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The T-matrix formulation is used to compute the form function of an elastic prolate spheroid. The method 
allows acoustic scattering computations to be made for finite bodies at frequencies into the resonance region, 
and the lowest order resonance observed is, as expected, due to the excitation of a Rayleigh surface wave. 
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INTRODUCTION 

The excitation of the natural modes of vibration of a 

submerged target has a strong influence on the steady- 
state response of the target to an incident plane acous- 
tic wave. •'4 An analytical formulation of scattering be- 
havior in terms of separate geometric and resonance 
terms was given by Flax et al. 4 The formulation was 
applied to solid metal spheres and infinite cylinders. 
For targets fabricated of materials whose density and 
sound speeds are larger than the density and sound 
speed in the surrounding fluid, the acoustic response of 
the target can be described in terms of a background of 
rigid body scattering onto which the resonances are 
superimposed. 4 For hollow targets, the appropriate 
geometric background term ranges from soft or Dirich- 
let boundary conditions for small frequency (u) thick- 
ness (d) products to a rigid body background term at 
high •d values? Extensive use has been made of reso- 
nance theory in acoustic problems which involve planar, 
infinite cylindrical, and spher/cal geometries. A sum- 
mary of this previous work and an extensive reference 
list can be found in Ref. 6. 

In this p:•per a solution is developed for the scatter- 
ing by an elastic prolate spheroid in water, and results 
are compared with predictions made from resonance 
considerations. The scatter/ng by an elastic prolate 
spheroid has been formtfiated in terms of an expansion 
in spheroidal wave functions, 7 but no elastic scattering 
computations have been made from that formulation be- 
cause of complexity in the use of spheroidal functions 
as well as the difficulty in matching boundary conditions. 
Computations have been made in terms of spheroidal 
functions, for spheroids which satisfy rigid or soft 
boundary conditions, at end on incidence, s-•ø and ap- 
proximate methods to describe the scattering by rigid 
and soft spheroids at arbitrary incidence angles have 
also been considered. u'•3 

The T-matrix formulation, utilized in this work, al- 
lows an expansion, in terms of spherical basis func- 
tions, •4-ts of the scattering by an elastic prolate spher- 
oid. The method has been used successfully to describe 
the scattering by an elastic finite cylinder, TM as was 

demonstrated by comparison with experimental mea- 
surements. The T matrix has also been applied. by the 
present authors to the case of monostatic and bistatic 
scattering by rigid prolate spheroids m and those results 
compared favorably with the predictions of simple geo- 
metric scattering models. The computations made here 
are compared with predictions made from resonance 
response considerations. 

I. THEORY 

The geometry of the problem under consideration is 
described in Fig. 1. An elastic prolate spheroid with a 
semi-major axis, a, and a semi-minor axis, b, is 
illuminated, by a plane acoustic wave of circuls.r fre- 
quency •v and wavenumber kf along the major a•is. 

The displacement vector corresponding to the incident 
wave is denoted by If and that corresponding to the 
scattered wave U •. The displacement vector in the 
elastic medium is denoted by U. Since the incident wave 
has time dependence exp(-i•vt), all field quantities will 
have the same frequency, so that the time factor is 
henceforth suppressed. 

The total displacement field U• in the fluid is given by 

Ui(r)=Ui(r)+W(r), (1) 
where r is the position vector of the field point. The 
equation of motion for U• is then 

• z 

FIG. 1. The geometry of the problem. 
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v. 2u= o, 

where T• is the stress tensor related to the displace- 
ment by 

T•=I•V. Ug, (2b) 

I is the idemfactor and • the Lam• constant. The sur- 
face traction for the fluid is defined as 

•=•' T•=Ti ß •, (2c) 
where • is the outward normal to the surface. 

The Green's displacement, Gt, and stress tensor, 
corresponding to Eqs. [(2a)-(2c)] are defined by 

V. ?,•+p• •o2G• = -I0(r - r') (3a) 
and 

Z•(r,r%X•IV. Gt, (3b) 

where r is the position vector of a field point and r' the 
source point. These quantities are third rank tensors. 

