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A formula is derived which expresses the perturbed scattering amplitudes of a combination of two arbitrary
cylinders as a function of the unperturbed scattering amplitudes of the individual cylinders. The formula
is valid when the spacing of the scatterers is large compared to their dimensions. It involves derivatives
of the scattering amplitudes with respect to the angles of incidence and of observation. Interaction terms
of degrees d4, a1, and d-¥ are taken into account, where d is the spacing. Verification is obtained in a
special case. The result is employed to calculate the total scattering cross section.

1. INTRODUCTION

HE present paper deals with the diffraction of

plane electromagnetic or acoustic waves by a
pair of parallel cylinders of arbitrary shape. The
diffraction by each cylinder, in isolation, is assumed
known, and the diffraction by the configuration is
calculated explicitly, in terms of these data. An approxi-
mation is involved which will be described below.

The question of multiple scattering has already been
treated, but in less detail, by a number of writers. A
brief sketch of the history of the problem follows, with
emphasis on those treatments of the problem whose
accuracy increases with the spacing. We recall the work
of Reiche and Schaefer,! who were the first to have
given a wave theoretical discussion of the finite grating
of circular cylinders. These authors neglected the
interaction between the cylinders; their work was
therefore valid, in principle, in the limit of large spacing.
A very general expression for the diffraction by an
arbitrary assemblage of circular cylinders was given by
Twersky,? who took all orders of interaction intoaccount.
The method depended heavily upon the separability of
the circular geometry, and the most general form of the
result was too complicated to be discussed. However,
Twersky found that, if he proceeded to the limit of
large spacing, he could simplify his result immensely
and achieve a perspicuous discussion of the correction
to single scattering. This work gave a correct account
of terms of degree d—* and d~! in the spacing.

This success led to a general investigation of the
large spacing approximation by Karp,® who showed
that for cylinders of arbitrary shape, the leading terms
of the interaction correction could themselves be ex-
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pressed explicitly in terms of noninteraction or single
scattering results, the latter being regarded as given. In
fact, the interaction term could be regarded as being
composed of the response of each cylinder to a plane
wave arriving from the direction of the other cylinders.
The techniques of Karp?® were exploited by Karp and
Radlow* and by Karp® in the analysis of a grating of cyl-
inders. Similar methods were used by Karp and Russek®
in expressing the approximate solution to the problem of
diffraction by a wide slit in terms of the well-known
solution for the half-plane problem.

The purpose of the present paper is to extend the
work of Karp?® so as to take into account higher order
terms. Just as in reference 3, the cylinders are arbitrary,
and the scattering by each cylinder in isolation is
assumed as given. But, it is found? that even the higher
order correction terms can be calculated generally,
simply, and explicitly in terms of the single scattering
data used in reference 3 for calculation of the leading
terms. This is the principal result of the present paper.

The general calculation was carried out so as to
include all effects of order of magnitude d—%, 47, and
@}, where d is the spacing of the cylinders. For purpose
of comparison, Twersky’s calculation for a pair of
circular cylinders was continued so as to include terms
of order d~¥; this special calculation by the repeated
application of additional theorems was then shown to
agree with the general result of the present work, when
the latter result is specialized to the case of circular
cylinders. The result is used to calculate the total
cross section for a pair of circular cylinders as a function
of the spacing and the known unperturbed (or non-
interaction) scattering amplitude functions.
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MULTIPLE SCATTERING. 1

2. STATEMENT OF THE PROBLEM AND OF
THE METHOD OF ANALYSIS

We would like to know the scattering pattern of a
combination of two infinite parallel cylinders in terms of
the scattering patterns which these cylinders would
have if they were isolated from each other. In other
words, we want to obtain a functional relationship
between the unperturbed and the perturbed scattering
patterns of the cylinders. Such a relation is desirable
because it simplifies the calculation of the pattern for
the combination. If we can calculate the unperturbed
patterns, we need only insert them in this relation to
obtain the perturbed patterns. The relation is useful,
moreover, even if the shapes of the cylinders are so
complicated that we cannot separate variables or if
calculation by separation of variables is too tedious.®
Also, in such cases, the unperturbed patterns might be
measured experimentally for all angles of observation
and these unperturbed patterns might then be sub-
stituted into the relation obtained here to yield the
perturbed patterns.

The situation is the following: A plane wave of unit
amplitude is incident upon the two parallel cylinders
4 and B (Fig. 1).

To avoid ambiguity in the definition of the spacing d,
we define a coordinate system for each cylinder. Let 4’
and B’ be circular cylinders circumscribed about 4 and
B, respectively. Let ¢ and b be the respective radii of
A’ and B’. We shall let Z, be the axis of 4" and Z; be
the axis of B’. The problem is two dimensional, and
we shall operate in a plane perpendicular to the Z axes.
The respective intersections of this plane with the Z,
and Z, axes will then be the origins of the coordinate
systems of 4 and B. We can now define the spacing d
as the distance between the axes of 4" and B/, that is,
the distance between the two origins (Fig. 1).

