
Acoustic wave scattering by a finite elastic cylinder in 
water 

Jen-Houne Su, Vasundara V. Varadan, and Vijay K. Varadan 
Waoe Propagation Group, Department of Engineering Mechanics, The Ohio State Unioersity, Colurnbu& 
Ohio 43210 

Lawrence Flax 

Naoal Research Laboratory, Washington, D.C 20375 
(Received 29 October 1979; accepted for publication 14 April 1980) 

Numerical results are obtained for a finite circular elastic cylinder with spherical end caps using Waterman's 
T-matrix method. In addition to the important practical applications that this geometry has in underwater 
acoustics, for the first time this method is applied to alastic scatterers that have a discontinuity in the first 
derivative of the normal to the surface. This makes the problem numerically difficult and is a good test of the 
effectiveness of the T-matrix method. The frequency dependence of the backscattering cross section is 
presented for a cylinder whose overall length is twice its diameter. Our results are compared with experiments 
showing excellent agreement. 

PACS numbers: 43.20.Fn, 43.30.Ov, 43.20.Bi 

INTRODUCTION 

The finite circular cylinder enclosed by spherical end 
caps is an important model for many applications in 
underwater acoustics. Many researchers have attempted 
to study the frequency dependence of a scatterer of this 
shape submerged in water. Their results are confined 
to the low-frequency or Rayleigh limit. In this paper 
the frequency dependence of acoustic wave scattering 
from a finite elastic cylinder in water is studied using 
the T-matrix or null field method. To the authors' 

knowledge such results are unavailable in the literature. 

These calculations serve a twofold purpose. The first 
is that they are of great practical significance, and will 
be of much use to future experiments on such shapes. 
The second purpose is of a theoretical and computation- 
al nature. For the first time, the T-matrix method has 
been applied to a three dimensional elastic scatterer 
whose surface is generated by joining two dissimilar 
shapes, i.e., there is no single equation governing the 
surface of the scatterer. Although the normal to the 
surface which is smooth is continuous, there is a dis- 
continuity in the first derivative of the normal where the 
hemisphere joins the right circular cylinder. This leads 
to difficulties in numerical quadrature and matrices 
that are ill conditioned for inversion. Thus our results 

are the first real test of the effectiveness of the T-ma- 

trix method for elastic scatters. The fact that the elas- 

tic scatterer is immersed in water makes the problem 
more difficult. Waterman' has discussed the numerical 

difficulties associated with electromagnetic scattering 
from perfectly conducting finite cylinders using this 
method. 

References to theoretical calculations of the problem 
we are considering are sparse in the literature at wave- 
lengths comparable to the size of the scatterer. The 
most pertinent work is that of Barnard and McKinney, a 
although it is experimental. They have presented polar 
plots of the scattered energy from finite solid cylinders 
and shells. But no direct comparison can be made for 
two reasons: (1) the cylinders used in experiments 

have no end caps, (2) the wavelengths they consider 
are shorter than any that we have considered. The work 
of Hasleft a is also experimental on cylinders with no 
end caps and theoretical estimates of the scattering 
cross sections are empirical. Williams 4 has considered 
high-frequency approximations to the finite rigid cylind- 
er whose length is much greater than the wavelength 
of acoustic waves. Lyamshev 5 has compared experi- 
mental results on finite elastic cylinders with theoret- 
ical calculations on an infinite cylinder with waves in- 
cident obliquely to the axis of the cylinder. Thus, to 
our knowledge, there are no results available at pre- 
sent for a finite elastic cylinder with spherical end 
caps at wave lengths comparable to the size of the scat- 
terer. 

The T-matrix or null field method originally formu- 
lated by Waterman 6 was recently extended to elastic 
wave scattering by cavities and inclusions in a solid. 
But the problem of an elastic scatterer in a fluid is far 
more complicated. Bostr•m ? was the first to give a cor- 
rect T-matrix formulation for this case. In Sec. I, we 
have given a brief summary of the pertinent equations 
and expressions for the elements of the various ma- 
trices that are involved in the definition of the T matrix. 

In Sec. ri the numerical procedure is discussed in suf- 
ficient detail and a brief discussion of the numerical re- 

sults is presented. One of the plots is compared with 
recently obtained experimental results a showing very 
good agreement. 

I. FORMULATION 

Consider a finite elastic circular cylinder with hemi- 

•spherical caps with e'ontinuously turning unit normal 
n immersed in an inviscid fluid, see Fig. 1. The elastic 
properties of the scatterer are given by the Lame's con- 
stants X and • and mass density p while the properties 
of the fluid are given by the compressibility X! and mass 
density 

A plane acoustic wave of unit amplitude, frequency 
and wavenumber k s is incident obliquely to the cylinder. 
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FIG. 1. Geometry of finite 
circular cylinder with hemi- 
spherical end caps. 

