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The numerical implementation of a combined integral equation and null-field method used to 
solve the exterior Neumann problem [D. S. Jones, Q. J. Mech. Appl. Math. XX¾II, 129 
(1974) ] is presented here. The exterior Helmholtz integral equation is solved on the radiating 
or scattering surface, and the irregular frequencies are eliminated up to a given irregular 
frequency f•t through the use of M additional null-field equations. An impedance matrix, 
defined on the object surface, is then obtained that can be used as an exact radiation condition 
in a finite-element code. The program and the numerical examples presented here are 
specialized to axisymmetrical problems. A purely null-field method is implemented and simple 
rules are defined that display its failure when applied to high aspect-ratio objects and (or) in 
the high-frequency range. Similar, but less restricting, rules are used to specify the numerical 
limitations of Jones' technique. Besides, a few theoretical considerations clarify the role played 
by the additional null-field equations in the elimination of the irregular frequencies and help in 
performing accurate high-frequency computations for surfaces such as the circular cone and 
the finite circular cylinder. 

PACS numbers: 43.20. Rz, 43.20.Tb 

INTRODUCTION 

The numerical determination of the farfield and/or 

nearfield pressure in the fluid surrounding an active or pas- 
sive transducer is one of the major problems in acoustics. It 
can be solved entirely through the finite-element method 
(see, e.g., Refs. 1-4). However, if this method is particularly 
well suited to model the transducer, the structure of which is 
often complex and composite, the solution of the whole cou- 
pled fluid-structure problem, when the overall dimensions of 
the transducer are large compared with the wavelength of 
the radiated or scattered waves, involves linear equations 
systems of large size, the solution of which necessitates the 
use of powerful computers. The size of these systems can be 
considerably reduced if the radiation condition is exactly 
accounted for on the surface of the device through, e.g., an 
integral equation. This implies the coupling between the fin- 
ite-element method and an integral equation formulation. 

Here, we describe the development of a computer pro- 
gram, solving the three-dimensional Helmholtz equation as- 
sociated with a prescribed Neumann boundary condition on 
the radiating or scattering surface & through a combined 
integral formulation and null-field method. This program 
and, consequently, the numerical results presented here, are 
presently limited to the solution of axially symmetrical prob- 
lems. One of its important features is that S, as well as the 
known and unknown functions on S (namely the normal 
component of the surface velocity and the pressure), are ap- 
proximated by second-order polynomials, identical to those 
used in the finite-element code ATILA. 4-6 

The solution of the 3D Helmholtz equation, 

Ap(r) + k:p(r) =0, (1) 

for the pressurep(r) in the infinite domain I/e exterior to S 
with prescribed boundary conditions on S, is a well-known 
problem in acoustics and can be performed mainly through 
the use of three methods (not mentioning the finite-element 
method ): (i) series expansion ofp (r) in functions solution 
of (1) and satisfying the radiation condition, (ii) null-field 
(or extended boundary condition) method, leading to the T- 
matrix method for a scattering problem, and (iii) integral 
equation formulation. The first method is standard when Sis 
a coordinate surface of one of the eleven coordinate systems 
in which ( 1 ) is separable7; if not, it is still theoretically justi- 
fied, 8 independently of the validity of the Rayleigh hypothe- 
sis, though it has been very seldomly used. ø The null-field 
approach•ø allows the determination of the surface pressure 
(Neumann conditions) or of the surface normal velocity 
(Dirichlet conditions). It is widely used in acoustics in the 
T-matrix formulation to compute the directivity patterns in 
scattering problems (see, e.g., Refs. 10-14); however, in its 
usual form, i.e., when spherical wavefunctions [solutions of 
(1) in the spherical coordinate systems] are used, it is 
known to be moderately accurate for high aspect-ratio sur- 
faces. •4-•6 The integral equation formulation offers two pos- 
sibilities, depending on the particular integral representation 
chosen forp (r) (see, e.g., Reft 17): Either the corresponding 
integral equation is uniquely solvable on & or it possesses 
indeterminate solutions for discrete frequencies, sometimes 
called irregular frequencies. We do not consider integral rep- 
resentations leading to an integral equation that may have no 
solution for these frequencies, such as the simple layer repre- 
sentation. For a Neumann boundary problem, the solution 
of an integral equation of the first type 18-2• is not straightfor- 
ward since it involves (i) highly singular kernels and (ii) the 
determination of an unknown surface distribution which, 
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unlike the pressure, is not necessarily continuous on $. The 
numerical implementation of an inte$ral equation of the sec- 
ond type is easier (see, e.g., Ref. 22). However, since the 
number of irregular frequencies increases rapidly with fre- 
quency 23 and the numerical solution of the integral equation 
generates necessarily an indeterminate error, depending on 
the precision of the computer and the nature of the computa- 
tion algorithms, 24 it is generally necessary--for medium or 
high frequency problems--to eliminate these indetermina- 
ticns. For Neumann boundary conditions, this has been 
achieved by requiringp(r) to verify one or several add(tional 
equations ensuring the unicity of solutions. A good example 
of this is given by Schenck. 22 He chooses the following inte- 
gral representation for p (r): 

p(r) = •sP(r' )3n' g(r,r' )dr' 
- fs3n'p(r')g(r,r')dr ', reV,, (2) 

the time dependence of the pressure being e - lot. Here, r, r' 
are arbitrary points, the origin 0 of the coordinate system 
being chosen anywhere in the interior region V,., provided it 
does not belong to S (see Fig. 1 ); n' is the unit normal to S at 
point r', pointing towards Vt' g(r,r' ) = eik I r - r,i/4rr I r - r' I 
is the free space Green's function (k = to/c). Here, On' de- 
notes normal differentiation at the point r' in the direction 
from Vi towards S and 

On'p(r') = itopo(r'), (3) 

where o (r') is the normal component of the velocity at point 
r' and p is the fluid density modulus. For a radiation prob- 
lem, o(r') isiknown on S; for a scattering problem, the inci- 
dent pressure must be added to the right-hand side of (2) 
and, in the case of a perfectly rigid object, On' p(r') = 0 is 
put in place of ( 3 ), p being the total (incident plus scattered) 
pressure. If r belongs to S, then we obtain the corresponding 
"exterior Helmholtz integral equation": 

y(r)p(r) = fsP(r')On' g(r,r')dr' 
- fsOn'p(r')g(r,r')dr ', r•, (4) 

where y (r) is a surface-dependent coefficient equal to « when 
r is a regular point on S. Ifr belongs to V,., then the right- 
hand side of (2) is zero, so that 

fsP(r')On'g(r'r')dr' = fsOn'p(r')g(r'r')dr" r•V,. (5) 

V o 

FIG. 1. Geometry and nomenclature. A fluid of density p and speed of 
sound c fills the exterior region V e. 

