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Addition theorems for spherical wave solutions of the vector Helmholtz equation are
discussed. The theorems allow one to expand a vector spherical wave about a given origin into
spherical waves about a shifted origin. A simplified derivation of the results obtained earlier by
Cruzan [O. R. Cruzan, Q. Appl. Math. 20, 33 (1962)] is presented.

i. INTRODUCTION

In many physical problems it is necessary to expand a
multipole wave centered about a given origin into mulipole
waves centered about a shifted origin. In this article we con-
sider the expansion of spherical wave solutions of the vector
Helmbholtz equation. These are the well-known L, M, and N
waves of electromagnetic theory.! The expansions are re-
ferred to as addition theorems since the expansion coeffi-
cients themselves satisfy the scalar wave equation.

Addition theorems for vector spherical waves have been
found earlier by Stein® and by Cruzan.® They started from
the addition theorem for scalar spherical waves,* which is
recalled in Sec. II of this article. The addition theorems for
the L, M and N waves are then derived by a tedious calcula-
tion in spherical coordinates. We sketch the procedure in
Sec. III.

An independent derivation along the same lines for the
special case when the origin is shifted in the z direction was
given by Langbein,’ who was led to a different form which is
not related in an obvious manner to the results of Stein® and
Cruzan.> Langbein’s® expansion was generalized to arbi-
trary directions of the shift vector by Gérardy and Ausloos.®
In the resulting form of the expansion the coefficients do not
obviously satisfy the scalar wave equation. This makes the
expansion of Ref. 6 less elegant and less satisfying from a
theoretical point of view.

In Sec. IV of this article we show that addition theorems
in the desired form may be derived straightforwardly and
quickly from an extension of the scalar wave addition
theorem to tensor multipole fields. The basic theorem was
found by Danos and Maximon,” who derived an addition
theorem for tensor multipole fields by coupling unit tensors
to both sides of the scalar equation and using known quan-
tum mechanical angular momentum algebra. We refer to
their article for an interesting review of the history of the
problem.

In Sec. V we compare in some detail with Langbein’s’
results. Throughout this article we adhere to the notation
used by Edmonds.?

Il. SCALAR WAVE ADDITION THEOREMS
The scalar wave equation

Vi + k=0 2.1)
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has spherical wave solutions
¥, (r) =j;(kr)Y,, (6,@), (2.2)

where j, (kr) is a regular spherical Bessel function and
Y,.. (6,¢) is a spherical harmonic. We wish to expand the
solution ¥,,, (r) into spherical waves centered about a shift-
ed origin. The expansion yields the simplest wave addition
theorem. We consider the three vectors r,p, and r’ related by

r=p+r, (2.3)
and expand the corresponding plane-wave identity
o — plpghr’ (2.4)
into spherical waves using®
(2.5)

&% =4r Z L, ()Y 3 (Gpr) .

Multiplying (2.4) by Y, (6, ¢, ) and integrating over the
directions of k one obtains

\Illm (r) = z A ;’:‘m' (p)‘l,l’m’ (r,) ’ (2‘6)
I'm’
where
A;’,’:m,(p) =3 cm|l'm'|Au)¥,, (p), 2.7)

Ap

with coefficients
c(Im|l’'m’'|Ap)

= AT (= )m4r(2 4 1) 2+ 1) (24 + 1]

X(I I’ /7.)( I /1)
0 0 O/\—m m' u/’

The coeflicients arise as integrals of products of three spheri-
cal harmonics'®:

(2.8)

c(im|l'm'|Ap) = 41ri"+“’f Y. Y% Y% dQ.
(2.9)

They are related to the coefficients in the expansion of a
product of two associated Legendre functions:

PTPY =Y a(l'm'|Au|hPT +# (2.10)
[
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by?
c(m|l'm'|Ap)
=i1'+/1—1[447(21'+1)(741+1) 12
2+ 1
d+md’ —mNA —H)!]lﬂa(l'mllj,pll)
(—m)(" 4+ m"HUA + p)! ’

(2.11)

where m =m’ + p.

