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Numerical results are obtained for a finite circular elastic cylinder with spherical end caps using Waterman’s
T-matrix method. In addition to the important practical applications that this geometry has in underwater
acoustics, for the first time this method is applied to elastic scatterers that have a discontinuity in the first
derivative of the normal to the surface. This makes the problem numerically difficult and is a good test of the
effectiveness of the T-matrix method. The frequency dependence of the backscattering cross section is

presented for a cylinder whose overall length is twice its diameter. Qur results are compared with experiments

showing excellent agreement.

PACS numbers: 43.20.Fn, 43.30.Gv, 43.20.Bi

INTRODUCTION

The finite circular cylinder enclosed by spherieal end
caps is an important model for many applications in
underwater acoustics. Many researchers have attempted
to study the frequency dependence of a scatterer of this
shape submerged in water. Their results are confined
to the low-frequency or Rayleigh limit. In this paper
the frequency dependence of acoustic wave scattering
from a finite elastic cylinder in water is studied using
the T-matrix or null field method. To the authors’
knowledge such results are unavailable in the literature.

These calculations serve a twofold purpose. The first
is that they are of great practical significance, and will
be of much use to future experiments on such shapes.
The second purpose is of a theoretical and computation-
al nature. For the first time, the T-matrix method has
been applied to a three dimensional elastic scatterer
whose surface is generated by joining two dissimilar
shapes, i.e., there is no single equation governing the
surface of the scatterer. Although the normal to the
surface which is smooth is continuous, there is a dis-
continuity in the first derivative of the normal where the
hemisphere joins the right circular cylinder. This leads
to difficulties in numerical quadrature and matrices
that are ill conditioned for inversion, Thus our results
are the first real test of the effectiveness of the T-ma-
trix method for elastic scatters. The fact that the elas-
tic scatterer is immersed in water makes the problem
more difficult. Waterman' has discussed the numerical
difficulties associated with electromagnetic scattering
from perfectly conducting finite cylinders using this
method.

References to theoretical calculations of the problem
we are considering are sparse in the literature at wave-
lengths comparable to the size of the scatterer. The
most pertinent work is that of Barnard and McKinney,?
although it is experimental. They have presented polar
plots of the scattered energy from finite solid cylinders
and shells. But no direct comparison can be made for
two reasons: (1) the cylinders used in experiments
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have no end caps, (2) the wavelengths they consider

are shorter than any that we have considered. The work
of Haslett? is also experimental on cylinders with no

end caps and theoretical estimates of the scattering
cross sections are empirical. Williams* has considered
high-frequency approximations to the finite rigid cylind-
er whose length is much greater than the wavelength

of acoustic waves. Lyamshev® has compared experi-
mental results on finite elastic eylinders with theoret-
ical calculations on an infinite cylinder with waves in-
cident obliquely fo the axis of the cylinder. Thus, to
our knowledge, there are no results available at pre-
sent for a finite elastic cylinder with spherical end

caps at wave lengths comparable to the size of the scat-
terer.

The T-matrix or null field method originally formu-
lated by Waterman® was recently extended to elastic
wave scattering by cavities and inclusions in a solid.
But the problem of an elastic scatterer in a fluid is far
more complicated. Bostrom? was the first to give a cor-
rect T-matrix formulation for this case. In Sec. I, we
have given a brief summary of the pertinent equations
and expressions for the elements of the various ma-
trices that are involved in the definition of the T matrix.
In Sec. II the numerical procedure is discussed in suf-
ficient detail and a brief discussion of the numerical re-
sults is presented. One of the plots is compared with
recently obtained experimental results® showing very
good agreement.

I. FORMULATION

Consider a finite elastic circular cylinder with hemi-
spherical caps with continuously turning unit normal
n immersed in an inviscid fluid, see Fig. 1. The elastic
properties of the scatterer are given by the Lame’s con-
stants A and 4 and mass density p while the properties
of the fluid are given by the compressibility A, and mass
density p,.