Whenf is an irregular frequency, i.e., when k = 2rrf/c is an 
eigenvalue of the associated interior Dirichlet problem 

Ar/(r) +k2r/(r) =0, reV,., 

r/(r) = 0, reS, (6) 

then the indeterminate solutions of (4) are of the form 
[p(r) + u(r) ], where u(r) is defined on Si•y 

y(r)u(r) = fs u(r')On'g(r,r')dr', reS, (7) 
and is related to the eigenfunction r/(r) by 

•7(r)=fsU(r')On'g(r,r')dr', reV.. (8) 
Schenck has shown that if every solution of (4) also satisfies 
(5) for at least one point r in V,., then all the irregular fre- 
quencies are suppressed, provided that r is not situated on a 
nodal surface of the corresponding eigenfunction r/(r). 
However, from a formal point of view, this method presents 
serious drawbacks since (i) the nodal surfaces are not usual- 
ly known apriori, (ii) their density increases with frequency, 
and (iii) no rules have been given on how many points 
should be chosen in Vi and where they should be located. It 
seems that these points are distributed at random inside V• 
so that it is unlikely they all fall on nodal surfaces. For low or 
moderately high frequencies, this technique is success- 
ful.22,25. 26 

Here, we implement numerically another method-- 
though based on the same principles--whose author is D. S. 
Jones. 27 Jones has established the following result, which we 
shall afterwards call R 1: Ifp ( r ) simultaneously satisfies (4) 
and the set of M 2 null-field equations, 

fsP(r)On •",, (r)dr = fs 0n p(r)•, (r)dr, 
0<re<M- l, [hi<m, (9) 

then the irregular frequencies such that k•<ks• are sup- 
pressed, where the eigenvalues of (6) are ordered so that 
kl•<k2•.'.<k•t<.... This condition is sufficient but not 
necessary. In (9), 

q•m (r) --: hm (kr) Ym (O, tp) (10) 

is an outgoing spherical wave, solution of ( 1 ) and satisfying 
the radiation condition [ r is expressed in spherical coordi- 
nates (r, O, qp) ]; h•, (kr) is the spherical Hankel function of 
order rn, behaving like e•k'/r at infinity, 

hrn (kr) =j,• (kr) + iy,• (kr), ( 11 ) 

where j,• (kr) and y•, (kr) are, respectively, the spherical 
Bessel and Neumann functions of order m. Y•, (0,•v) is a 
spherical harmonic (the asterisk denotes the complex conju- 
gate). For an axially symmetrical problem, n = 0 and 
Y• (0) i s the Legendre polynomial of order m, P,, (cos 0). 
From a formal point of view, the advantage of such a 
theorem, compared, e.g., to Schenck's method [note that, 
when M = 1, (9) is equivalent to ( 5 ) with r = 0 ] is obvious, 
especially when associated with the following result2*'2s: Ifa 
is the radius of a sphere lying entirely within S, and A the 
radius of a sphere totally enclosing & then 
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K,/A<k,<K,/a, 

where K, is the nth eigenvalue of (6) for a sphere of unit 
radius. More accurate bounds are obtained when other sur- 

faces are used, approximating S more closely and leaving the 
calculation of the associated K, simple. Of course, still better 
values are obtained for K,, if a computer program solving 
(6) and based, e.g., on the finite-element method, is at hand. 
In fact, in his article, Jones presents two methods in order to 
suppress the irregular frequencies. We have retained the sec- 
ond one ("an alternative approach"), mainly because the 
first method introduces coefficients that are not specified, 
apart from the fact that they must be real and nonzero (note 
that these coefficients can be chosen so that they are equal to 
the T-matrix coefficients when the surface pressure is ex- 
panded in series of spherical waves.2ø'3ø) Moreover, the inte- 
gral representation used in the first method involves the de- 
termination of a not necessarily continuous function on & 
which may induce some complications in the numerical so- 
lution of the corresponding integral equation. 

The organization of this article is as follows: Since the 
additional equations we use are the null-field equations, we 
have first implemented (Sec. I) a computer program based 
on the null-field method only. If the approach implemented 
for this purpose is not new, • on the other hand, we give 
simple rules specifying its numerical efficiency, and depend- 
ing on the frequency, the number of significant digits used in 
the computations and on the aspect ratio of S. Numerical 
examples are given. In Sec. II, we describe the method and 
computation algorithms implemented for the solution of the 
integral equation (4) as well as for the solution of the com- 
bined integral and null-field equations. Here again, simple 
rules, similar to those defined in the previous section, are 
given that specify the numerical limitations of this tech- 
nique. Besides, a few theoretical considerations enable us to 
understand more clearly the role played by the null-field 
equations in the elimination of the irregular frequencies. Sec- 
tion III is devoted to numerical examples illustrating the 
previous considerations and displaying the efficiency of this 
combined method, in particular in the high-frequency range. 

I. NULL-FIELD METHOD 

Let us first review. The null-field equations (9) can be 
obtained either directly from the application in V, of the 
second Green's identity to functions q• (r) and p(r), or 
from (5): If r is some point situated inside a sphere S i of 
radius R i and lying entirely within S, then 

g(r,r')=ik • • q•(r')•,•(r), r'e.S, 
m =o {nl<m 

(12) 

Here •, (r) is the regular spherical wave solution of ( 1 ), 

q•2, (r) =Jm ( kr) Y ,• ( O,q•). (13) 

Applying (12) into (5), we have, since the Y•m are orthogo- 
nal, 

Jm ( kr) ;sP(r')c)n' ad•, (r')dr' 
=j.. (kr) •sOn'p(r')ad.• (r')dr' (14) 

for all n,rn. Finally, if r is chosen so that kr is not a zero of 
j,• (x), then we obtain (9) with M = o•. This derivation em- 
phasizes the fact that (5) is nontrivial only if r does not 
belong to nodal surfaces--which appear here through the 
Jm (kr) [see (14) ]. The infinite set (M = o• ) of null-field 
equations possesses the important property to be uniquely 
solvable: Ifp(r) andp' (r) are solutions of (9) with M = 
then 

r) -if(r)]On q•, (r)dr = 0, 
0<m< ca, Inl<m, 

and the completeness of the infinite set of functions 
{On •,} on S 32 ensures that p(r) =if(r) almost every- 
where on S. The numerical solution of the finite set of simul- 

taneous equations (9) allows the computation of the surface 
pressure, the accuracy of which increases with M (we shall 
discuss this point later on). The pressure values in Ve can 
then be obtained from (2) and, in particular, the directivity 
pattern fo (0,q•), 

p(r) • 

is given by 

(d•r/r)fo(O,q•) + O(r-2), 

fo( O,q ) = 4rr p(r') r_•__ exp - ik dr' 

l fs,9n'p(r')exp(-ikr';')dr'. 4rr 
(15) 

However, this method presents a severe drawback, directly 
related to the use of the spherical wavefunctions •, (r): 
Like the T-matrix method, its numerical efficiency is limited 
to low or medium aspect-ratio surfaces, i.e., to surfaces the 
shape of which differ moderately from the inscribed sphere 
in S. To overcome this difficulty, it would be advisable to use 
the wavefunction solution of ( 1 ) in a coordinate system bet- 
ter suited to the shape ors 33; but the numerical computation 
of such functions does not seem to be a simple task, especial- 
ly when a good numerical accuracy and the use of high-order 
functions are necessary. 