The addition theorem (2.6) may be generalized to sin-
gular solutions of the wave equation, which are the product
of a singular spherical Bessel function and a spherical har-
monic. In the following we generalize (2.2) to

¥, (r) =f(kr)Y,, (6,p), (2.12)
where f; (£) is any of the spherical Bessel functions j, ({),
y1(£), BV (£), or h (P (£). The regular solution (2.2) will
be distinguished by a superscript: ¥}, (r). The generaliza-
tion of (2.6) then reads’

Vi, (r) = cm|l'm'|Ap) ¥, (x IV (),

I'm'
Ap

(2.13)

wherer _ is the smaller and r, is the largerof pandr’. Itis
understood that ¥, (r) and ¥,.,,. (r, ) contain spherical
Bessel functions of the same type. Clearly, the expansion
(2.13) thay be written in two ways. We may either write

W, (6) =3 AE(r )Wy (r, ), (2.14)
'm'

or

V), (1) = 12 Aln (r O (xL), (2.15)

where we have used the symmetry of the coefficients
c(Im|l'm’|Ap) in the pairs (/'m’) and (Au) which follows
from (2.9).

Ill. VECTOR WAVE ADDITION THEOREMS
The vector wave equation
VE+k’E=0 (3.1)

has spherical wave solutions that may be derived from scalar
potentials which are solutions of the scalar wave equation.
Thus one finds the three vector spherical waves'

Ly (r) =k 7'V, (1),
M, (1) = VX (Y, (D),
Nyp (1) = k TR [ VXY ()] -

The L wave is longitudinal and the M and N waves are trans-
verse. The latter are related by

3.2)

M, =k 'VXNyy, Nop=k 'VXM,,. (3.3)
More explicitly, the solutions may be written as
L (r) =[1/(2T+ DYf5_ (kr) A (6,9)
+ [/ (T + D15, 1 (kr)Byy (6,9) ,
M, (1) =f; (kr)Cj (0,00) (34)
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N (1) = [(J+ 1)/ (2T + D15 -, (k) Ay (6,9)

—[J/7Qr+ 1)]f]+ 1 (kr)B,, (8,9) ,
where the vector spherical harmonics are given by

Y,y 1 9Y,y
A, =JY, e € -
™ me e %t e dp °
Y 1 Yy
B = — J 1 Y e, € - e ]
™ (+)’”+ae"sinoa¢"
1 Y,y Y p

Ch = e, — e, . 35
M sin0 dp ° 0 ° (3

The latter are related to the normalized vector spherical har-
monics defined by Edmonds’! by

A=W+ 1D Y, 1
B =vU+DQQI+1D) Y000,
Coy=—NJT+1)Y,.

The angular momentum operator for the vector waves is
J=L+S, where L= — irXV and S is the spin operator
for spin 1. The vector spherical waves (3.4) are eigenfunc-
tions of J 2 with eigenvalue J(J + 1) and eigenfunctions of J,
with eigenvalue M.

By applying the operator k ~' V_ to (2.14) and noting
thatr =r_ +r,, one finds the addition theorem

(3.6)

Lu(m =3 AT (0 Iy (r,) . 3.7
J'M'

In the same manner, by applying the operator kK ' V_ to

(2.15), one finds

Liy(r) =Y A (LS, (). (3.8)
J'M’

A similar method may be used for the derivation of addition
theorems for the M and N spherical waves. One starts from
the definition of M, (r) in (3.2) and applies either the op-
erator V. X (r to (2.14) or the operator V_ X (r to (2.15).
These procedures each yield an addition theorem for
Mj,, (r). The addition theorems for N, (r) then follow
from (3.3). The first procedure leads to

Mo () = 3 [F5 0 My (5, )
J'M'

+ sz;: (r, Ny () ] ’