We make the following assumptions:

(1) The individual complex scattering pattern is
known when each cylinder stands alone in space.

(2) d>\ where \ is the wavelength of the incident
wave.?

(3) @>>a and &>>b.

Our object is to find a functional relation between
the scattering pattern of the combination and those of
the isolated component cylinders. This cannot be
accomplished by simple superposition of the unper-
turbed patterns of the components since the individual
pattern of each component cylinder is modified by the
field scattered by the other cylinder. We must, therefore,
consider the interaction.

& See reference 4 for the use of an even less accurate relation
for theoretical purposes.

@ Numerical calculation in reference 5, which are based on a
less accurate procedure, showed that & could be as small as one
wavelength without impairing the accuracy materially. The
present result would, therefore, allow an even smaller spacing,
provided the cylinders are kept sufficiently small compared to the
spacing.
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F16. 1. Plane wave incident upon two parallel cylinders.

We shall assume that the response U, of each
cylinder to a plane wave is of the form

A )

r} a0

1)

for large r,

where 7 is the distance from the axis of the circumscribed
circular cylinder, @ is the angle of observation, and
is the angle of incidence. Both 8 and 6 are measured
from the x axis of each cylinder. The x axes are collinear
with d.

As will be explained below, at a sufficiently large
distance from the cylinder, the scattered field U,
resembles a plane wave. This approximate plane wave
elicits a response from the other cylinder, perturbing
its scattered field. This response also has the form (1)
and in turn perturbs the field scattered by the first
cylinder. We can carry out successive calculations for
this process until the desired order of accuracy is
obtained. When the perturbed patterns have been
calculated, they can be superposed.

We shall deal, in this paper, with interaction terms
of degrees d%, 47, and d~%. The procedure involves a
new kind of expansion of the waves scattered by each
cylinder about the origin located in the other cylinder.
In order to ensure that all terms up to order d—* are
contained in the result, we must include them in the
first expansion. We then find that the field scattered by
a given cylinder can be represented, in the neighborhood
of the other cylinder, as a plane wave, plus additional
terms which are recognized as derivatives of a plane
wave with respect to its angle of incidence. The simple
way of expressing the higher-order excitations is what
enables us to calculate the higher-order responses
conveniently.

3. EXPANSION OF THE SCATTERED WAVES IN
TERMS OF PLANE WAVES

A. Expansion of the Response of Cylinder 4 in
a Neighborhood of Cylinder B

Let us consider what happens when a plane wave is
incident upon A. The wave function for a plane wave
(Fig. 2) is

U ;=explik (%4 cosfo+va sinfo) |, )
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F1c. 2. Coordinate system for
cylinder 4.

The wave scattered by A in response to the plane Fic. 3. Coordinate system for expansion in a neighborhood
wave is represented by an asymptotic solution of the of cylinder B.
reduced wave equation.

D.E (A+E)U =0, 3) “p” as a matter of convenience. Then

The boundary conditions are such that the diffraction G lds iky? ikxy’— k% »
problem for each cylinder, and for the combination, is gl =gkt )[1'*‘*2;"“———‘(12 + 0@, (8)
well posed. They may be, for example,

@ U=0 i @ 2y
B.C. {or (b) dU/dn=0 4) =(1/d)— (x/2dH)+ 0@, (9)
or (c) CU+D(U/on)=0, ri=d-i[1—§(x/d)+0(d~?)]
= 4 —4

where dU/dn is the normal derivative of U, and C and (1/dh)+ 0@, (10)
D are constants. Alternatively, one or both of the 8,=arctan(y/d+x)
cylinders may be filled with dielectric materials. = (y/d)— (xy/d®)+ 0(d=®), (10a)

The radiation condition for an outgoing wave, i.e., £29(6,80) = £+°(0,80)+[Ds fx2(0,60) 18

oU D £,90(0,80)(62/2)+- - -, (10b
lim ,g[__,-w]ﬂ, ) +[Df,(0,80)1(62/2)+ -+, (10b)
or where Dy=9/06. By using (10a), we can rewrite (10b)
- . in the form
is imposed on all scattered fields which occur.
The solution of (3) has the form £220(8,80) = £5(0,8)+[Daf%(0,60)1(v/d)
U=U+U,, (6) —[Dsf22(0,60) 1 (xy/d?)