To implement numerically the null-field equations in 
the case of an axially symmetrical problem, the surface pres- 
sure is approximated byfi(r), 

N--I 

.•(r) = • a.•.(r), r•S, (16) 
n=O 

where the {q•, } constitutes a complete set of functions on S. 
The set of coefficients a• is then a solution to the (possibly) 
overdetermined (M>•N) linear system 
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La = f, (17a) 

with 

L,,,- I fs3nq•,,(r)q•,(r)dr, (17b) 2•r 

O<m•<M-- 1, O•<n•N--1, 

1 fs 02,, (r)3n p(r)dr, (17c) f'" -- 2• 

where q•r. (r) stands from now on for •o.. (r). The choice of 
the q. determines the numerical efficiency of the method. 
For example, in the T-matrix method, they are generally 
chosen to be equal to •o.. However, these functions fail to 
constitute a complete set on S when k is an eigenvalue of the 
interior Dirichlet problem? Besides, if a large number of 
terms are needed in (16) to represent accurately œ(r), the 
number N of terms that can be computed is limited by the 
smallest number defined on the computer and is strongly kr 
dependent, sincej• (kr) is a rapidly decreasing function of n 
for large n; 

1 f•-•[kre• • 1 
j.(kr).• 2n+l'• 2•,2n+1]' kr•<n+-• -' 

Similarly, if we take q•. = •., which do constitute a com- 
plete set on S, 32 then N is limited by the greatest available 
number, since 

x/• (2n + 1• n+' 1 yn ( kr) 2n+ I \-•-•--r ] ' kr•< n + • - ' 
(18) 

Other choices can be made for q•.•3.3• For our part, we 
found it convenient to take •v• (r) = cos nO, 3• the angle 0 
being defined in Fig. 2. 

Having in mind the coupling between the combined in- 
tegral equation-null-field method presented here, and the 
finite-element code ATILA, the representation of the axisym- 
metrical surface S and of the normal velocity component 
v(r) are those used in ATILA. 4-6 The generating line of S is 
discretized by a finite set of three-node elements (see Fig. 2 ): 
The Cartesian coordinates (x,O,z) of a point r situated on 

FIG. 2. Definition of the geometry and typical discretization of the generat- 
ing line of an axisymmetrical body using three-node isoparametric ele- 
ments. 

one of these elements are given in terms of the nodal coordi- 
nates (x•,O,z.) by 

3 3 

x(•) = • N•(•)x•, z(•)= • N•(•)%, (19) 

where • is the local coordinate, a is the local node number 
(a = 1, 2, or 3), and N• (•') are the three-node element in- 
terpolation functions 

(20) 
N3(g) 1), - 

Similarly, v(r) is approximated on elementj by 
3 

v•(r) = • N•(•)v•, (21) 

where v•, is the value ofv at node a on elementj. From Eqs. 
(3) and (17c), we obtain 

= ia,p 
j=l•=l --1 

(22) 

[on element j, dr = 2•rw• (•)d•; J is the total number of ele- 
ments]. Here, we have taken N= M, our computations 
showing that M> N gives no better results. The linear sys- 
tem (17a) is then inverted using standard techniques. 

Used as it stands, the null-field method gives erroneous 
results for small frequencies and/or large M, owing to the 
undesirable numerical behavior of •,. (r) for the corre- 
sponding values of kr and/or rn: If 10 • is the greatest number 
accepted by the computer, then M cannot be larger than • 
defined by [see Eqs. (17b), (10), and ( 11 ) ] 

sup logly• (kr) I < A. (23) 
r•S 

It is, therefore, necessary to use a "renormalization" proce- 
dure, such as the one defined in Ref. 31, in order to remove 
the large term (2rn + 1) '•+• iny.• (kr) and to minimize 
the variations of r- ( "• * • along S [see (18) ]. Thus for 
rn)•, we have replaced h.• (kr) by •,. (kr): 

•,• (kr) = if,• (kr), 

x/• (2m+ 1) y,• (kr) -- 2m +• ( •r •,• (kr), (24) 
where rm•. •Y•r .... rmi n and rm• • being the minimum and 
maximum values of r, r e S. Unlike the authors of Ref. 31, we 
did not use an asymptotic expression of y,. (x) to evaluate 
•,• (x), for a good numerical accuracy is necessary when 
dealing with the null-field method. For kr > 0.1 the f.• are 
computed through ascending recursion: 

.•o(kr) = - cos(kr) (7/r)x/•, 

_ e 2 [coskr(•)•+_•_sinkr], y•(kr) 
y.•+,(kr) e(2rn+31-)"•+l? = '-•.• (kr) 

\2m + r 

__ (ekT) 2 ( 2m -- 1 ¾• 
(2rn-- l ) ( 2rn + 3 ) \ 2rn + 3 ] 

Xy,•_ • (kr), 
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while, for kr<O. 1, 

x• I (2rn - 1 )" 

(kr)2/2 ½ ...), X(1 1!(1 -2m) 
so that the •,, are computed with the same accuracy as the 
y,•. Substituting (24) in (17a)-(17c), and dividing, for 
m>_•, (17a) by [ix/•/(2m q- 1)] [(2m q- 1)/ek7] m+ •, 
we have 

•a =7, (25) 
with 

Z..=œm., rn<, 

Z,•.-- ' fs{[•r r 2m+1(2•-•+•') "+' - 2rr ).• (kr) ek? + 

X),.+ • (kr)]Sn(kr) 
XP.• (cos 0) +)., (kr)o•n Pr. (COS 0)}½. (0)dr, 

rn •>_•, (26) 

f.•=-•-• drOnp(r)P.,(cosO)y.•(kr), rn>•. 
Since, from (24) and (18), 

lYm(kr)l • (??r) r"+', kr<krr. ax •<m +«, 

and the smallest and greatest numbers accepted by the com- 
puter are 10-A and 10 •, the greatest value M can achieve 
must verify 

( M + 1 )1og(7/rm• x ) Z -- ,4, ( M + 1 )1og(7/rmm ) •A. 

If? is chosen so that these inequalities are optimized for M, 

then 7 = rm• and 
2`4 

M+ 1• < (27) 
log (rm• •/rmi • ) ' 

However, even if M satisfies (27), numerical computations 
show that the improved null-field method described above 
still fails in some cases to give the correct surface pressure, 
especially for high-aspect-ratio objects, i.e., when rm. x/r.•. 
is large. Careful investigations have shown that this failure is 
due to a loss of numerical accuracy in the computations of 
Lm. and f.•. In fact, from (17b), (17c), (10), and ( 11 ), it 
is easy to see that the variations of y., (kr), which determine 
the behavior of h.• (kr) for large m, must not be too impor- 
tant on $. More precisely, if P is the number of significant 
digits taken into account in the numerical computation, M 
must verify, for M sufficiently large, 

loglyst (krm•.)/y• (krm.•)l • P. (28) 

Using (18), we then obtain the simple inequality 

(M+ 1)1ogE•<P, E=r.•/rmi., 

krm• • •<M + «. (29) 

Ifkr•..• is not smaller than (M + «), then another asympto- 
tic expression must be used forym (kr) in place of (18). We 
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have thoroughly verified, through numerous computations 
made on various surfaces, that (29) [or (28) ] indeed gives a 
reliable largest value for M. Comparing (27) and (29), we 
see that, since P <`4, (29) is the dominant inequality. 