A plane acoustic wave of unit amplitude, frequency w
and wavenumber &, is incident obliquely to the cylinder.
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FIG. 1. Geometry of finite
circular cylinder with hemi-
spherical end caps.
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We denote the incident wave and scattered wave dis-
placements by u® and u®¥, respectively. The starting
point of the T-matrix formalism is the interior and ex-
terior Helmholtz integral representations for the fluid
and solid, see Refs. 7 and 9:

u’(r)+ L [uf- &' - Z/(x, x")) - 7" 7;- G(r,r")]aS’

- {u,(r), r outside S, )

o, r inside S,

for the fluid, and

[ w-Gne, N7 o, ]
s

_ { u(r), r insideS, @

o, r outside S,

for the solid, where u is the displacement vector in the
solid, T is the stress tensor, and T and G are the
Green’s stress and displacement tensors given by

T=MV-u+p(Va+uv), 3)
Z=AV-G+}u(VG+GV), (4)

with | is defined as the Idem factor. The terms with sub-
scripts f refer to the corresponding quantities in the
fluid and can be written in the form given by (3) and (4)
with 4 set equal to zero. In Egs. (1) and (2), the primes
onu,, u, T, T, and n indicate that they are functions of
r’, a point on the surface of the finite eylinder S, and
dS’ is an element of area on S centered at r’. In de-
riving the above equations, we have assumed that the
suitable radiation conditions are imposed on the scat-
tered field far from S.

The philosophy of the T-matrix approach is to expand
all the terms appearing in the integral representations
in terms of spherical vector basis functions:

lplmn(r) .
12 cosm o=1
= (%) £V | Balk,7)pr (cOS0) [ ¢ ] , (5)
s sinm¢o, o=2
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¢2dmn(r)

= kg7, 9 X l: l‘h,,(ksr)P;,',‘(cosO) [cosm(p’ o= 1]} ,
sinm¢, o0=2
(6)
Fsoma(T)= (1/%5)9 X dpama(r), )

where kp=w/cp and kg=w/cg are the longitudinal (P) and
shear wave (S) numbers and ¢p and ¢ are their respec-
tive wave velocities given by

ep=[(+21)/p}1%; cg=(1/p)2. (8)

In Egs. (5)-(7), we have used spherical polar coordin-
ates r, 8, ¢ with the origin of the coordinate system
centered inside S; 7,(-) are the spherical Hankel func-
tions of the first kind of order n; and Py is the as-
sociated Legendre polynomial and the index n=
0,1,2,3...» for =1 and n=1,2,3...% for ¢=2, and
m is an integer that takes values 0,1,2,3...n. The
symbol o denotes the even or odd parity of the angular
dependence. The normalization constants £ and 7 are
given by

_ 2+ 1)n-—m) |*/2
Epn= [Emm)l—] 9
withe¢,=1 and €,=2, m>0, and
Npp= EAn(+1)]1/2, (10)

For brevity, we denote these functions §,,.m Paomms
Psomn=Vre With 7=1,2,3. The subscript 7=1 refers to
the compressional wave functions while 7 =2, 3 refers
to shear wavefunctions. Since the fluid supports only
compressional waves, we need only the T=1 compon-
ent of the basis functions which we denote by i,,.

We expand the incident wave, scattered wave fields
and the field inside the cylinder, and the Green’s ten-
sors in terms of the basis functions”?

u°(r)=z":A"Re¢,n(r) , (11)
uS(r)=);fnol\w,"(r) . (12)
u(r')=2; a,, Rey, (r'), (13)
G,(r,r')-piif,; Z":Ouzp,"(r)) Rey (7o), (14)
a(r,r)= s T 0w, (xs)Red, (50 (15)

where Re and Qu denote regular (j,) and outgoing (z,)
functions, respectively, and r, and r, refer to the great-
er and lesser of r and r’, respectively. Note that
G(r|r’)= G(r’|r).

Substituting these expansions (11)—~(15) and using the
following continuity and boundary conditions:

! -u}:ﬁ' w’, (16)
A Tp AR TR (7)
(ﬁ’ ° T’)tang;emial = 0 ’ (18)
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at the surface of the cylinder in the integral equation
for the fluid, Eq. (1), we obtain

A== iQ, e (OU,Re)a, ., (19)

‘f,.":ZiQ,M,", (Re, Re)am. R (20)

‘where the matrix @ is given hy

Qn.fn'[ou Re]= k I:)‘fv' [ou lpfn] ﬁ'Rewln'
s Re

2

Re Pr®

—ie [Ou zﬁ,"] ii-‘r(RelP".)-ﬁ:I ds.
Re

(21)

