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The T-matrix formulation is used to compute the form function of an elastic prolate spheroid. The method
allows acoustic scattering computations to be made for finite bodies at frequencies into the resonance region,
and the lowest order resonance observed is, as expected, due to the excitation of a Rayleigh surface wave.
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INTRODUCTION

The excitation of the natural modes of vibration of a
submerged target has a strong influence on the steady-
state response of the target to an incident plane acous-
tic wave.'™* An analytical formulation of scattering be-
havior in terms of separate geometric and resonance
terms was given by Flax ef al.* The formulation was
applied to solid metal spheres and infinite cylinders.
For targets fabricated of materials whose density and
sound speeds are larger than the density and sound
speed in the surrounding fluid, the acoustic response of
the target can be described in terms of a background of
rigid body scattering onto which the resonances are
superimposed.® For hollow targets, the appropriate
geometric background term ranges from soft or Dirich-
let boundary conditions for small frequency (v) thick-
ness (d) products to a rigid body background term at
high v values.® Extensive use has been made of reso-
nance theory in acoustic problems which involve planar,
infinite cylindrical, and spherical geometries. A sum-
mary of this previous work and an extensive reference
list can be found in Ref. 6.

In this paper a solution is developed for the scatter-
ing by an elastic prolate spheroid in water, and results
are compared with predictions made from resonance
considerations. The scattering by an elastic prolate
spheroid has been formulated in terms of an expansion
in spheroidal wave functions,” but no elastic scattering
computations have been made from that formulation be-
cause of complexity in the use of spheroidal functions

as well as the difficulty in matching boundary conditions.

Computations have been made in terms of spheroidal
functions, for spheroids which satisfy rigid or soft
boundary conditions, at end on incidence,?™® and ap-
proximate methods to describe the scattering by rigid
and soft spheroids at arbitrary incidence angles have
also been considered.!! "3

The T-matrix formulation, utilized in this work, al-
lows an expansion, in terms of spherical basis func-
tions,!*"'® of the scattering by an elastic prolate spher-
oid. The method has been used successfully to describe
the scattering by an elastic finite cylinder,'® as was
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demonstrated by comparison with experimental mea-
surements. The T matrix has also been applied by the
present authors to the case of monostatic and bistatic
scattering by rigid prolate spheroids'® and those results
compared favorably with the predictions of simple geo-
metric scattering models. The computations made here
are compared with predictions made from resonance
response considerations,

|. THEORY

The geometry of the problem under consideration is
described in Fig. 1. An elastic prolate spheroid with a
semi-major axis, a4, and a semi-minor axis, b, is
illuminated, by a plane acoustic wave of circular fre-
quency w and wavenumber 2, along the major axis.

The displacement vector corresponding to the incident
wave is denoted by U* and that corresponding to the
scattered wave U°. The displacement vector in the
elastic medium is denoted by U. Since the incident wave
has time dependence exp(-iwt), all field quantities will
have the same frequency, so that the time factor is
henceforth suppressed.

The total displacement field U; in the fluid is given by
U, (0)=U )+ U (), (1)

where 7 is the position vector of the field point. The
equation of motion for U is then

P

FIG, 1. The geometry of the problem,
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V-« T, +psw 20, =0, (2a)

where T, is the stress tensor related to the displace-
ment by

T,=INV- U, (2b)

I is the idemfactor and A, the Lamé constant. The sur-
face traction for the fluid is defined as

t=7-T,=T, -4, (2c)
where # is the outward normal to the surface.

The Green’s displacement, G,, and stress tensor, Z,,
corresponding to Egs. {(2a)~(2c)] are defined by

VeI +p; wiGp=~10(r ~7") (3a)
and
T,r,7)=)\1V-G,, (3b)

where 7 is the position vector of a field point and #' the
source point. These quantities are third rank tensors.

The equation describing the stress tensor in the elas-
tic body is

T=IAV: U+ (VU+TUV). (4a)

The Green’s displacement and stress tensor corre-
sponding to Eq. (4a) are given by

YV Z+pu?G=-15( -7"), {4b)

Z=IA - G+ (VG+GV). (ac)

The surface traction is once again f=# *+T and X and {
are the Lamé constants of the body, When (=0, these
equations reduce to the fluid case.

The boundary conditions on the surface S between the
fluid and the elastic obstacle are

i «Up=it- T, (5a)
et =it (5b)
@~ t),,=0, ' 6c)

at the surface of the boundary.