In order to evaluate the ability of the null-field method 
to compute p(S) and, hence, to solve the Helmholtz equa- 
tion, we must further try to estimate the values of M and N, 
the number of null-field equations and of Fourier coeffi- 
cients to be taken into account in order to compute p (S) with 
good accuracy. This is indeed a difficult task and, to our 
knowledge, no answer to this problem has been given till 
now. Intuitively, we expect iV and M to be increasing func- 
tions of k, as corroborated by the numerical computations. 
In fact, we show in the following discussion, from simple 
arguments, that M must be greater than kr in order to com- 
putep(r) with some accuracy at point r on $. If•(r) is the 
approximate solution of (9) and p(r) the exact solution 
(M = oo ), then 

s •(r)•n •t-• (r)dr = 0, (30) 
where e (r) --- p (r) -- • (r) is the absolute error on S. Now, if 
M is sufficiently large so that (18) is valid, then 

8n •st- • (r) Pst- • (cos 0) 
st• 2(2M+ 1) 

ž(2M+ 1.) st+• \' •r 3n(kr), (31) 
and the maximum value of 09n •t_ • (r) is reached for 
r-- rr.•. or in the immediate vicinity of r.•. (the Legendre 
polynomial must not be zero for the corresponding value of 
the angle O). Hence, on the part A of S defined by r 
6[t'mi n --6, main +•], 6>0, o•nq•_•(r) reaches very 
large values. This implies that, for r•A, e(r) must be very 
small in order that (30) is verified. Moreover, (31) shows 
that for large M, the size of A is an increasing function of M 
and a decreasing function of k: This means (i) that the part 
of the surface Son whichp(r) is accurately computed starts 
at r = rm• . and enlarges with increasing M, and (ii) the value 
of M from which A occurs increases with frequency (see 
Appendix A). To be more precise, it is necessary for kr to be 
smaller than the first zero of y,, (kr) in order for (31 ) to be 
verified, i.e., kr < M: If convergence is wished on the whole 
surface, then 

kr•..x <M. (32) 

Of course, this is not a mathematical proof, and the inequali- 
ty (32) is certainly a rough estimate of the minimum value to 
be given to M in order that convergence is achieved forp (S). 
But the crude arguments given above explain very satisfacto- 
rily the overall behavior of the null-field method displayed 
by the numerical experiments, as we shall see later on. The 
fact that, for sufficiently large M, the surface pressure is ac- 
curately computed in a zone near the origin has already been 
noted, TM and suggests thatp(S) may be calculated by parts, 
the origin being moved for each calculation. 

Summing up these results, the simple inequalities 

krmax<M•<M,=P/logE -1, krm,•<M+« (33) 
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may help to define the range of application of the null-field 
method described in this work: If the inequality 
krmax •< M + • is not verified, then the right-hand side in- 
equality of (33) must be replaced by (28). Equation (33) t20 
shows clearly that this method is less numerically efficient in 
the high-frequency range and/or for high aspect-ratio ob- u0 
jects. Of course, the origin must be chosen in order to mini- 
mize E. 

Before presenting some numerical results, here we brief- 
0.90 

ly expose a few theoretical considerations that may help to 
give a better understanding of the null-field method. Since 0.80 

the {c•n q•,,) constitutes a linearly independent and com- 
plete set on S, TM there exists a set of uniquely defined func- 0.70 
tions {•e), orthogonal to the set (t?n q•,• ) and also linearly 
independent and complete on $. If2( e (r) is approximated by 

•e(r) = • a,e•v,(r), r•_S, (34) 
n=O 

where •e is so defined as to verify 

s•e (r)On q% (r)dr = •Sme, (35) 
then, with M = N, 

ct = L-•. (36) 

Moreover, it is easy to show, using (35), that the series ex- 
pansion on the set {•p) of•(r), defined by (16) and verify- 
ing (9), is 

,•(r) = • f•e(r), (37) 

andf• has been defined by (17c). Hence, the null-field meth- 
od can be considered as a technique allowing the (approxi- 
mate) computation of the set {;re } [ see (34) and ( 36 ) ]. We 
see at once that if the q, differ from the generally unknown 
1%, then L is not diagonal and the coefficients a are M depen- 
dent (M-- N here). Thus the error in the computation of 
p (S) comes from the fact that (i) the series in (34) and ( 37 ) 
are truncated, and (ii) the a•e are only approximately deter- 
mined. Since both Xe and •e_.satisfy (35) for p = 0 ..... 
M-- 1, then %(r) =)&(r) --t'e(r), r•S, verify (30), and 
the arguments used to evaluatep (S) - fi (S) show that, for a 
sufficiently large M, 6 e (r) will be all the smaller as r is near •.0 
the origin. 

Now we present numerical calculations performed in 
order to check the method presented here as well as to illus- 0.a 
trate and verify the various assertions mentioned previously. 
All the computations were performed in double precision on 
an IBM 4341 model 2, so that A = 76 and P = 17. We used 
the point source check throughout22'26: Point source of uni- 
tary amplitude is situated at the origin of the coordinate sys- 
tem; the value oj•, of v [ see (21 ) ] is computed exactly at node 0.s 
rz on element j, and the {o• } are fed as data in the computer. 
The calculated fi(S) is then compared to the exact pressure 

0.2 

p(r) = e•7r, r•_S. The computations were performed on 
two circular cylinders of radius a and height 2b (Figs. 3-5) 
and on a cone of height h = 3 with a circular cross section of 
radius a = 1.5 (Fig. 6). When the problem admits a symme- 
try plane normal to the revolution axis 0z, then the only 
nontrivial null-field equations are those for which m is even, 

X 

61 121 • b.• 
z T T 

i 

FIG. 3. The modulus of the surface pressure [p(r) 1 as a function of the 
position of the surface point r indicated by its node number for a surface 
normal velocity distribution corresponding to a point source located at the 
center of symmetry. The nodes numbering is given on the surface sketch. Z 
is the revolution axis. Cylinder: a = 1, b = 1; k = 1. -- exact Ip(r)l = l/r, 

-t•'computed I•(r)l with M= 119; --X-- I•(r)l with M= 149; 
I•(r)l with M= 159. 

and the Fourier coefficients with odd indexes are zero. In 

each figure, the variations of ]p(r)] = r -• and Ifl(r)] are 
represented--this last quantity being computed for different 
values of M--with r located on S; the position of r is identi- 
fied by the number of the corresponding node (the number- 
ing of nodes is given in each figure); the location of the point 
source is indicated by the star and coincides with the origin 
of the coordinate system. The number of nodes has been 
taken large enough to ensure a good representation of the 
exact •(r) and, hence, to minimize the error in the computa- 
tion of the right-hand side of (9). The values of the param- 
eters relevant to each case are given in Table I. For the low 
aspect ratio a = 1, b = I cylinder, convergence is achieved 
for M• > 40 and the best results are obtained for M= 119 

X 

F 'I .... I'/ 

20 l.O eO 80 10• 12•0 14'0 

FIG. 4. Same as Fig. 3. Cylinder: a = 1, b = 6; k = 1. -- Ip(r)l = l/c-O' 
i(r) I with M = 7;{• I<r) I with M = 13;- -- -- leer) I with M = 19; - - - 

with M = 25. 
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x 

FIG. 5. Same as Fig. 3. Cylinder: a = l, b = 6; k = 1. The point source and 
the origin of the coordinate system are located at a distance of I from one of 
the circular faces.- Ip(r)l = l/,;, ---I•(r)l with M= 16;--- 
with M= 18;-E•-I•(r) [ with M= 20. 

•.o • h 

1.5 

0.5 

O. 
20 40 õ0 80 100 120 140 

FIG. 6. Same as Fig. 3. Cone: a = 1.5, h = 3; k = 5. The point source and, 
hence, the origin of the coordinate system are located at a distance of 0.9271 
from the circular basis, so that the aspect ratio rma•/r,•, is minimized. -- 
Ip(r)l = l/r,--- I•(r)l with M= 12;---Jb(r)J with M= 50;•9-l•(r)l 
with M = 61. 