3.9)
Nou (1) = ¥ [GU5 (x OMyy (1)
J'M’
+ F5(r ONppp (1) ]
The second procedure yields
My (n) =3 [FP (r. M), ()
J'M’
+G™M (v, Nf,,. (r )],
(3.10)

Ny (r)= Y [GY, (r. )M, (r.)
J'M’

+ FM (e NG, (r )]

Explicit expressions for the coefficient functions F ",’f’M, (p)
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and G7% . (p) may be found by a tedious calculation in
spherical coordinates. The calculation was first performed
by Stein? and by Cruzan.? An independent derivation for the
case where p points in the z direction was given by Lang-
bein.® Cruzan’s’ result for the coefficient function 7%, . (p)

may be written as
F . (p) =;f(JM \'M'[Ap)¥,, (p) (3.11)
m

and his coefficients f (JM |J'M ’|Ax) may be cast in the forin]

gUM |J'M’|Apu) =

[+ —ADT+A=TVA+T +T+ DA +T =T+ 1)]?

JU+ D) +J'J'+1)—AA+ 1)
27+ 1)
Xc(JM |J'M'|Au) . (3.12)

Similarly, the coefficient function G ';'E’M . (p) may be written
in the form

FUMIM |Ap) =

GM.(p)= %;g(JM J'M' AV, (p) , (3.13)

with coefficients

(3.14)

'V'+ D

where, in analogy to (2.8), the coefficients d(JM |J'M’'|Au)
are given by
d(JM |J'M'|Au)

-J’+:1—J( _ l)M+1

=i

X [4m (2T + 1)+ 1)(24 + 1)]V?

(J—l J’ /1)( J J /1)
x 0 0 0O\—-M M u
Using Edmonds’® relation (3.7.16) one sees that (3.14)
differs in sign from Cruzan’s® result. The sign error in Cru-
zan’s result was also noted by other authors, '*!?

The derivation of the results (3.9) and (3.10) following
the method outlined above is lengthy and tedious. In Sec. IV
we show how these results may be derived more quickly and
more elegantly.

(3.15)

IV. IMPROVED DERIVATION

An improved derivation of the addition theorems for
vector spherical waves may be based on the generalization of
the scalar addition theorem (2.13) to tensor multipole fields
as presented by Danos and Maximon.” Tensor wave fields
are defined by coupling unit tensors to the scalar fields, for
example,

W (r)y=fi(kr) ¥ (Im'Ss'(ISIM) Y, (8,9)&"
m's'

=f,(kr) [YU1(#) x&S1] 5! (4.1)

in the notation of Fano and Racah.'* By coupling unit ten-
sors to both sides of the scalar addition theorem (2.13), one
finds
Yy =¥ STIIMI'TM | )
ITH
An

xWl (e L), (4.2)
with coefficients
cSHWIIM ' 1'M | Au)

= il'+l-—l( _ l)S—M

X[4r(WJ+ 1)1+ 12T+ 1)
X'+ 12+ 1)]V2

X(l I /1)( J J ,1)[,1 J’ J] @3)
00 o/N—Mm M ulls 1 ] ™"
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dIM|J'M'|Ap) ,

L
(we have corrected the prefactor given by Danos and Maxi-
mon’). An alternative generalization of (2.13) is

Yin(® = Y cSVIIMTI'M |Ap)

JiUM’
Ap
XW N (r YW, (r, ). (4.4)
For S = 1 the definition (4.1) becomes
WA (0 =W, (r) = £,(kr)Y ;100 (6,0) (4.5)
and (4.4) becomes
Vi (r)= Y IIMITUM |Ap)
JrM’
Au
XWE o, (r )Y, (). (4.6)

Here the orbital quantum numbers / and /' can take the val-
uesJ—1,J,J+ landJ’' — 1,J',J' + 1, respectively. It is
clear from (3.4), (3.6), and (4.5) that ¥,,,(r) is just a
linear combination of L, (r), M, (r), and N, (r) waves.
The addition theorems (3.8) and (3.10) therefore follow
from (4.6) by simple operations with 3X3 matrices. We
recall that the symmetry properties embodied in the form of
the addition theorems (3.8) and (3.10) are due to the vector
field relations (3.2) and (3.3). We may use these symmetry
properties to simplify the expressions for the coefficients.
Thus we find for the coefficient function F7% , (p),

