l:[c. 1. Plane wave incident upon two parallel cylinders. 

In tfie case of plane strain, the displacements in the 
direction normal to the plane of strain, which is desig- 
naled as the z direction, vanish, as do the derivatives 
of the above potentials with respect to z, since the dis- 
placements and stresses are the same for all cross 
sections normal to the z axis. Equation 3 then becomes, 
in polar coordinates, 

06 1 
u,=--+---, (6) 

Or r O0 

r O0 •r 

It is clear from Eqs. 6 and 7 that the plane strains are 
determined completely by 4• and •,. and are independent 
of the components of • that lie in the plane of strain. It 
is possible, therefore, to treat the problem entirely in 
ternis of 4 and 

M• elastic wave scattering problem is formulated in 
the following wax.. Let V/n• represent either an incident 
4 wave (j=p) or an incident • wave (j=s). Let 
[.'i•ea• represent either a 
• k = p) or a •, type of response to V? '• (k = s). It is wcll 
known TM that, in general, both types of responses will 
occur at the boundaries between two media. Then, the 
total field gj tøt arising from •rjine is 

[,?.,.+ Z; tSe 

Each of the fields in Eq. 8 will satisfy the appropriate 
Helmholz equation, Eq. 4 or Eq. 5, depending on 
whether it is a scalar or vector potential. The scattered 
fields l/i, '•t will satisfy a radiation condition 

lira rl(- -- ifi•V•, .... O, 

and will satisfy conditions at the boundaries imposed 
upon the stresses and displacements. This is discussed 
in greater detail by Roseau. n For example, the displace- 
ments will vanish at the boundary of a rigkt scatterer, 
the stresses will vanish at a free boundary, and con- 

•0 H. Kolsky, Stress Waves in Solids (The Clarendon Press, 
Oxford, England, 1953), p. 31. 

"M. Roseau, J. Math. Pure Appl. 39, 2, 173-196 (1960). 

X\'AVES BY TWO CS'I.[XI) E RS 

Fro. 2. This graph is a general representation for a sequential 
multiple scattering process. The first node represents the incident 
nave, the second represents a singly scattered wave, the third a 
doubly scattered wave, etc. The subscripts •, k, l, m, n may each 
be set equal to p or s. \Vhen read from left to right, the sequence 
of subscripts represents the sequence of the types of waves which 
ultimately gave rise to the wave under consideration. The super- 
scripts p and (r assume the equal a or b, but p•(r, thus identifying 
the cylinders that alternately scatter a wave. 

tinuity conditions will apply to both displacements and 
stresses at the boundary between two different mediaY 
The stresses are related to the displacements by the 

(7) stress-strain relations • 
ra• ? 2•%1o.+X&,•fi, (10) 

where lhe r's are the stresses, the ds are the straln=, 
&,,, is the Kronecker delta, and 0 is the sum of the 
principal strains. Thus, the stresses may be expressed 
in terms of normal and tangential second derivatives of 
the potentials by combining Eq. 3 and 10, whereas the 
displacements may be expressed in te•s of the normal 
and tangential first derivatives of the potentials by 
Eq. 3. For example, in polar coordinates, •a 

- OrO0 r • 

(s) 000 ,, 02) Or • /' 

A potential satisfying Eq. 9 and either Eq. 4 or Eq. 5 
is called a cylindrically radiated field. At large distances 
from a cylindrical region containing •e sonrces or 
scatterers that give rise to the radiated field, the field 
has the asymptotic representation known as the far 
field 

H(fi•r) = (2/=kr)•e"a*•i,), 

where r and 0 ;ire the cylindrical coordinates of the field 
point, and a is the angle of incidence. The first coeffi- 
cient gi&(O,a) is called the complex scattering amplitude 
of the far field. 

II. MULTIPLE SCATTERING OF ELASTIC WAVES 

In the case of scattering of elastic waves by two or 
more scatterers, the problem is to find the far field of the 
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Tx•i• L A perturbation table giving the various terms in each t•q•e of multiply scattered field, their orders of magnitude, the namber 
of times they have been scattered, their locations in the "Feynman diagrams," and their composition. 

Corresponding Number of 
Field corre- node of times the 

sponding to a Feynman Order of field is 
single path diagram Type of term magnitude scattered 

Total field of each type 
(summation over all scattering paths• 

Noninteraction d o 1 
Monopole d-'-* 2 

Monopole d -• 3 

Monopole d-t 4 

I)ipole d-t 2 

combination of scatterers h• terms of the far field ampli- 
tudes which the individual scatterers would radiate if 

they' were isolated from each other. The far field of the 
combination cannot be obtained by a pure superposition 
of the far fields of the individual scatterers because an 

interaction occurs. Zitron and Karp s have developed a 
perturbation method to take a certain degree of this 
interaction into account in the case of acoustic and 

electromagnetic waves where only one type of wave is 
excited in response to an incident plane wave. In the 
present investigation, the method is extended to the 
case of elastic waves of plane strain where two waves, 
a p wave and an s wave, are excited in response to either 
an incident p wave or an s wave. The method is valid 
for widely spaced scatterers where the spacing d is large 
compared to the wavelength and the diameters of the 
scatterers. 