(note that the renormalization procedure has been used), 
whereas accuracy lowers with increasing M, M• > 119, ac- 
cording to (29), and especially in the zone where r•rma x 
(node 61; see Fig. 3). This loss of accuracy occurs in each 
case (Figs. 3-6) and, when double precision is used, ex- 
cludes numerical convergence for the a = 1, b = 6 cylinder 
and the cone studied here. Figures 4-6 show that, for a suffi- 
ciently large M verifying M >• krm•,, zone A starts at r = rm• , 
[ there are two equivalent minima for the cone (nodes 55 and 
137) and the cylinder of Fig. 5 (nodes 1 and 21)] and 
spreads with increasing M (see above discussion and Appen- 
dix A), provided that M 5 Mp. Note that (32) is a necessary 
but not sufficient convergence condition. Figure 5 verifies 
the fact thatp(S) can be computed in part with a change of 
the coordinate origin. In each case, the overall behaviors of 
Reft(S) and Im •(S) are quite similar to the one of [,•(S)[, 
except, of course, for the frequency-dependent oscillations• 
The total computing times--independent of the number of 
nodes--vary from 20 s (Fig. 4, M = 19, mirror symmetry is 
taken into account) to 310 s (Fig. 3, M---- 119), and are 
roughly proportional to M 2 (remember that N = M) for a 
given problem. 

II. COMBINED INTEGRAL EQUATION AND NULL-FIELD 
METHOD 

First, we describe the implementation of the numerical 
solution of Eq. (4). We use the same approximations for S 
and u(S) as those defined in Sec. I [see (19) and (21) ], and 
p(r) is approximated on elementj by 

3 

pj(r) = • N•(•P)pj,,, (38) 

wherepj• is the unknown value ofp at node a on elementj. 
Applying (21) and (38) into Eq. (4) and allowing r to take 
the (2J + 1 ) nodal value rj,•, we obtain, for 1 <j<J, 1 

-- kop v,i• 
I=IB=I --I 

XNo (;)w t (;)BJ• 
with 

TABLE I. Parameter values relevant to the examples presented on the corresponding figures. 

Location of the point source E krm•.kr•,a• Mn • 

Figure 3 Center of symmetry x/• I xJ• 112 47 
Figure 4 Center of symmetry 6.08 1 6.08 21 47 

Figure 5 • b from the center of symmetry 11.05 I 11.05 16 47 

Figure 6 h/3.236 from the basis 2.24 4.64 10.36 48 72 
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1 • •ikd(•,qa) 

d(•,q•)' 

_ d•(c.• (i k 1 ), h(•,•) d2(•,• ) d(•,•) 
= I% - 

where r'(•,•) is situated on element l (• is the azimuthal 
angle). Thus Eq. (4) is converted into a 
[ (• + 1 ) X (• + 1 ) ] linear system 

Hp = Dr, (39) 

the solution p of which is obtained through standard inver- 
sion techniques. Here 7(r) is given by •s 

1 fs 1 dr', 
and the integrals are calculated through a Gauss-Legendre 
quadrature rule, special care being taken for the evaluation 
of the self-integrals l = j (see Appendix B). To our surprise, 
and although we worked on our own, the technique present- 
ed here in order to solve Eq. (4) was published recently •6 
under exactly the same form, except for some very minor 
details concerning the calculation of self-integrals. 

In order to implement Jones' method, the null-field and 
integral equation programs must be coupled. Concerning 
the representation of p(S) in the null-field equations, nu- 
merical computations show that the Fourier series (16) is 
much more appropriate than the finite-element interpola- 
tion (38). Thus it is necessary to express the a• in terms of 
the p½•. Since 

2-A•o • a• - • p(r( O) )cos n8 dO, 

we have, from (38), 

a = $p, 

where S is a IN X (•+ 1 ) ] matrix. Here, Nmust be suffi- 
ciently large to ensure a good representation ofp (S) through 
(16). From (25) and (39), we obtain the following, overde- 
retained [ (M + • + 1 ) X (• + 1 ) ], linear system: 

rately computed and inequalities (27) and (29) [or (28)] 
still hold, whereas (32) is no longer necessary, so that M is 
limited here by 

MSM•. =P/logE- 1, krmax•M+ «. (41) 

In the high-frequency range, the number of irregular fre- 
quencies can be so large that (41) and Jones' criterion can- 
not be simultaneously verified. Jones has emphasized 27 that 
his condition is sufficient but not necessary, the reason being 
that the nodal surfaces of the M th eigenfunction of (6) di- 
vide Vi into at the most Msubdomains, 37 so that the number 
of such subdomains can be significantly lower than the order 
M of the highest irregular frequency situated in the frequen- 
cy range of interest. Following Jones' proof, this means that 
the number of efficient null-field equations can be much low- 
er tha n M. Moreover, we prove in Appendix C the following 
result (which we shall call afterwards R2) based on a proof 
of R1 that we think to be more appropriate to his "alterna- 
tive method" than the one given in Ref. 27 or 38. If, for the 
M th irregular frequency,p ($) satisfies (4) and (9), then the 
nodal surfaces of the corresponding eigenfunction, defined 
by (8) and verifying (6), consist, in the vicinity of the origin 
chosen for the coordinate system, of a finite number of 
smooth surfaces, tangent to the cones C, loci of the points 
r = (r,O,O) such as Yu(O) = 0; the corresponding state- 
ment for nonaxially symmetrical problems is given in Ap- 
pendix C. This implies that all those eigenfunctions that do 
not possess this property are necessarily zero and the corre- 
sponding irregular frequencies are thus eliminated. By way 
of illustration, let us consider a sphere S of radius unity: For 
the third irregular frequencyf•, the eigenfunction of (6) has 
three nodal surfaces, S and the cones C 1 and C 2, loci of the 
points (r,O,O) so that Y2(0) = 0. If R1 is applied, then (9) 
with M = 3 eliminatesf•, wherever the origin 0 of the coordi- 
nate system is located. Now, following R2, if0 does not coin- 
cide with the center of S but belongs to C• or C2, then (9) 
with M = 2 is sufficient, whereas, if 0 is not situated on a 
nodal surface, then (9) with M = 1 [ or, equivalently, (5) 
with r = 0] eliminatesf•. Numerical examples presented in 
Sec. III will verify and further illustrate R2, in particular in 
the high-frequency range. But, unfortunately, and as far as 
we are concerned, we do not know to what extent R2 might 

2J+ I 2J+ 1 

j=l j=] 

2J+ 1 

j--I 

with 

N--1 

' • Lm.S.i. 

contradict the general properties of eigenfunctions for a sur- 
face S of arbitrary shape, so that we are currently unable-- 
except for simple surfaces such as the sphere or the finite 
cylinder--to determine (i) the optimal position of the origin 
and (ii) the exact number of null-field equations to be used. 

III. NUMERICAL EXAMPLES 

The program is written in simple precision arithmetic 
Finally, a straightforward least-square method leads to the 
[ (2J + 1 ) X (2./+ 1 ) ] linear system 

Cp = Ev, (40) 

which is invertible provided that M is large enough. Thus a 
matrix impedance Z = C- •E is obtained that can be used as 
an exact radiation condition for the finite-element code 

ATILA. 