The equation describing the stress tensor in the elas- 
tic body is 

T--P,V. lI+ • (vu+uv). (4a) 

The Green's displacement and stress tensor corre- 
sponding to Eq. (4a) are given by 

v. +p o]6---I5 (r-r'), (4b) 

Z--I• ß G+•(VG+GV). (4c) 

The surface traction is once again t=• ß T and X and 
are the Lam• constants of the body. When •=0, these 
equations reduce to the fluid case. 

The boundary conditions on the surface $ between the 
fluid and the elastic obstacle are 

• -t•--•.t, (5b) 
(•. t)•=0, (5c) 

at the surface of the boundary. 

The analytical properties and theoretical formulation 
of the T matrix have been discussed in Refs. 15-18. The 

starting point is the integral representation of the dis- 
placement field inside and outside the boundary $ of the 
scatterer. The integral representation (see Ref. 16) is 
given for the fluid region as 

W(r). -t). 
--Ug(r); r outside $ 

=0; tinside S. 

For the solid 

- •{U" [•' • (r, rOJ- t •. •(r, r'}•S ' 
=U(r); r inside S 

= 0; r outside S. (6b) 

In Eqs. (6a) and (6b), the primes on U, U•etc. indicate 
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that they are functions of r' a point on S, and dS' is an 
element of area on S centered at r'. 

II. TMATRIX FOR A SOLID IN A FLUID 

For elastic waves in a three-dimensional medium, the 
total motion may be decomposed into three parts: 
•o .,,, and •o ,•. The •to •, is •e vector basis f•cfion 
representing t• lo•itud/n• motion pmp•ing • 
speed c• •d wavenumber •; •. •d •, am •e 
two com•nents of •e tr•sverse field [n •e solid wi• 
speeds c, • wavenmber k•. In spheric• coo•inates 
(r, 0, •) the basis functions are 

• to • = (k•/k•)t•V[ h.(•tr) Y• ( O, ½)], (7a) 

•d 

The basts f•ct[ons in •e fluid region, which represent 
to•itudinal motion pmp•ati• •th speed c •d wave- 
D•mbeF •, 

• o• = •v[h.(• ) Y•.( O, ½)1. (7d) 

In •e above equalohs, h, is •e spherical H•el f•c- 
t[on of the first kind. The Y• are •e spheric• surf•e 
hamo•es where a specifies •imu• parity, m spe- 
cifies rand•d n specifies •e order of the harmonics, 

Y•(O, •)= •(cos 0) cos m • even parity, (8) 
•(8, •)=•(cos O)sinm• odd parity. 

The nom•izafion const•t • and •,, are defined by 

/(•(2n+l)(n-m)l) t• %=1 (9a) (•=[ 4•(n+m)! ' •=2; m>0 
and 

For brevity, we abbreviate the basis function in the 
solid as 

and in the fluid as 

The wave function above satisfies the radiation condi- 

tion at infinity. In order to expand fields that are finite 
at the origin, one replaces the Itankel function h• by the 
spherical function j•. Throughout this paper a boldface 
symbol with a caret indicates the real part of the func- 
tion. 

The scattered field II • must satisfy the radiation con- 
dition at infinity and hence is expanded with spherical 
Hankel functions 

l:f (r)=•'•/.•.. (10a) 
The incident field U • is the .regular at the origin, hence 

U' (r) =•"•. A. •,.. (lOb) 
The displacement fields inside the spheroid must be 
regular at the origin. 
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a.,.. (10c) 
The expansion of the Green's function for these basis 

have been given in Ref. 16 and are repeated as 

G s (r, ,'• = (ik/psw2)•'•. $/. (r >)•s, (r < ) (1 la) 
and 

G(r, r') = (ik•/pico2)•'•,•(r>) Re{*,}(r<), (lib) 
where r> •d r< refer • •e greater 
rq 