The analytical properties and theoretical formulation
of the T matrix have been discussed in Refs. 15~18. The
starting point is the integral representation of the dis-
placement field inside and outside the boundary S of the
scatterer. The integral representation (see Ref. 16) is
given for the fluid region as

T | {010 20,70 -4 G, b, 7S’

=U;{r); 7 outside S
=0; rinside S. (6a)
For the solid

- L (U [#-Z r, ¥t Glr, )} S’

=U(r); v inside S
=0; 7 outside S. (6b)
In Egqs. (6a) and (6b), the primes on U, Uy,etc. indicate
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that they are functions of ' a point on S, and dS’is an
element of area on S centered at 7',

Il. TMATRIX FOR A SOLID IN A FLUID

For elastic waves in 2 three-dimensional medium, the
total motion may be decomposed into three parts: §,4mn,
Voo mpy ANA Y5 n. The Pyg 1y is the vector basis function
representing the longitudinal motion propagating with
speed ¢, and wavenumber By; ,om, and J,, m, are the
two components of the transverse field in the solid with
speeds ¢; and wavenumber k;. In spherical coordinates
(r, 6, ¢) the basis functions are

B10 mn = (B /B, V2 € gV 1y (0,7 ) Y (6, 9)], (T2)

P 0 ma=RsTlma ¥ X[, (57 ) Y (6, 0)], (Tb)
and

P (/%)X D . (7c)

The basis functions in the fluid region, which represent
longitudinal motion propagating with speed ¢ and wave-
number %, are

bs amn = Emn Va7 ) Vs (6, 9)). (7d)

In the above equations, 4, is the spherical Hankel func-
tion of the first kind. The Y9, are the spherical surface
harmonics where ¢ specifies azimuthal parity, m spe-
cifies rand,and » specifies the order of the harmonics,

Y..(6, ¢)=P7(cos 8)cosm ¢ even parity,
Y2.(8, ¢)=P"(cos 8)sinm¢ odd parity,

8)

The normalization constant €, and n,,, are defined by

_(em@n+l)n-m)IN"  €=1
E""'_( 47(n +m)! ) ’ e:,=2; m>0 (92)
and
Thnn= € /1202 +1)]'2, (9b)

For brevity, we abbreviate the basis function in the
solid as :

wl.d mny w'p mny #’30 mn='pl/ri’ U=11 2) 3

and in the fluid as
4’;0 mn= 'an-

The wave function above satisfies the radiation condi-
tion at infinity. In order to expand fields that are finite
at the origin, one replaces the Hankel function &, by the
spherical function j,. Throughout this paper a boldface
symbol with a caret indicates the real part of the func-
tion.

The scattered field U° must satisfy the radiation con-
dition at infinity and hence is expanded with spherical
Hankel functions

T )= fulyn. (102)
The incident field U* is the regular at the origin, hence
U (r)=)_ Adrn. (10b)

The displacement fields inside the spheroid must be
regular at the origin.
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U)=)_ dunyn- (10c)

The expansion of the Green’s function for these basis
have been given in Ref. 16 and are repeated as

G lr,7)=GR/Pw?)Y . byal” >V lv <)

and

(11a)

G(r, 7') = (iko/prw®)Y_ (>  Re{¥,,} (),

where 7, and 7. refer to the greater and lesser of  and

’

7.

(11b)

Substituting Eq. (10) into the integral Eq. (6a2) and us-
ing the boundary conditions, one obtains

A= _EiQn.m 1Oyt
and

fm:ZiQn.vn‘avn’,

where the matrix @ is given by

(12a)

(12b)

k P ,. A
Q"'”"“(W) L (V- a8y =2 by, o)) dS"

13)

Due to the summation on v which varies from 1 to 3
the @ matrix has a 1X3 substructure and cannot be in-
verted. In order to obtain the desired T matrix connect-
ing A, and f, we must invoke Eq. (6). Following Bo-
strom!’ one defines a new expansion for the exterior
surface field on S, to obtain a set of matrices that are
invertible. We follow Bostrom!” by defining

Uf (T)=Zdn$fn' ‘ (14)

Using Eq. (5) for the tangential component of the dis-
placement and all components of stress and using the
first two boundary conditions in Eq. (5) we obtain

Py ndy+R oyt @yig=0, (15)

where the matrices P and R are given by

Pu=(m) J (@ boti-t@mltas, asa
Rm,v'n‘=(pk‘:2)J. j { @) tang (@)
~ [t@y))n- by 3 dS . (16b)

From Eqgs. (12a), (12b), (15), and (16b) we obtain the
following relation between the incident and scattered
field coefficients in matrix form,

f=TA, (1
where
T =-QRIP(QR™'P), (18)

The T matrix defined as Eq. (18) is applicable to any
elastic obstacle of arbitrary shape immersed in a fluid.