+LDe*fa%(0,80) 1(y*/2d)+ 0(d=). (11)
where U is the incident field and U, is the field scattered

by cylinder 4. We assume that U, may be represented On substituting Eqs. (8)-(11) into (7), we obtain
in the asymptotic form

_ tky? ikxy’—Ltkiyt
ethra flaO JO= eﬂc(d+z)[1 4t @(d—3)]
Us= )%[fo"°(0a,0o)+—(0a,0o)+ ﬂ(rﬂ)]. (7 2d a2
7a Ta
1 =«

The letter “a” signifies that the variable in question [———""l' @(d"%)]
refers to cylinder A, and the superscript “a0” signifies at 2d}
that the pattern is unperturbed. If, as we have assumed, X4 [£e®(0,80)+Ds%(0,60) (y/d) + 0(d—%) ]

B is sufficiently small in relation to its distance from 4,
then the wave scattered by A is practically a plane 1

wave in the neighborhood of B, and we may imagine +’_§[f 1(0,60)+ 0(@) ]
such a wave incident on B. We can demonstrate an d

explicit representation of this approximately plane

wave by expanding U, in a neighborhood of B. We U00=eik<d+x>[
shall express the expansion in powers of ¢ in a rec-

tangular coordinate system with origin at the center of . N fan w w
B’ and carry out the calculation up to order d—*. The L—g(—x—}-zky )fa?(0,80) +3Defo(0,60) +f1(0,60)
calculation proceeds as follows. Let P be a point in the ' di

neighborhood of B (Fig. 3). Let r,=the distance from

the axis of 4’ to P. We see from F ig. 3 that 7,= [(@+x»)? + (‘J(d“*)]. (12)
4213, and we shall henceforth omit the subscripts “a”,

f020(0,80)
&
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MULTIPLE SCATTERING. I

We have thus obtained the field scattered by 4 as
it appears in a neighborhood of B. We must now carry
out the corresponding expansion for the field initially
scattered by B. Note that the leading term of (12) is
a plane wave, i.e., a constant multiple of %2, as we
explained earlier.

B. Expansion in a Neighborhood of A for the
Wave Scattered by B

The same type of procedure as that used above gives
us the expansion in a neighborhood of 4 of the wave
initially scattered by B. The expression here correspond-
ing to (12) is

(.0
U= gik(d—2) [M
d:
3 (xiky?) fo¥ (m,80) — y Do fo** (m,80) + f1**(m,60)
i
at

+ e(d—%)]. (13)

The unperturbed fields scattered by either cylinder,
(12) or (13), are the excitations of the other cylinder.
We assumed, to begin with, that we knew the unper-
turbed response of each cylinder to a plane-wave
excitation for all angles of incidence. If (12) and (13)
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were plane waves, we could calculate the responses for
the second scattering.® (12) and (13), however, are
not plane waves, but this impediment does not prevent
the calculation of the effect of further scattering. The
reason is that (12) and (13) may be represented in terms
of plane waves by appropriate substitutions. This
representation, which will enable us -to calculate
successive scattering, will now be given.

C. Expression of the Scattered Waves in
Terms of Plane Waves

We can reduce the further scattering of singly-
scattered waves to the scattering of plane waves by
expressing (12) and (13) in terms of plane waves and
derivatives of plane waves. On noting that a plane wave
is represented by

(o) = exp[ik (x cosfe+y sindo) ], (14)
we observe that
thye®®=10y(0) (15)
— ikye™ %% =yao(w) (16)
ik (— 2+ iky?) e = 0000 (0) (17)
ik (x-+1ky?)e %= = vogag (). (18)

Substitution of (15) and (17) in (12), and of (16) and
(18) in (13) yields the following representation of the
scattered fields in terms of plane waves:

+ @(d—*)] (19)

[ o gt d[‘v (0)/0%°(0,00) | (1/2ik)[Das’0(0)1/0%(0,80)4-(1/ik) [ Doaw(0) 1Ds f5(0,80) +v(0) /(0,80
q =€ P T 7

[ gt d[” () fo¥(mr,80) L (1/2ik) [ Deo*v () 1 fo* (m,80)+ (1/ik)[ Dogv(x) 1 Do £62 (m,80) +v(m) L (,60)
&t ‘ 4t

D. Elimination of f;

We note that the numerators of (19) and (20) are
sums of terms, consisting of plane waves and their
derivatives, namely, the ¢’s, and coefficients which are
independent of 8, namely, the f’s. We see that these
formulas are expressed in terms of both fo and fi.
(For the meaning of fp and f; see reference 7.) An
advantage would result from the elimination of fj,
since we could then express the result in terms of the
scattering amplitude of the far field without having
to know the scattering amplitudes of further asymptotic
terms.

We eliminate f, by expressing it in terms of fo.
This can be done by means of a recursion formula. The
recursion is obtained by substitution into (3) of the
assumed asymptotic!! representation (7) of any radiat-

10 This would be the method used in reference 3.
11 The representation is asymptotic for large 7, 8, and % being
held fixed.