M _ J ( J + 1) 172
P ® =75y

x ;cm (JIMJ'T'M' A, (p)  (4.7)
"

and for the coefficient function G 7%, (p),

J(2J+ 1) 172

G () ="[J'(J’ +1)

% ;clll (JJ — LM \\J'T'M’'|Au)¥,, (p) .
1

(4.8)

Substituting (4.3) for S =1 and using expressions for the
Wigner 6f symbols given by Edmonds,'® we hence obtain the
expressions (3.11) and (3.13).
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V. DISCUSSION

An important feature of the addition theorems (3.9)
and (3.10) is that the coefficient functions 7"/ , (p) and
G 7% . (p) themselves are solutions of the scalar wave equa-
tion. Langbein® has derived an addition theorem for vector
spherical waves for the special case where p is directed along

the z axis. His result (5.36) is of the form (3.10), with

FP . (—ae,) =f.V¥*(ka)b

i 'L MM’ ! (5.1)
G . (—ae)=f" W¥*(ka)s,,,. ,

with coefficients

F:{,' =(_1)J+M

-_ g 172
X [(2.1+ (I +1) (J—-M) (J M)!]

J+M (V' + M)

and functions
VM (O =UM () —{(' —M+1)
[+ DI+ DU, (D
A +M/T @+ DKUY (),
WM () =iM[J'(J' +D]EUR. (), (5.3)
withU¥, = U¥, and for J<J',

Jr’ 'J
2 MJ-—M
Us.(©) =(E) 3 (-

NJ—v+ DD —v+ )T (M+v+14)
LJ+J' —M—v+ HTM+HTQ)

J+J -
(J—M-—IJ' —M—v)W
X(-’+J' —M—- 2V+% )f:]+J‘—M—2v (;) .
(54)
(We note that the functions ¥ and W employed by Gérardy
and Ausloos® are slightly different. )
Langbein’s functions U}, () are defined from his ver-
sion of the scalar wave addition theorem. Comparing his Eq.
(5.34) with (2.15) for p = — ae, we obtain

X

_ 24 1\172
Uk =[r5] S- 0t (EH)

Xc(JM |T'M|A0)f, (&) . (5.5)

Cruzan’s relations (16) and (19), when specialized to
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p = — ae,,agree with (5.1) and (5.3) when (2.11) and the
above expression (5.5) for U J"j (£) is used [except for the
opposite sign in the function W, (£)]. From (3.11) and

(3.12) we find by specializing to p = —ae,,
- 2441712
VM, — M’ 1 — 1 A [___]
RO T I AV B

X fUMT'M|A0)f,(8), (5.6)

with 'J‘j defined by (5.2) and f (JM |J'M'|Au) defined by
(3.12).

The validity of (5.5) may be proven directly from (5.4).
One first proves the identity for M = J and then uses the
recursion relation (40) derived by Gérardy and Ausloos® to
obtain the relation for general values of M. Similarly it
should be possible to show (5.6) directly from (5.3). The
derivation of (5.5) and (5.6) from the addition theorem is
more straightforward.

For general directions of the connecting vector p the
coefficient functions appearing in the addition theorems
(3.9) and (3.10) have the desirable property that they are
solutions of the scalar wave equation. Gérardy and Ausloos®
have generalized Langbein’s® addition theorem to arbitrary
direction of p by performing a rotation of axes. This more
general form is complicated and it is not evident that the
coeflicient functions satisfy the scalar wave equation.

In conclusion, we note that the addition theorems
(3.7)-(3.10) may be used to derive similar theorems for the
solutions of the equations of linearized hydrodynamics'S
and elasticity.’
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