{ll. FORM FUNCTION FOR A SPHEROID

From Eqs. (17) and (18) we obtained the scattering
coefficient in terms of the T matrix. From Eqs. (10)and
(18) the scattered portion of the total acoustic field at
a point (7, /) may be written as
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U=b/2exp - (iwt ~ kr)f,, 19)

where f, is the reflected form function given as

Se= 2(:_1) et E Z (= 8Y" " hy(kr ) Py(COS 6)épmSom-
(202)

For large distances from the reflector, the asymp-
totic expressions for h,(kv) in the form function are
used with the result that f, which is now written as f«
is expressed

f“,:(%) E Z P_(cos 6)fpm.

Equation (20b) describes the reflection characteristics
of the spheroid. For monostatic reflection 8=7, mak-~
ing P,(cos 6)=(=1) and

2 - D ID DS

In order to evaluate numerically the form function
(20c), we need to integrate the matrix elements of @,
R, and P, defined in Eqs. (13) and (16), that consist of
surface integrals involving the normal and radius vec-
tors.

7(6, ¢)=[cos? 6/a*+sin® /6|12, @1)

where 7 (8, ¢) is the radial vector. Using differential
geometry one can obtain the normal vector to the sur-
face and hence

#(0)dS =[8, - e, /r(0)dr(6)/d 8)r2(0)sin 6dodp,  (22)

(20b)

(20c¢)

where e, and Ee are unit spherical vectors. Note we
already made use of azimuthal symmetry and hence all
expressions will be independent of the angle ¢. We will
investigate the prolate spheroid case where a/b>1,

Using Eqs. (22), (20}, and (17) with Gauss—-Legendre
quadrature integration one can generate the @, R, and
P matrices. The inversion was performed by using
Schmidt Orthogonalization techniques and/or Gaussian
elimination.

IV. RESONANCE FORMULATION

The resonance theory of acoustic and elastic wave
scattering has been described in detail in Refs. 3-6 and
shall only be sketched in the present context. This the-
ory demonstrates that resonances from elastic cylin-
ders or spheres are superimposed on a background of
reflection resulting from rigid boundary conditions, so
that the elastic body can be regarded as a rigicl body
except in the frequency interval over which the reso-
nance occurs. We rewrite Eqs. (10c) and (17) in terms
of the partial waves

Ja= Z Ton (23)

fm:z f"(ﬂ), (24)

which make up the form function, Thus the first few
partial waves are
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fo= T+ T+ Tons
f=Ty+T+. .. Ty 0, (25)
Jfo=Ty+ Tppt. . . Ty

When b/a=1 the integral can be evaluated in closed
form and the form function reduces to that of the ma-
trix elements of an elastic sphere in a fluid.

It is now advantageous to consider the rigid spheroid,
This is obtained by using Neumann boundary conditions.
This condition states that the total field vanishes on S

U(rY=0, ' onsS, (26)

where U is the total field evaluated at the outside sur-
face of the obstacle, If this condition is substituted in
Eq. (13) together with the assumed basis function we
obtain '

k " a
inr!id =wa2 L )\,V' Ypalt* Ypnr dS. @7

Since there is no shear component in the fluid, @ is a
square matrix and can be inverted yielding

T=QQ™. (28)
1t follows that
ffiﬂid - Tngid (293.)

and

Fam13® = 2, Taw=Tal (20b)
V. FORM FUNCTION COMPUTATIONS AND
COMPARISON WITH RESONANCE PREDICTIONS

Computations of the backscattered form function, for
submerged tungsten carbide prolate spheriods, are giv-
enin Fig. 2 (a)-(e). The angle of incidence in all five
cases is 0° (end on), and the b/a ratio ranges from 0.5
to 0.9. Computations are given over the range 5.0 k//2
£10.0, which covers the range over which the initial de-
parture of the form function from purely rigid body be-
havior occurs. The description of the scattering by a
solid, elastic prolate spheroid conforms to previous
elastic scattering descriptions® of a rigid body back-
ground on to which resonance behavior is superimposed.
This is demonstrated in Fig. 3 for the case of a tung-
sten carbide spheroid with /a=0.5. The curve seen in
Fig. 3 resulted from the term by term subtraction of
rigid body partial waves [see Eq. (29)] from the corre-
sponding elastic-partial waves. The form function de-
parts from zero only in the region of excitation of the
resonance, and as will be discussed below the reso-
nance mechanism is similar to previous observations
on spheres and cylinders. Each of the form function
curves in Fig. 2 shows the typical rigid body behavior®~>
at ka =7 followed by the excitation of a resonance null.
The ka position of this initial resonance null can be
predicted independently by assuming that the null re-
sults from the excitation of a Rayleigh circumferential
wave, as was the case for solid elastic cylinders and
spheres.?™®