As for the null-field method, •,,, and •m must be accu- 

for the integral equation part (computation of H and O), 
whereas the null-field terms ( L' and f) are computed in dou- 
ble precision arithmetic in order to have sufficiently large 
M e [ see (41 ) ]. In most of the numerical examples presented 
here, the surface velocity distribution is the one of a one- 
point source (O.P.S.) of strength + 1 placed at the origin 
or, in one occasion, of two point sources (T.P.S) of strengths 
+ 1 and -- 1 equidistant from the origin and situated on the 
revolution axis 0z. 22 In each case, due account is taken in the 
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numerical solution of the problem of a possible symmetry or 
antisymmetry with respect to the (xOy) plane normal to Oz. 
It is important to note that, in this case, the only irregular 
frequencies are those for which the corresponding eigen- 
functions are symmetrical or antisymmetrical with respect 
to (x0y), i.e., are solutions of (6) in that part V$ of Vi where 
z>•0, with a9n •/(r)= 0, r•(x0y) (symmetrical case), or 
r/(r) = 0, re(xOy) (antisymmetrical case). Since the condi- 
tions satisfied by •/on the boundary of V• are homogeneous, 
the theorem of Ref. 37 is still applicable and, from the argu- 
ments displayed in Appendix C and applied here to the vol- 
ume V;, R1 can thus be stated: All the irregular frequencies 
so that k<k• are suppressed if p(r) satisfies (9) with 
M---- 2NE- 1 (symmetrical case) or M = 2NE (antisym- 
metrical case), i.e., ifp(r) satisfies NE nontrivial null-field 

equations. Similar conclusions are obtained when the prob- 
lem presents other symmetries (antisymmetries) than the 
mirror symmetry (antisymmetry) considered here. 

We have reported in Table II the results of an O.P.S. 
check performed with no additional equation [ system (39) 
is solved] on the following surfaces: sphere of radius 2, ob- 
late spheroid ofsemiminor axis 1 and semimajor axis 3, cir- 
cular cylinder of radius 1 and height 10, and cone of height 3 
with a circular basis of radius 1.5. Here, ß is defined by 

ß = SU•l•(r) + •(r) in%, (42a) 
ß ,(r) = Reft(r) -- Repe(r) (42b) 

sup Reft(r) 

ß • (r) = Im pC(r) -- Im if(r) (42c) 
sup ImpO(r) 

where p• and p• are, respectively, the exact (O.P.S.:e•/r) 
and computed pressures. For these low frequencies, situated 
well below the first irregular frequency, very good accuracy 
is obtained with short computing times (less than 13 s). We 
have represented in Figs. 7 and 8 the variations of ß vs k for 
the a = l, b = 6 cylinder ( E = 6.08 ) and the a = l.5, h = 3 
cone (E = 2.24) with an O.P.S. located as indicated in Table 
I. For the cylinder, the eigenvalues of (6) can be calculated 
analytically and, following R1, we have taken exactly NE 
nontrivial null-field equations for k•/•_•<k < kse, 
NE= 1 ..... 7. For thecone, we have taken M = 10through- 
out the studied frequency range: The values of the irregular 
frequencies have been computed from ATILA and agree very 
well with those obtained from the solution of (39). In this 
case, we see that accuracy is not lowered when more addi- 

TABLE II. Maximum value of the relative error modulus for various sur- 

faces and O.P.S. check: The source is located at the center of symmetry, 
except for the cone where it is situated at half-height. Here, J is the total 
number of clements (taking no account of a possible mirror symmetry). 

Sph•r• Oblate spheroid Cylinder Cone 
k•l,J--16 k=l,J=16 k--I,J=24 k=l,J•20 

• (%) 0.5 I 0.9 0.9 

2.5 3.0 

FIG. 7. Maximum value in percent of the modulus of the relative error, 
(O.P.S.) as a function of the wavenumber k computed for the cylinder 
a = !, b -- 6 (see Fig. 4 for a description of the surface geometry and the 
location of the point source). Equidistant surface mesh obtained with a A/4 
criterion. -- • computed with no additional null-field equations (NE • 0}; 
- - - e computed with NE nontrivial null-field equations (see text}. 

FIG. 8. Same as Fig. 7. Cone a = 1.5, h = 3 (see Fig. 6). -- • with M = 0; 
--- e with M• 10. 
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tional equations are used than is sufficient, which constitutes 
an important point when the eigenvalues of (6) are not 
known a priori, and M is then deliberately overestimated. 
Here, and throughout the following examples, the size of a 
surface element is taken equal to )[/4 (/• is the wavelength; 
the same criterion is taken in AT•LA), SO that the number of 
nodes is proportional tofand, therefore, the computing time 
needed for the calculation of H and D [see (39) ] is roughly 
proportional tof 2. In the low-frequency range, it is obvious 
that this A/4 criterion cannot be valid, as we can verify in 
Figs. 7 and 8. The computing time needed to implement the 
null-field equations is roughly proportional to f.M.N. The 
variations of the exact and computed real and imaginary 
parts of the pressure on the cylinder and cone surfaces are 
represented in Figs. 9 and 10 for, respectively, the seventh 
irregular frequency (T.P.S.: antisymmetrical problem with 
respect to the x0y plane) and the fourth irregular frequency 
(O.P.S.), with, respectively, NE= 0, 7 (M= 0, 14) and 
M = 0, 4. The elimination of the irregular frequencies is 
clearly displayed. The maximum relative error in the modu- 

05 

-05 

-to 

-I..$ 

-2 

FIG. 9. Surface pressure as a function of the position of the surface point r 
indicated by its node number for a surface normal velocity corresponding to 
two point sources of strength + 1 and -- 1, the positions of which are indi- 
cated by the stars. Cylinder a = 1, b = 6 (see sketch for the surface geome- 
try and position of nodes), k = 4.384 (seventh irregular frequency). The 
point sources are located at 1.5 from the center of symmetry. Equidistant 
surface mesh obtained with a/[/4 criterion. (a) Real part ofp(r}. (b) 
Imaginary part ofp(r}. -- exact p(r); - - - computed p(r) with NE = O; 
--O- computed p(r) with NE = '7. 

2.0 

O.O 

-0 5 

h 

5 • • 20 25 •0 

O• 

-0.5 

-tO 

5 • 20 25 30 35 

FIG. 10. Same as Fig. 9. O.P.S. check, the source is located as in Fig. 6. 
Cone: a = 1.5, h = 3; k = 5.41 (fourth irregular frequency). -- Exactp(r); 
- - - computed p(r) with M = 0; -O- computed p(r) with M = 4. 

lus of the directivity patternfo (0) computed through (15) is 
3%0 for the cylinder (NE= 7) and 8%0 for the cone 
(M = 4), and the total computing time is, respectively, 260 
and 185 s. 