III. STATEMENT OF THE PROBLEM 

In the case considered here (see Fig. 1), a plane wave 
of tinit amplitude, 

V?•= e;.Sj( ..... +u •i:.•), (14) 

is incident on two wideb' spaced parallel cylindrical 
scatterers of arbitrary shape and composition denoted 
by the letters A and B. It is assumed that the unper- 
turbed scattering amplitudes giff•(O,oO and gi•a(O,ot) of 
cylinders A and B, respectively, are given. The problem 
is to obtain an asymptotic solution in inverse half- 

Fro. 3. The tree describing the shear waves of order d-t excited 
by an incident compressional wave is shown above. The upper 
l•ath represents the scattering sequences [-Irv, l•%Irw•b'] and 
Ll'•,,Vw%V.v.• •] while the lower path represents the scattering 

r a r õ b .•equences LI"•:I •, ,l • 3 and [Vv, Vvv, l'•,•. ]. 

integral and integral powers of d whose coefficients are 
in terms of gi•(O,a) and g•i*(O,ot) up to order of magni- 
tude d-! as was done in the acoustic case. In the elastic 

case, it is more difficult to keep track of all of the 
various types of waves produced in the successive stages 
of the perturbation process than in the acoustic case. 
Fortunately, this task is facilitated by the use of a 
"Feynman diagram," which is a Wpe of linear graph 
known as a tree Fig. 2. In this diagram, each path along 
a sequence of branches from left to right traces the 
history of a perturbed wave. The first node represents 
the incident wave, the second node represents a singly 
scattered wave, the third node a doubly scattered wave, 
etc. The subscripts from left to right, each of which may 
take on the value of s or p, represent the sequence of 
t3q•es of waves which ultimately gave rise to the wave 
under consideration. The superscripts • and a that take 
on the values a and b (or b and a) identify the cylinder 
that was the last in the sequence to scatter the wave 
under consideration. 

If the complete tree were to be drawn, and all nodes 
of a fixed number three from the left were selected, 
their aggregate would represent all fields which have 
been scattered three times. For example, the singly 
scattered s waves excited by an incident p wave would 
be 

V,•+ V• •. (15) 

It is now feasible to make a classification of the 

various terms in the perturbed solution up to order of 
magnitude d--*. In the multiply scattered fields, the 
singly scattered fields (at the second node of the 
Fe3mman diagram) that are rescattered consist of a 
term of order d-':, which is referred to as a monopole 
term and a term of order d-l, which is referred to as a 
dipole term. It is clear that a quadruply scattered dipole 
field (corresponding to the fifth node of the Feynman 
diagram) has the same order of magnitude (d-t) as the 
doubly scattered dipole term. The physical significance 
of these terms is that the dipole term involves a 
directivity pattern. i.e., a variable curvature of the 
wavefront. 
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The cb.ssification of fields is given in Table I. The 
•uper•ripts in parentheses give the power of d -t which 
is the order of magnitude of the monapole terms. The 
superscript 33 gives the order of magnitude of the 
dipole term and distinguishes it from the monapole 
terms. The scattered field up to order d-t may be ob- 
tained by adding up the terms in Table I. The re- 
snlt is 

j={Psl and k=l=m,*=-n•{Ps}. 
The first rerun on the right represents single scattering 
and is independent of d the second, third, and fourth 
terms are the monapole terms of order d-t, d -t, and 
d-t, respectively, and the fifth term is the dipole term 
of order d -!. 

These terrns may be obtained e.rplicitly with the aid 
of Eq. 31 of Zitron and Karpa: 

where 
+ • -- •d(O• cosO+Oi casa), i= k, l, m, •, 

•,jF= «d(fi• cos0- O• cos•), 

D•= d/dr, 

and the stmunations over k, l, m include all possible combinations of p and s. The factors •i•" and q'iU result from 
the fact that multiple scattering formulas are normalized in terms of a common origin located midway between 
the two scatterers? 

IV. CASE OF TWO CIRCULAR CYLINDERS 

For an example of how the above results would be applied in a particular problem, consider the following case. 
A plane compressional wave is incident upon a combination of two widely spaced parallel circular cylinders, A 
and B. Let us assume that the object is to find the s waves of order d-I resulting from this incident wave. 

The complete multiple scattering tree pertaining to the history of the s waves of order d-i resulting from an inci- 
dent p wave is shown in Fig. 3 in a more conventional notation. Let the response of A to an incident plane p 
wave he 

H(fi•r) • av•e i•tO-"), (.22) 

and the response of B to an incident plane p wave be 

H(3,r) • b•'e i"(•). (23) 
•2 • 

It should be noted that the superscripts on the a's and b's are indices of smmation and not e•onents. A direct 
substitution of Eqs. 22 and 23 into Eq. 18 yields 

'H•r,d) (e i•'+ • (-- 1)•,aw"•e i•dø-•) • (-- 1)•bvv•-i•+ e-i•v+ Z bvd '•i•ø • a •xe -i• 
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V. CONCLUDING REMARKS 

This method might also be applied to diffraction between two rigid half-planes or two cracks in an elastic 
medium which Resende • treated by using Keller's •a geometrical theory of diffraction. Since that treatment was 
based on a high-frequency method, it gives only monopole interaction terms. This method gives higher-order terms 
and thus is valid for even smaller spacing. 

The reviewers have kindly pointed out the possibility of using expansion theorems) 4-• The author has obtained 
the results presented here without the aid of these more general expansions. However, they would undoubtedly 
he useful to anyone who wanted to compute the general term of the series or specific terms of order higher than the 
dipole terms. 
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