In Egs. (19) and (20) and those that follow, the summa-
tion sign is used to imply summations on all repeated
indices. Obviously, due to summation on 7 which var-
ies from 1 to 3, the Q matrix given by (21) has a 1x 3
substructure and hence cannot be inverted. Moreover,
we have not used the boundary condition as given in Eq.
(18). In order to obtain the desired T matrix connecting
A, and f,, we must invoke Eq. (2) by using an additional
expansion

u,(r)=) "d,Reg, (r), reS (22)

n

and the conditions given by Egs. (16)—(18) until we ar-
rive at a set of matrix equations that are invertible. To

this end, we follow the work outlined in Refs. 7 and 9
to obtain

Z:Pf"-rfd#+Zan.r byt Xprge = 0, (23)
where the matrices P and R are given by
k . " .
Pm".=p—w§ L {(i - Re¥;, )7 - T(Rey,,) - A l}dS , (24)
k o
R, '"'=E‘-’S§ J; {Red"r‘n')ung. ne T(Red’,,,)
-[a-T(Red,. ) -7}i-Rep, }dS. (25)

From Eqs. (19), (20), and (23), we then obtain the fol-
lowing relationship between the incident and scattered
field coefficients:

f=TA, (26)
where
T=-Q(Re,Re)R'P[Q(Ou,Re)RP . (27)

The T matrix defined above is applicable to both elastic
and viscoelastic obstacles of arbitrary shape immersed
in a fluid.® Once the scattered field coefficients are
known from Eq. (26), the quantities of interest such as
backscattering, bistatic and total scattering cross sec-
tions, and amplitude of the scattered field can be com-~
puted as a function of the frequency of the incident wave.
At distances far from the cylinder, the field consists
of outgoing spherical waves with an amplitude that de-
pends on & and ¢. The energy carried by the scattered
field in any direction defined by the angles (0, ¢) is
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proportional to the absolute square of the scattered
pressure amplitude. The farfield scattered amplitude
is obtained from Eq. (12) as

uS(r)—71(8, p)e " /r)

(28)
(e .

where the form function f(8, ¢) is given by

A6,0)=)" Z £, "P™(cos6)

n=0 Ml

X (f1maCOSMP + [, SiNMP) . (29)

The differential o and total ¢, scattering cross sections
are given by

G(Gs ¢)= lf(91 ¢)|2 ’
0:=20 go: |flmn| 2+.f2mn| 2 .

(30)

Il. NUMERICAL RESULTS

The finite circular cylinder with hemispherical end
caps has an axis of revolution which is taken as the z
axis of the coordinate system with origin at the center,
see Fig. 1. If 27 is the length of the cylindrical part
and a is the radius of the end caps, the equation to the
surface S in spherical polar coordinates (r, 8, ¢) is
given by

hcosf+ (a® —n*sin®9)V/2, 0<6<4,,

r(0,¢)= a/sind, 8,<8<w ~4,,
—hcos6+(a®-h*sing)*/?, n-g,<o<m,
(31)
where
8,=cos[n/(a*+ K?)V/?]. (32)

Since 7(9, ¢) is independent of ¢, the matrices @, R,
P, and hence T become diagonal in the azimuthal index,
ie.,

X =X"

nmS,n’m’s L n'ﬂ'a mm’ »

(33)

where X stands for @, R, P, or T. Many more elements
of the matrices @, R, P, and T can be set equal to zero
using the additional symmetry

v(8)=v(mr -06). (34)

The above symmetry also makes it possible to reduce
the range of integration on 8 from 0 -7 to 0 —n/2, thus
saving significant computer time.

The Gauss~Legendre quadrature formula was used to
generate the matrix elements. Since the unit normal
changes rapidly for 0< 8< 6§, and remains constant for
8,< 8<m/2, the integration was divided into two parts
and the number of points for each part was varied till
convergence was obtained for a given aspeet ratio a/h
and frequency w.

The accuracy of the computation was first checked
by examining the symmetry of the T matrix in different
frequency ranges to determine the proper matrix size.
Once this was achieved, the matrix QRP was then in-
verted by Schmidt orthogonalization. The matrix R was
inverted by a Gaussian elimination procedure.
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z FIG. 2. (a) Geometry of spher-
oid, () scattering geometry.

The matrix sizes for a given azimuthal index m were
progressively increased from 8x 8 at k,(2+a)=0.5 to
20x 20 at k;(h+a)="7.0. For arbitrary angles of inci-
dence with respect to the z axis, it was found that cal-
culating terms up to m =7 was sufficient to ‘insure eon-
vergence of the solutions.

The input parameters for the program are k/h, a/h,
¢4y Cp, €5, K, and A, and the geometry of the scatterer
given by Eq. (31). For the results presented here, a/h
was taken to be unity. Thus the overall length of the
cylinder is equal to twice the diameter.