The resonance description of acoustic scattering, for
metal infinite cylinders, predicted the strong influence
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FIG. 2. The form function of a submerged, tungsten carbide,
prolate spherold at end or incidence for b/a values of (a) 0.5,
() 0.6, (c) 0.7, (d) 0.8, (e} 0.9.

of the Rayleigh surface wave in the target form func-
tion, over the range ka<20,>"® This prediction was
verified by experimental isolation of the surface wave
in the expected ka region.?° The lowest frequency at
which resonance behavior is excited for a cylinder
occurs when the perimeter of its circular cross sec-
tion is two Rayleigh wavelengths long or

2AMTa= 2).':20'/1}, (30)
From Eq. (30), the ka position (ka)g,, at which the in-
itial resonance occurs for an infinite elastic cylinder
is given by
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FIG. 3. Term by term subcontraction of rigid body partial
waves from elastic partial waves for a tungsten carbide pro-
late spheroid with b/a=0.5.

(ka)R. 1= 2(6"/6').

In Eqgs. (30) and (31), the c is the speed of sound in
water and ¢, and A, are the Rayleigh speed and Rayleigh
wavelength in the target material. The Rayleigh wave
is dispersive in this ka region, i.e., ¢, has not yet
reached its final, flat surface value.?*~?®* The resonance
is caused by the mutual reinforcement of successive
circumnavigations of the Rayleigh wave, Later reso-
nances occur when the cylinder circumference is na,
where n=3,4...; however, for n>6 the attenuation is

so large that the effect is insignificant.

(31)

The Rayleigh surface wave description also fits the
initial resonance in the form function for an elastic
sphere. The form function for a tungsten carbide
sphere can be computed from a normal mode series
solution,’*?#% and is given in Fig. 4. The initial depar-
ture from a rigid body scattering form function occurs
at (ka)g,,="7.4. For a sphere this lowest frequency re-
sonance is also associated with the Rayleigh surface
wave™* and occurs at

(ka)Rd:%c,/c. (32)

The added factor 1/2 between Eqgs. (31) and (32) for the
cylinder and sphere is discussed by Uberall.

Until the recent application of the T-matrix approach
to elastic boundary value problems, and the extension
of these T-matrix computations into the resonance re-
gion, no midfrequency analytic computations were pos-
sible for finite bodies other than the sphere. It is ex-
pected that the Rayleigh wave resonance will also be
the initial elastic behavior observed in the form
function for other smooth, finite, symmetric targets.

If it is assumed that the Rayleigh resonance null occurs
in the form function for a prolate spheroid then the
following prediction can be made.

150 —
wC
120 | Sphers \/\
«f0.90
0.60 —
030
1 1 1 1 1 1 1 1 L )

0.0000 1.0000 20000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000
ka

FIG, 4. The form function of a submerged tungsten carbide

sphere,
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TABLE I. A comparison of null positions predicted from re-
sonance considerations with nulls obtained from the T-matrix
computation.

(ka), (ka),
from geometric from form

b/a considerations functions
0.5 9.6 9.6
0.6 9.1 9.2
0.7 8.7 8.6
0.8 8.2 8.3
0.9 7.8 8.0

Consider a sphere of radius ¢ circumscribed about
the spheroid seen in Fig. 1. The form function of both
of the targets is defined as

Ja=(27/a)(ps/b,){=1 for a rigid sphere), (33)

where p, and p, are, respectively, the steady-state re-
flected and incident pressure amplitudes. Based on the
their respective cross sections, the rigid body or back-
ground form function for the prolate spheroid should
be, in general, smaller by a factor b?/a® than that for
the circumscribed sphere?” at end-on incidence. Addi-
tionally, if the perimeter of the elliptical cross section
ADA in Fig. 1 is given by P=P,q, then at end on inci-
dence the ka value at which the Rayleigh wave reso-
nance occurs (ka), for the spheroid should be related
to the corresponding sphere resonance position (ka)g,
(Fig. 4) by

(ka)y=Q27/P,)(ka)z,.- (34)

Table I compares the resonance positions observed in
the form functions shown in Fig. 2, and values com-
puted from Eq. (34). The greatest difference is 2.5%.

Vi. SUMMARY

The T-matrix formulation allows the computation of
the acoustic scattering by submerged, finite targets to
be obtained into the mid or resonance frequency range.
Computations of the scattering by an elastic prolate
spheroid were obtained for the first time by applying the
T-matrix method. The resonance nulls occurred at the
ka values predicted by resonance considerations.
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