Now we present some numerical results obtained for a 
sphere of radius unity and relative to the result R2 (see Sec. 
ll). The surface velocity distribution is the one of an O.P.S. 
placed at the center of the sphere, and the problem is sym- 
metrical with respect to the x0y plane normal to Oz. In this 
case, the volume V• is, e.g., the hemisphere z>0. We give in 
Table III, for three irregular frequencies of number NE, the 
values (in percent) of the maximum relative error E [see 
(42a) ] computed for different values ofM. For each of these 
frequencies, the nodal surfaces of the corresponding eigen- 
functions are, in V;, SA {z>0} and I conical surfaces inter- 
secting at the origin, loci of the points so that Y:t (0) = O, 
1 <igl, 0<0<rr/2. We see that, except for the second irregu- 
lar frequency (NE = 2), condition R1 (M = 2NE -- 1 ) is 
not necessary, whereas condition R2 (M = 21+ 1 ) is suffi- 
cient and necessary, for the implementation of the (M + 1 )/ 
2 nontrivial null-field equations implies, in V•, (M+ 1)/ 
2 = I + 1 > I conical nodal surfaces for the corresponding 
eigenfunctions. If the point source and, consequently, the 
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TABLE III. Maximum relative error in percent for the pressure computed 
with (M + 1 )/2 nontrivial null-field equations on the surface of a sphere of 
radius unity (O.P.S check). Here, k is the wavenumber of the irregular 
frequency of number NE, and lis the number of the conical nodal surfaces 
of the corresponding eigenfunction. 

k 5.763 10.513 12.791 

NE 2 6 10 
I 1 3 4 

M 0 I 3 0 3 5 7 0 3 7 9 

•(%) 150 163 1.7 15 9.1 9.1 1.9 22.8 36.2 37.4 4 

origin is moved so that it is not situated on the nodal sur- 
faces, then one null-field equation (rn = 0) is theoretically 
sufficient to eliminate all the eigenfrequencies. However, nu- 
merical computations show that good accuracy is obtained 
only if the origin is situated far enough from the nodal sur- 
faces. Similar results are obtained for the T.P.S. surface ve- 

locity distribution and the circular cylinder. 
R2 explains why good results are obtained for computa- 

tions performed in the high-frequency range even when, 
owing to (41), R1 is far from being satisfied. We have repre- 
sented in Fig. 11 the variations of the real and imaginary 

0.5 

0.0 

-0.5 

I ,, 
x 

1 .11 131 I• b 

120 

parts of the exact and computed pressure (O.P.S.) on a 
a= 1, b= 12 cylinder surface of high aspect ratio 
(E= 12.04; M e = 15) for NE= 0 and NE= 8 (M= 14) 
and for the 50th irregular frequency; If o(0)[ is calculated 
with an accuracy better than 1.4%. The total corresponding 
computing time is 2200 s, 14% of which is devoted to the 
implementation of the null-field equations. Similar results 
are obtained for the a = 1.5, h = 3 cone (see Fig. 12), finite- 
element calculations (ATILA) indicating that the computa- 
tion frequency is situated near the 72nd irregular frequency: 
The accuracy obtained on I fo(0)l is better than 3%. We 
present in Fig. 13 numerical results obtained for a cylindrical 
array (a = 0.2665 m, b = 0.6295 m) on which the surface 
velocity distribution is v = 1 m/s (radiating zone: hachured 
part -0.0365 m<z<0.0365 m) and zero elsewhere. An 
O.P.S. check performed on this structure gives e< 10.9% 
(NE = 20), the error being localized in the vicinity of 0z 
(see Fig. 14). Note that the computation frequency (30 
kHz) stands between the 202nd and 203rd irregular fre- 
quencies (respectively 29.96 and 30.014 kHz). 

z a) 

03 

0,0 

20 40 60 80 

1.0 

0.5 

0.0 

-0.5 

(b) 

FIG. 11. Same as Fig. 9. O.P.S. check. Cylinder: a = 1, b = 12; k = 7.839 
( 50th irregular frequency). -- exact p (r); - - - computed p (r) with NE = 0; 
-•- computealp(r) with NE = 8. 

1.0 

0.5 

0.0 

-03 

-1.0 

FIG. 12. Same as Fig. 10 for k = 22.--exactp(r); • computealp(r)with 
M= 47. 
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0.20E+07 

0.15E+07 

0.10œ+07 

0,50•+06 

O.00E+00 

-0.5•+06 

z 

1 •. 45 
x, ... 

•]143 I b 
(a) 

O.00E+00 

-0.50•+06 

(b) 

FIG. 13. Same as Fig. 9. Cylinder: a = 0.2665 m, b = 0.6295 m. o = I m/s 
on the hachured part (half-height 0.0365 m) and zero elsewhere. 
k = 125.664 0e= 30 kHz). p = 103 kg/m 3 and c = 1500 m/s. The surface 
mesh satisfies the A/4 criterion, but its density is increased in the vicinity of 
and in the radiating zone. -- Computed p(r) with NE= 20; --- 
p(r) =pco(r). 

Figure 13 shows that the high-frequency approximation 
usually made for the surface pressure, 39'4ø 

p(r) =pcv(r) + O(k-'), rc__S, (43) 

is not verified here because (i) the surface velocity is discon- 
tinuous 41 and (ii) the cylinder possesses two circular 
wedges: "Diffracted rays," issuing from the discontinuities 
at z = _+ Zo = 4- 0.0365 m of the surface velocity and from 
the wedges, induce contributions to (43) of the order of 
k -1/2 for points such as p=a, z• +Zo and p=O, 
g • -Jr- b. 42'43 Moreover, the laws of geometrical acousticsl 

-2 

(a) 

1010 

-2 

-4 

FIG. 14. Same as Fig. 13. O.P.S. check. The mesh satisfies the A/4 criterion 
on the whole surface. -- Exact p(r); - - - computed p(r) with NE = 20. 

ensure that the diffracted rays issuing from z = 4-Zo are 
asymptotically of the form 

(-qeik(•q=•')/x/Z • Zo)pCO( 4- Zo) (44) 

for points such asp = a, Izol < [zl < lb I, whereA is some "dif- 
fraction" coefficient of the order of k -•/2. We have indeed 
verified from our numerical results that p(r')/p(r), with 
r=(p=a, zo<z<b), r'=(p=a, Zo<Z'<b), verifies 
(44) with a few percent error. 

In order to test the ability of the approximation 
p(r) = pcv(r), r•__S, to give the correct farfield pattern, we 
have represented in Figs. 15-17, 20 log[ fo(0) I, where fo(0) 
is computed either directly from (40) and (15) [ff• (0) ] or 
approximately from (15) and p(r) =pcv(r) [f•(0) ] for 
three arrays of radius a = 0.2665 m and of semiheight 
b = 0.6295 m, b = 0.333 m, and b = Zo (the array is then 
reduced to its radiating zone). A straightforward calcula- 
tion gives forfo • (0): 

938 

ß [jo(kzocosO)[sinOJ•(aksinO) +iJo(aksinO)], 
f • ( O) = -- ICaZo pC[j• ( ak ) + iJo( ak ), 
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-2œ 

-3C 

90, 

FIG. 15. Directivity pattern in dB computed for the radiating array de- 
scribed in Fig. 13.0 = 0' is the direction of the revolution axis. The zero 
level corresponds to 113 dB. -- 20 log [/'g (/•) [;-t•20 log [fg (/•) ]. 

ß-2t2 

0 

90: 

FIG. 17. Same as Fig. 15, but for the cylinder as 0.2665, b = 0.0365 [the 
array is reduced to the radiating zone, which remains unchanged, as well as 
fo • (0) ]. The zero level corresponds to 113 dB. 

where J, (x) is the Bessel function of order n. We see that the 
main discrepancies between [foC(0)[ and I fg(O)[ are local- 
ized in the secondary lobes, the best agreement being ob- 
tained for the nonbaffled array (b = Zo). On the whole, the 
two calculations are in good agreement: This result is of 
some importance since the total computing time necessary to 
obtain foe for the large cylinder is 9500 s (2000 s for the null- 
field part)! 

IV. CONCLUSIONS 

The numerical examples presented in this work show 
that Jones' method is efficient and largely superior to the 
null-field technique which, as we .have shown and for nu- 
merical reasons, cannot be used to solve the Helmholtz equa- 
tion for radiating or scattering objects of high aspect ratio 
and/or in the high-frequency range. From simple consider- 

-3( 

0 

90. 