•stituti• Eq. (10) into •e integr• Eq. (6a) •d 
ing •e bo•da• eon•Uons, one ebbins 

A.=-•iO.,m ,a.., (12a) 
•d 

f.=•iQ.,..,a.•,, (12b) 
where •e mat•x Q is •ven by 

Due • •e summation on v which varies from 1 to 3 

•e • matrix has a 1 x • substructure and carnet be in- 
vexed. In o•er to obtain the desired T matrix eo•ect- 

i• A. •d f. we must invoke •. (6). •ollowing Be- 
strom • one defines a new exposion for •e exterior 
surface field on S, to obtain a set of mat•ces •at are 
inver•ble. We follow •s/mm • by defini• 

Ol (r)=•d.•,. (14) 
Usi• Eq. (5) for •e [•enU• com•nent of •e dis- 
placement •d all componen[• of •tres• •d usin• the 
fir•[ •o •dary condition• in Eq. (5) we ob•in 

P. •..,d.,+• •..,., a•.= 0, (15 ) 

where •e mat•ces P •d A a•e given by 

- [t(•u,.)] n' •v.}dS. (16b) 
From Eqs. (12a), (12b), (15), •d (16b) we obtain •e 

follo•ng relation be•een the incident •d sca•ered 
field coefficients in matrix form• 

f= TA, (17) 

whe re 

T = - •n-'P(•-xP)-'. (18) 

The T matr• defined as •. (18) is app•e•le • •y 
el•e obs•ele of a•itra• •ape immersed in a fluid. 

III. FORM FUNCTION FOR A SPHEROID 

From •.qs. (17) and (18) we obtnined the scat•eri• 
coefficient in terms of the T matrix. From Eqs. (10) and 
(18) the scattered portion of the total acoustic field at 
a point (r, 0) may be written as 

U% b /2 exp - (i wt - trf lf. , (19) 

where f• is the reflected form function given as 

f'=2(a r-) e'•rZ Z (-i)"'h•(kr)P"cøsO)%"f""" 
(20a) 

For la•e distances from •e •floc•r, •e asymp- 
to•c expressions for h,(•) in •e form f•ction are 
used with •e result that f• which is now w•en as f• 
is expressed 

f•:(•) • • PncosO)f.•. (20b' 
•uation (2•)describes the reflection characteristics 
of •e spheroid. For monostatic reflection 0=r, m•- 

In offier to ev•uale nme•c•ly •e form function 

(2•), we need to integrate •e matrix elements of Q, 
R, •d P, defined in Eqs. (13) a• (16), •at consist of 
su•ace integr•s involving the normal •d rad;Lus vec- 
tors. 

r(o, tees o/a+ 0/b] -'/=, 

where r(8, •) is the radial vector. Usi• differenUal 
geomet• one c• obtain the normal vector • the sur- 
face •d hence 

A(8)dS=[•.-•o/r(O)d•(O)/dO]•(O)sin 8dOd•, (22) 

where •r and •o are unit spherical vectors. Note we 
Already made use of azimut•l symmetry and hence All 
expressions will be independent of the angie ½. We will 
investigate the prelate spheroid case where a/b > 1. 

Usi• •s. (22), (20), and (17) wi• Gauss-Legendre 
qu•rature intoration one c• generate •e Q, R, •d 
P matrices. The inversion was pe•om• by usi• 
•hmidt Orffiogon•zation tec•ques •d/or Gaussi• 
elimination. 