We denote the incident wave and scattered wave dis- 

placements by u ø and u s, respectively. The starting 
point of the T-matrix formalism is the interior and ex- 
terior Helmholtz integral representations for the fluid 
and solid, see Refs. 7 and 9: 

uø(r)+ [ [.;. (•'. Z,(r, r'))-;,'. •';. •(r, r')] dS' 
.•$ 

= / ut(r)' r outside S, (1) 
{ 0, r inside S, 

for the fluid, and 

- fs in'- (•'. r.(r, r'))- •'. •'. •(r, r')] dS' 
= { u(r), r inside S, (2) 0, r outside S, 

for the solid, where u is the displacement vector in f_he 
solid, •' is the stress tensor, and 2; and O are the 
Green's stress and displacement tensors given by 

?= XI?. u+ p(Vu+ uV), 

•= AIV- G + {•(VG + G?), 

with I is defined as the Idem factor. The terms with sub- 

scriptsf refer Lo the corresponding quantities in the 
fluid and can be written in the form given by (3) and (4) 
with {• set equal to zero. In Eqs. (1) and (2), the primes 
on ut, u, •'f, •', and • indicate that they are functions of 
r t, a point on the surface of the finite cylinder S, and 
dS' is an element of area on S centered at r'. In de- 
riving the above equations, we have assumed that the 
suitable radiation conditions are imposed on the scat- 
feted field far from S. 

The philosophy of the T-matrix approach is to expand 
all the terms appearing in the integral representations 
in terms of spherical vector basis functions: 

•=111 , (•=2 

•sinmq•, 

•..(r) = (1/ks)? X •e•..(r), 

(•) 

(7) 

where k• = o• /c z, and k s = w/c s are the longitudinal (/• and 
shear wave (S) numbers and c• and c s are their respec- 
tive wave velocities given by 

c• =[(x+ 2•)/p] '/• ; c• = (•/py/•. (•) 

In Eqs. (5)-(7), we •ve us• sphericat po•r coord•- 
ates •, 8, • with the origin of •e coordinate system 
center• i•ide S; h.(.) are the spherical HaZel func- 
tions of the first ki• of order •; •d P• is the as- 
s•t• Legendre •lynomial • the i•ex n = 
0, 1,2, 3 .. ß • for • = 1 and, = 1,2, 3. ß ß 
m is • •teger that t•es values 0, 1,2, 3...u. The 
symbol • den•es the even or o• parity of the a•ular 
dependence. The normal•ation constants • a• • are 
given by 

•• j (9) 
wi•½o=l and (•=2, re>O, and 

•.= •4n(n+ [)]'/•. (10) 

For brevi•, we denote these •unctions 
•=.=• with •= 1,2, 3. The s•script •= 1 refers to 
the compressio•l wave functions while ß = 2, 3 refers 
to shear wavefunctions. Since the fluid suppo•s only 
compressional waves, we need only the •=l compon- 
ent • the basis functions which we denote by •.. 

We e•a• the incident wave, scatter• wave fields 
•d the field inside the cyli•er, • the Green's ten- 
sors in terms of the basis functions v.9 

(3) uø(r) =•.A.Re{0t.(r), (11) 

(4) uS(r)-•/.Ou•t.(r), (12) 

u(r') = •. a.. Re•..(r'), (13) 

Gt(r, r')- i• •Ou•t.(r>) Re•t.(•<) (14) 
•(r,r') p• •..(r>)•e•..(r<), (•5) 

where Re and • denot e regutar (j,) a• outgoing (h,) 
functions, respectively, • r> •d r< refer to •e great- 
er a• lesser of r a• r', respectively. No• that 
o(r{ r')- G(r'{ r). 

Su•iikii• these e•pansions (11)-(15) •d using the 
ioll•ing continuity •d •undary conditions: 

•'. u•= R'-u', (16) 

(5) •'. •-•' = e'. •'. •', (]7) 
(•'. •'),.•,,i,, = 0, (•8) 
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at the surface of the cylinder in the integral equation 
for the fluid, Eq. (1), we obtain 

An- -E (19) 

'•-= E iQ..,., (Re,, Re)a,.,, (20) 

'where the matrix Q is given by 

Re 

(21) 

• Eqs. (19) •d (20) a• those t•t foll•, the summa- 
tion si• is used to imply summ•io• on all repea•d 
indices. O•i•sly, due to sametlon on r which var- 
ies from 1 to 3, the • ma[r• Oven • (•1) • a 1 x 3 
sub[metre •d hence c•no• • inverted. Moreover, 
we have not used the •ndary condition • given • Eq. 
(18). In order [o obtain the desired T matrk coveting 
A, •d/,, we must invoke Eq. (•) by using an •diUonal 
exposion 