FIG. 16. Same as Fig. 15, but for the cylinder a = 0.2665, b = 0.333. The 
radiating zone is unchanged, as well as the values offo • (•). The zero level 
corresponds to 113 dB. 

ations, we have specified the numerical limitations of Jones' 
method and clarified the role of the additional null-field 

equations, which has allowed us to perform accurate high- 
frequency computations at the cost, however, of large com- 
puting times, only a small part of which ( 10%-20% ) being 
devoted to the numerical implementation of the additional 
equations. It is well known that such a technique is not par- 
ticularly well suited to the high-frequency range where it is 
more advisable to use asymptotic methods to compute the 
directivity pattern, such as the geometrical theory of diffrac- 
tion (see, e.g., Refs. 42 and 43) or the crude approximation 
p(r) :pcu(r) used in the preceding section: However, it 
may be of some help to check the efficiency of such asympto- 
tic methods. Besides, when one wants to solve the radiation 
or diffraction problem for a complex transducer, the overall 
dimensions of which are large compared with the wave- 
length, then the knowledge of the surface impedance is need- 
ed in order to perform a finite-element modeling of the de- 
vice and, for lack of a reliable asymptotic expression of this 
impedance, the coupled integral equation-null-field method 
can be used. 

The implementation of the numerical program de- 
scribed here involves no major difficulty, mainly because the 
solution of the integral equation we use is relatively simple. 
As it stands, it can be coupled with a finite-element code 
using the same interpolation functions to represent the ob- 
ject surface and the surface pressure and normal velocity, 
such as ATILA, and, at least from a formal point of view, 
there is no difficulty about the extension of this program to 
the solution ofnonaxially symmetrical problems. This point, 
as well as the coupling with ATILA, is currently under study. 

The method presented here is open to further improve- 
ments. First, other wavefunctions, solution of the Helmholtz 
equation in a coordinate system better suited to the shape of 
the radiating or scattering object, could be used in place of 
the spherical wavefunctions, provided that their numerical 
computation is accurate and does not involve too many diffi- 
culties. Second, it would be interesting to get some informa- 
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tion on the general properties of the interior Dirichlet prob- 
lem eigenfunctions for surfaces of arbitrary shape in order to 
use R2 with full efficiency. And finally, the following idea 44 
could be used: Several simultaneous and finite sets of addi- 

tional null-field equations could be written at points chosen 
in the interior volume. Following R2, we may expect then a 
reduction of the order of the wavefunctions to be used in 

each set and, hence, to counterbalance the undesirable be- 
havior of these functions for high orders. Note that the im- 
plementation of this idea may also improve the efficiency of 
the null-field method. 
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APPENDIX A 

These assertions may be established more rigorously. 
For M sufficiently large, we have, from (30) and (31 ), 

(.2/• 1.)s• fo'•g( O)e(M + ,,h(o , dO-O, (AI) 
with 

g( O) = -- ( i/x[• )e(r( O) )P•t_ • (cos 0) 

x w( O)c•n(kr( O) ), 

dr = w(O)dO, 

h(O) = - Log kr(O). 

The major contribution to the value of the integral arises 
from the immediate vicinity of those points of the interval 
0<0•rr at which h(O) assumes its largest value. Let us call 
0mi• one of these points for which r =/'rain; then, following 
Reft 45, (A1) is equivalent to 

r 'a(M-+ l) ...... V eM( krmi n ) M + 1 
where a, A > 0 and v > 0 are defined by 

dh(O) 
a(0-- 0rnin) •-1, 0'-•Omi n q-0, 

dO 

g(O)__b•(rmin)(O__Omin)•. 1, 0•0mi n -[-0. 

Hence, for a sufficiently large M, there is a •/> 0 so that 

krmi. 

[(b/v) F(X/v) I 

x(%+ \2M+ 1! ' 

and lim e( r• ) = O. 
Moo 

The arguments developed above show (i) that the part 

A of the surface S on which p(r) is accurately computed 
starts at r -- rmi n, (ii) that the value of M from which this 
phenomenon occurs is roughly proportional to kr,•in (see 
above inequality), and (iii), if repeated for possible relative 
minima, the arguments suggest that such zones A will ap- 
pear at these minima for still larger values of M. 

APPENDIX B 

When 1 =j, it is advisable to isolate the singular part of 
the integrands in A •a, B•a, and to integrate it separately. 
Hence, we write 

Re A •, (•') ----Re A (•') 

_ 1 - 1 2rr d(•,q•) 

+ k sin[kd(•',qv)]).[r'(•,qv) - r•, ] .n' 
+g '(O, 

- ].n' -- • dq, • '(O 2v d 3(•,q) 
and 

= 1 • cos[kd(•,q)] - 1 2r d(•,•) 

I • d• = 

d• + B'(•), 

Because of axial symmetry, A '(•) and B '(•) can be recog- 
nized as complete elliptic integrals, or sums of such integrals, 
and calculated through the approximations given in Ref. 46. 
The imaginary parts of A (•) and B(•) are computed with 
the Gauss-Legendre quadrature rule. 

APPENDIX C 

IfS• is the sphere of radius R• lying entirely within S, 
then, from (8) and (12), we have 

= A•,. •,, (r), r<R•, 
m=O 

A.• = fs u(r')c9n' •, (r')dr', 
where u(S) satisfies (7), i.e,, is a solution to the homogen- 
eous equation associated with (4) for a given irregular fre- 
quency. Then u (S) satisfies (9) where the right-hand side of 
(9) is zero, which corresponds to A ... = 0 for 0• m <M -- 1, 
Inl<m. Thus, 

r/(r)= •stl A,,•,•(r), r<R i. (CI) 
First, let us assume that we have axial symmetry (n = 0). 
Then, from (13), we have, in the vicinity of the origin, 

ik x/•( kr) •t 
r/(r) -- 

,-o (M+ 1/2)!2 •+ I 

XAo•tY•t(O) + 0 [(kr) M+ t], (C2) 
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so that •/(r) behaves for small r like Y• (0). More rigorous- 
ly, we look for the locus of the points where •/= 0 for small r. 
If we apply to (C1) the arguments given in Ref. 47, then we 
obtain R2, and the nodal surfaces of •/will divide V• into at 
least (M+ 1) subdomains, Y•(O) having M nodal sur- 
faces, and •/(S) = 0. Ifn<Mis the number of the eigenvalue 
of (6) associated with the eigenfunction •/, then, from Ref. 
37, •/cannot d!vide Vi in more than n subdomains. Since this 
contradicts the previous result, •/ is identically zero 
inside Si and, from (C1) and the orthogonality of the 
Yr•, -40m j,• (kr) = 0 for all rn. Choosing r so that kr is not 
a zero ofj,• (kr), this implies Ao,• = 0 for all rn and, from the 
definition ofthe.4,,• and the completeness on Sof{c•n 
u(S) = 0: this proves R1. 

For a non-axially-symmetric problem, the same argu- 
ments can be resumed, and, in particular, (C2) is obtained if 
we prescribe 

A.=O, O<m•M- l, Init<m, 

//.ta =0, for all n%0, 

which corresponds to 

b(r)tJn q•,• (r)dr = •sOn p(r)•: (r)dr, 
O<tn<M-- 1, 

r) c•n q•7• (r)dr = • On p(r)q•4 (r)dr, 
for all n-•0, Inl<M. 

In this case, the behavior of •/in the vicinity of the origin is 
also given by R2, and, at least, the M first irregular frequen- 
cies are eliminated. 
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