IV. RESONANCE FORMULATION 

The resonance theory of acoustic and elastic wave 
scattering has been described in detail in Refs. 3-6 and 
shall only be sketched in the present context. This the- 
ory demonstrates that resonances from elastic cylin- 
ders or spheres are superimposed on a background of 
reflection resulting from rigid boundary conditions, so 
that the elastic body can be regarded as a rigid body 
except in the frequency interval over which the reso- 
nance occurs. We rewrite Eqs. (10c) and (17) iin terms 
of the partial waves 

f.-- • T. (23) 

f•o: .•2] f.(n), (24) 
which make up the form function. Thus the first few 
partial waves are 
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fo= To• + To=+. . . To,•, 

f]= Tu + T•2+. . . T•,., (25) 

f2 = T21+ T22+' ß ß T2, n. 

When b/a- 1 the integral can be evaluated in Closed 
fo• and •e fore f•c•on reduces to that of the ma- 

trix elements of • elastic sphere in a fluid. 

It is now •v•t•eous to consider •e rigid sphe•id. 
This is obt•ned by usi• Neum• •da• conditions. 
This condition states that the total field v•ishes on S 

Uir•:0, r'onS, 

where U is •e total field ev•uated at •e outside sur- 

face of the obstacle. If •is condition is substituted in 

Eq. (13) together wi• the assumed basis f•ction we 
obt•n 

XV. 
Since •ere •s no shear component in the fluid, Q is a 
square mat•x and c• be inverted yieldi• 

It follows 

•d 

= • • rigid [ frigid Tnn, - (29b) 

v. gOOTAIOS 

Computeions of •e backscatered form function, for 
submeted •ngsten carbide prolate s•e•ods, are giv- 
en in Fig. 2 (a)-(e). •he •le of incidence in •1 fiv• 
cases is 0 ø (end on), •d •e b/a ratio ra•es from 0.5 
to 0.g. Com•utations a• given over the ra•e 
•10.0, which covers $e r•e over •ch the initial de- 
pa•u• of •e form •ncfion f•m purely rigid •dy be- 
havior occurs. The description of •e scatteri• by a 
solid, elastic p•late s•em•d co•orms to previous 
elastic scaRe• desc•p•ons • of a rigid •dy back- 
g•d on to which reson•ce behavior is su•rimposed. 
This is demonstrated in Fig. 3 for •e case of a •ng- 
•en carbide sphe•id w• b/a=0.5. The cu•e seen •n 
Fig. 3 resulted from •e term by term sub,racOon of 
rigid •dy par•al waves [see •. (29)] from •e corre- 
s•ndi• el•tic'paRial waves. •he form func•on de- 
pa•s from ze• only in the r•ion of excitation of the 
re•n•ce, •d as •11 be discussed below •e reso- 
n•ce mechanism is s•m•lar • pre•ou• observations 
on spheres •d cyUnders. Each of •e fore funcUon 
cu•es in Fig. 2 shows •e typic• •gid body behavior a-s 
at ka •7 followed by •e excitation of a re•n•ce null. 
The ka position of •s initi• reson•ce null c• be 
predicted i•e•ndenUy by assuming t•t •e n•l re- 
suits f•m •e excitation of a Rayleigh c•rcumferential 
wave, as w• •e case for solid elastic cyUnders •d 
spheres. •-5 

The re•n•ce desc•p•ion of acousUc sca•e•, for 
met• infi•[e cylinders, p•cted •e st• i•uence 
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FIG. 2. The form function of a submerged, tungsten carbide, 
prolate spheroid at end or incidence for b/a values of (a) 0.5, 
(b) 0.6, (c) 0.7, (d) 0.8, (e) 0.9. 

of the Rayleigh surface wave in the target form func- 
tion, over the range /•a<20. 3-5 This prediction was 
verified by experimental isolation of the surface wave 
in the expected lea region. 2ø The lowest frequency at 
which resonance behavior is excited for a cylinder 
occurs when the perimeter 6f its circular cross sec- 
tion is two Rayleigh wavelengths long or 

2•ra= 2Xr= 2c,/v. (30) 

From Eq. (30), the ka position (ka)s,x at which the in- 
trial resonance occurs for an infinite elastic cylinder 
is given by 
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FIG. 3. Term by term subcontraction of rigid body partial 
waves from elastic partial waves for a tungsten carbide pr o- 
late spheroid with b/a = 0.5. 