The results obtained for the finite cylinder are com-
pared with those for a prolate spheroid, Fig. 2(a), of
aspect ratio b/a=2.0. Since both are bodies of revolu-
tion, the incident wave is taken to be in the x—z plane;
see Fig. 2(b). Three incident wave angles 6,=0, /4,
and 7/2 were considered with ¢,=0. In each case, the
farfield amplitude of the backscattered pressure field
VZ f (form function) was computed for §=w —d,and ¢ =7.
Figures 3-17 display the form function as a function
kil =Pk (h+ a) for Lucite and aluminum finite eylinders
and corresponding results for the prolate spheroid of
the same overall dimensions. The material properties
used are given in Table 1.

T :: 1 L]
n
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n
0.32} i .

1
(1]

h H

I " H

/2t HooW

1y "
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]
1
[]
[ ]
L [ ]
[]
1

1 1 - | 1
Q 1.2 2.4
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FIG. 3. Form function f as a function of kI for Lucite, 8y=0°;
-—spheroid, —finite cylinder.
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FIG. 4. Form functionf as a function of k1 for Lucite, 0,=45%
--—spheroid, —finite cylinder.

In Figs. 3-5, the form function is computed in the
backscattered direction using the material properties
of Lucite, the solid lines indicating the results obtained
for the finite eylinder and the dotted lines for the pro-
late spheroid. The results indicate that the scattering
from the spheroid is much more, especially at the
maxima which are highly pronounced. Most of the very
sharp maxima appear to occur at nearly the same fre-
quency for both scatterers. In eontrast, Figs. 6 and 7,
using the material properties of aluminum for 6,=0 and
w/2, respectively, do not display such sharp maxima.
At 6,=0, the curves for the spheroid and the finite cyl-
inder have the same general shape; however the form
function has a higher value than that for the spheroid
even at the maxima. At 6,=90°, the form function for
both scatterers looks very much alike for the frequency
range considered and thus at this angle it is hard to
distinguish a finite eylinder from a prolate spheroid.
This is not true for all angles of incidence.

3.2¢ .

S2f [ i

Kyl

FIG. 5. Form function f as a function of 2,1 for Lucite, ¢,=290%
---spheroid, —finite cylinder.
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FIG. 6. Form function f as a function of k.1 for aluminum, &,
=0°.

The absence of very sharp maxima in aluminum scat-
terers may be due to the fact that the shear wave speed
in Lucite is quite small and its elastic properties and
density are not too far removed from that of water.
Thus the wavelength of longitudinal waves is of the same
magnitude inside and outside the scatterer. For an
aluminum scatterer, the property contrast is quite high
and for a given frequency of the incident wave, the
wavelength inside the scatterer is smaller than the
wavelength in the fluid by a factor of four.

In Fig. 8, our computations are compared with experi-
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- ——— SPHEROID ’ e
.08 It )
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FIG. 7. Form function f as a function of k¢l for aluminum, 9,
=90°,
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TABLE 1. Material properties used in computations.

Water Aluminpum Lucite
Density
€/cm?) . 1.00 2.70 1.70
Compressional wave speed
(%107 cm/s) 1.482 6.376 2.00
Shear wave speed
(X107 cm/s) (] 3.12 0.50

mental results for end-on incidence for 4.2<%,1< 6.6.
Experimental resulis obtained by Numrich and Dragon-
ette® are reliable for k> 4.6. The agreement is excel-
lent demonstrating the accuracy of the computations.
Twenty terms had to be kept in the scattered field ex-
pansion at these frequencies. The experimental results
are accurate to +1 dB and our calculations are within
experimental error,

11l. CONCLUSIONS

In this paper we have demonstrated that the T-matrix
method can be used for elastic obstacles of realistic
shape immersed in water for wavelengths comparable
to the size of the object. Qur calculations also give
some indication of where exactly numerical errors be-
come noticeable indicating that our methods for generat-
ing the matrix elements by numerical quadrature and
matrix inversions should be improved. With our present
program calculations can be safely made up to k,I=12
as long as the cylinder is not too long and thin. For
long thin eylinders improvements have to be made in the
present procedure to obtain reliable results. The excel-
lent agreement with experiments is nonetheless very
encouraging.

0.56 T T T

—— THEQRY
=== EXPERIMENT

052}

048
J2f
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040}

Q.36

032

0.28 ) . ) L 1
4.2 4.6 5-0 5-4 5-8 62 6.6
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FIG. 8. Backscattered field from an aluminum eylinder for

89=0°, comparison of theory and experiment,
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