•(r)= •d,•gt,(r) , r•S (22) 

•d the conditions given by Eqs. (16)-(18) until we ar- 
rive at a set of matr• •uations •at •e •vertib•. To 
this end, we foll• •e work outlined in Refs. 7 •d 9 
to obtain 

where the m•rices P •d R are given • 

p,..,,__ pk_•: fs {(•. Re{p/,,)[•. m.(Re•,,). • ]}dS , (24) 

- [a- ne,J. 
From Eqs. (19), (20), • (23), we then o•ain the fol- 
lowing relationship •ween the inc•ent • scattered 
fie• c•fficients: 

f= TA, 

where 

T = • (Re, Rem-'P [Q (•, Rem-'P •'. (27) 

The T •tr• defined s•e is •pliesble to •h elastic 
•d viscoeEastic o•t•les of arbitrary shoe immers• 
in a fluid? Once the scattered field g•fflcien• •e 

•own •rom Eq. (26), the quatitles of in,rest such • 
•ckscat•ring, bist•ic • total sc•teri• cross sec- 
tions, •d •pli•de of the scalered field c• • com- 
puted • z •nction of •e fr•ue•y of the inc•ent wave. 
At dis•ces far from the cyli•er, the field consists 
of ou•oing spheric• waves with an •pli•de that de- 
pe•s on • •d •. The ener• carried • the scatSred 
field in •y direction defied by the •gles (8• •) is 

proportional to the absolute square of the scattered 
pressure amplitude. The farfield scattered amplitude 
is obtained from Eq. (12) as 

uS(r) ß P/(8, •)(eikF/r), (28) 

where the form functionf(8,•) is •ven by 

/(•,•)=• • •..i'"P:(cosS) 
x (L•.cosm•+f,•.si•). (29) 

The d•ferent•al • • tot• % sca•ring cross sectio• 
are given • 

•-0 •0 

II. NUMERICAL RESULTS 

The fini• circular cylinder with hemispherical e• 
e•s •s • •is of revolution which i8 t•en • the z 
•is of •e coordinate system with origin at the ceMer, 
see Fig. 1. K 2h is the len•h of the cyli•ric• p•t 
and a is the r•ius of the end caps, the •uation to the 
surf•e S in spherie• polar coordinates (r, 8, •) is 
given • 

{ heosS+(a•-h•sin•8) •12 , 0< •< •o, r(8,•)- a/sinO, 9o <o<u 

-heosS+ (a :-hzsM8) •1•, •-•o<•<• , 

where 

Since r(8,•) is independent of •, the matrices Q, R, 
P, • hence T •eome di•onal in the •imut•l index, 
i.e., 

-X m X,•.,.•.•.- •.,.ea•... (33) 

where X studs for Q, R, P, or T. M•y more elements 
of the matrices Q, R, P, and T e• • set •u• to zero 
usi• the •ditional symmet• 

The a•ve symmetry also m•es it possible to reduce 
the r•ge of integration on 8 from 0-• to 0-•/2, thus 
saving si•icant cornpurr time. 

The Ga•s-•gendre quafaire formula w• used to 
generate the matr• elements. SMee the unit norm• 
ch•s rapidly for 0< 8< 8o • remains const•t for 
8o< 8<u/2, the inte•ation w• divided into •o p•ts 
•d the numar of poin• for e•h part w• vari• till 
convergence w• o•ained for a •ven •et ratio a/h 
• fr•uency •. 

The accuracy of the compuMtion w• first checked 
by ex•ining the $ymmetry of the T matr• in dHferent 
fr•ueney ranges to de•rmine the prier matr• 8•e. 
Once this w• •hieved, •e m•r• QRP w• then in- 
verted by Schmidt orthogonM•ion. The matr• R w• 
•ver•d • a •si• elim•tion pr•edure. 
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FIG. 2. (a) Geometry of spher- 
oid. (b) scattering geometry. 

The matrix sizes for a given •zimuthal index m were 
progressively increased from 8x 8 at kt(h+ a)= 0.5 to 
20x 20 at k/(h+a)-7.0. For arbitrary angles of inci- 
dence with respect to the z axis, it was found that csA- 
culating terms up to m = 7 was sufficient to'insure con- 
vergence of the solutions. 

The input parameters for the program are kfh, 
c/, cp, Cs, p, and ;• and the geometry of the scatterer 
given by Eq. (31). For the results presented here, a/h 
was taken to he unity. Thus the overall length of the 
cylinder is equal to •wice the diameter. 