(ka)., •= 2(c,/c). (31) 

In Eqs. (30) and (31), the c is the speed of sound in 
water and c• and A• are the Rayleigh speed and Rayleigh 
wavelength in the target material. The Rayleigh wave 
is dispersive in this ka region, i.e., cr has not yet 
reached its final, fiat surface value. TM The resonance 
is caused by the mutual reinforcement of successive 
circumnavigations of the Rayleigh wave. Later reso- 
nances occur when the cylinder circumference is nX, 
where • =3, 4...; however, for n> 6 the attenuation is 
so large that the effect is insignificant. 

The Rayleigh surface wave description also fits the 
initial resonance in the form function for an elastic 

sphere. The form function for a tungsten carbide 
sphere can be computed from a normal mode series 
solution/'24'a5 and is given in Fig. 4. The initial depar- 
ture from a rigid body scattering form function occurs 
at (ka)R.•=7.4. For a sphere this lowest frequency re- 
sonance is also associated with the Rayleigh surface 
wave 3'4 and occurs at 

( a).q,l=• C,/C. (32) 

The aided factor 1/2 between Eqs. (31) and (32) for the 
cylinder and sphere is discussed by Uberall? 

Until the recent application of the T-matrix approach 
to elastic boundary value problems, and the extension 
of these T-matrix computations into the resonance re- 
gion, no midfrequency analytic computations were pos- 
sible for finite bodies other than the sphere. It is ex- 
pected that the Rayleigh wave resonance will also be 
the initial elastic behavior observed in the form 

function for other smooth, finite, symmetric targets. 
If it is assumed that the Rayleigh resonance null occurs 
in the form function for a prolate spheroid then the 
following prediction can be made. 

1.50 

1.20 

0.30 

0.0000 

WC 

Sphoro 

2.00QO 3.00GO 4.0000 5.0000 0.0000 7.0OOO 8.0000 9.0OQQ 1Q.QOQQ 
kl 

FIG. 4. The form function of a submerged tungsten carbide 
sphere. 

TABLE I. A comparison of null positions predicted from re- 
sonance considerations with nulls obtained from the T-matrix 

computation. 

(ka) t (/•a)• 
from geometric from form 

b/a considerations functions 

0.5 9.6 9.6 

0.6 9.1 9.2 

0.7 8.7 8.6 

0.8 8.2 8.3 

0.9 7.8 8.0 

Consider a sphere of radius a circumscribed about 
the spheroid seen in Fig. 1. The form function of both 
of the targets is defined as 

f= = (2•/a)(p,/po)(= 1 for a rigid sphere), (33) 

where p, and Po are, respectively, the steady-state re- 
fiected and incident pressure amplitudes. Based on the 
their respective cross sections, the rigid body or back- 
ground form function for the prolate spheroid should 
be, in general, smaller by a factor b•/a • than th:•t for 
the circumscribed sphere • at end-on incidence. Addi- 
tionally, if the perimeter of the elliptical cross section 
ADA in Fig. 1 is given by P=P•a, then at end on inci- 
dence the ka value at which the Rayleigh wave reso- 
nance occurs (ka)x for the spheroid should be related 
to the corresponding sphere resonance position (ka)•.x 
(Fig. 4) by 

(•a)•: (2•/P•)(•)a,•. (34) 

Table I compares the resonance positions observed in 
the form functions shown in Fig. 2, and values com- 
puted from Eq. (34). The greatest difference is 2.5%. 

VI. SUMMARY 

The T-matrix formulation allows the computation of 
the acoustic scattering by submerged, finite targets to 
be obtained into the mid or resonance frequency range. 
Computations of the scattering by an elastic prolate 
spheroid were obtained for the first time by applying the 
T-matrix method. The resonance nulls occurred at the 

ka values predicted by resonance considerations.. 
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