The results 'obtained for the finite cylinder are com- 
pared with those for a prolate spheroid, Fig. 2(a), of 
aspect ratio b/a= 2.0. Since both are bodies of revolu- 
tion, the incident wave is taken to be in the x-z plane; 
see Fig. 2(b). Three incident wave angles 80= 0, •/4, 
and •r/2 were considered with q•0= 0. In each case, the 
farfield amplitude of the backscattered pressure field 
•f•f (form function) was computed for 8 = • - doand • = #. 
Figures 3-7 display the form function as a function 
ktl=-kt(h+ a) for Lucite and aluminum finite cylinders 
and corresponding results for the prolate spheroid of 
the same overall dimensions. The material properties 
used are given in Table I. 

I ii 

II 
II 
II 
II 

I I 0.4! 

0 1.2 2.4 

FIG. 4. Form •ctionf as a f•ctton ofk•l for •ci•, 00=45 • 

In Figs. 3-5, the form function is computed in the 
backscattered direction using the materisA properties 
of Lucite, the solid lines indicating the results obtained 
for the finite cylinder and the dotted lines for the pro- 
late spheroid. The results indicate that the scattering 
from the spheroid is much more, especially at the 
maxima which are highly pronounced. Most of the very 
sharp maxima appear to occur at nearly the same fre- 
quency for both scatterers. In contrast, Figs. 6 and 7, 
using the material properties of aluminum for do= 0 and 
•/2, respectively, do not display such sharp maxima. 
At 80= 0, the curves for the spheroid and the finite cyl- 
inder have the same general shape; however the form 
function has a higher value than that for the spheroid 
even at the maxima. At 8o= 90 ø, the form function for 
both scatterers looks very much alike for the frequency 
range considered and thus at this angle it is hard to 
distinguish a finite cylinder from a prolate spheroid. 
This is not true for all angles of incidence. 
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FIG. 3. Form functional as a function of kfl for Lucite, 80- 0ø; 
---spheroid, --finite cylinder. 
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FIG. 5. Form functionf as a function ofktl for Lucite, #0-90• 
---spheroid, •finite cylinder. 
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FIG. 6. Form functionf as a function of kll for aluminum, 
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The absence of very sharp maxima in aluminum scat- 
terers may be due to the fact that the shear wave speed 
in Lucite is quite small and its elastic properties and 
denSity are not too far removed from that of water. 
Thus the wavelength of tongitudinal waves is of the same 
magnitude inside and outside the scatterer. For an 
aluminum scatterer, /he property contrast is quite high 
and for a given frequency of the incident wave, the 
wavelength inside the scatterer is smaller than the 
wavelength in the fluid by a factor of four. 

In Fig. 8, our computations are compared with experi- 

1.62 
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SPHEROID ' 
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FIG. 7. Form functionf •a a function of kfl for aluminum, O 0 
_- 90øø 

TABLE I. Material properties used in computations. 

Water Aluminum Lucite 

Density 
(g/cm 3) 1.00 2.70 1.70 

Compressional wave speed' 
(• 10 '• cm/s) 1.482 6.376 2.00 

Shear wave speed 
(x 10 '• cm/s) 0 3.12 0.50 

mental results for end-on incidence for 4.2<k//< 6.6. 
Experimental results obtained by Numrich and Dragon- 
ette e are reliable for k/l> 4.6. The agreement is excel- 
lent demonstrating the accuracy of the computations. 
Twenty terms had to be kept in the scattered field ex- 
pansion at these frequencies. The experimental results 
are accurate to ñ1 dB and our calculations are within 

experimental error. 

III. CONCLUSIONS 

In this paper we have demonStrated that the T-matrix 
method can be used for elastic obstacles of realistic 

shape immersed in water for wavelengths comparable 
to the size of the object. Our calculations also give 
some indication of where exactly numerical errors be- 
come noticeable indicating that our methods for generat- 
ing the matrix elements by numerical quadrature and 
matrix inversions should be improved. With our present 
program calculations can be safely made up to k/l= 12 
as long as the cylinder is not too long and thin. For 
long thin cylinders improvements have to be made in the 
present procedure to obtain reliable results. The excel- 
lent agreement with experiments is nonetheless very 
encouraging. 

•f 

0.56 

0•52 

0-48 

0-44 

0`40 

0.36 

THEORY 
.... EXPERIMENT 

L 

0.28 I • I I I 

4.2 4-6 5-0 5.4 5-8 62 6-6 

kf[ 

FIG. 8. Backscattered field from an aluminum cylinder for 
60- 0 ø, comparison of theory and experiment. 
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