=+ e(d—*)]. (20)

ing solution of the reduced-wave equation. When we
equate the corresponding inverse powers of 7, we find
that

o= (1200 (1= 8 st Difas] (1)

This recursion is useful, also, for calculations of
higher degree than we are considering here. Since we
want to express fy in terms of fy, we need use it only
for the value n=1.

fr=(1/2ik)[% fot- Di fo -

This is a different type of recursion from that obtained
for large & by Keller, Lewis, and Seckler*? although it
is similar in form,

If we now substitute (22) into (19) and (20), we
obtain

(22)

127, B. Keller, R. M. Lewis, and B. D. Seckler, Communs.
Pure and Appl. Math. 9, 207 (1956).
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o)

4
o) f ) @)
R LS
. (1/2ik) [Doo?v (w) :] fobo(w,ﬁo) +(1 / ik) [Ddov(‘n') ]Dof ow(ﬂ',oo) +Q1 / Zik)’v(r)[ fow(r,oo) +Dg? fo® (1r 00)] tol- i)]
T 7
(1)

Expressions (23) and (24) represent the responses of
the cylinders to the original incident plane wave and
these responses are given near the other cylinder in
terms of the plane waves. Expressions (23) and (24)
are also excitations for the second scattering. Successive
application of these formulas will yield the desired
degree of interaction.

4. CALCULATION OF THE INTERACTION

We have expressed in (23) and (24), the fields singly
scattered by A and by B, as they appear in a neighbor-
hood - of the second scatterer and have, moreover,
expressed them in terms of plane waves and derivatives
of plane waves. We may now imagine this combination
of plane waves and their derivatives to be incident
upon the second scatterer. The linearity of these
expressions enables us to say that the responses of 4
and B to incident derivatives of plane waves are equal
to the derivatives of the responses of 4 and B to the
incident plane waves. Since we already know, by
assumption, the unperturbed responses of 4 and B to
an incident plane wave, we have reduced the second
scattering to the previous case, namely, the first
scattering.

If we carry out this process to the extent of three
successive scatterings, we can obtain interaction terms

F16. 4. Normalized coordinate systems.

Downloaded 19 May 2008 to 140.121.146.149. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

of degrees d—*, d-, and d—*. The terms of degree d*
result from double scattering, those of degree 47!
result from triple scattering, and those of degree d~}
result partly from double and partly from quadruple
scattering.

For the sake of simplicity, the following results will
be expressed in a normalized coordinate system (Fig. 4)
with a common origin midway between the origins of
the coordinate systems located in the scatterers. As a
matter of convenience, we shall omit the subscript zero
from the f’s.

Let a be the angle of incidence of the original plane

wave. The perturbed patterns will then be
Jo(B0) =4 o ,0)

N eikid cosaeskdfbﬂ (W’a)faﬂ (0,."-)
F d;
g e (0, 0) 4, 0) (0,

]
+

eik}d cosaeikad

+wa (W:a) faO (OJW) fb() (T’O) fao (0:7")
eik%d cosaeikd
(1 ,0) Doo® f2 (0,7
() Du 4 (0)
+2D, % (r,a)Doof““ (0,7") + [%fw (1!',(2)
+Dy? f¥ () ] 0 (6,m))+ 0@, (25)
and .
e—ik*}d cosaeikd
Jb(8,0) = eitbd oo f10(6 o)+ 1(0,2) /*(8,0)

eik}d cosaeilczd

() (2O 00)

e—ik%d cosaeik(id

+'—Tf “(0,2) f*(x,0) f(0,7) f*(8,0)

e ikkd cosaez'kd

a0(0, ) Dog? (6,0
@) Decf (6,0)

+2D5 f*0(0,0) Doo f*(8,0)+[1 /*(0,)

+Dgf(0,0)1f*(8,0))+ 0(a). (26)



MULTIPLE SCATTERING, I

We note that the successive powers of -1 in (25) and
(26} represent the various degrees of interaction. The
scattered far fields resulting from the interaction will
have the form

. 14
Uu:exp[zk(r-{; cosﬂ)}fa(e’a)’ @
and ik rld )
D= e, 9
r

where f*(f,c) and f°(f,c) arethe perturbed scattering
amplitudes given by (25) and (26). The sum of the

kT
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scattered fields has the following far-field representation
which is the sum of {27) and (28).

UatUs= (/) (2/xk)}e*IOF ), (29)

where F (ﬁ,a) is the scattering amphtude of the combina-

tion of cylinders. We see by comparison with (27) and

{28) that

F{8,0)= (wk/2)}ei/"exp(ikid cosh) f*(8,)
+exp(—ikid cosd) f2(6,)].  (30)

A more explicit formula for the far field is obtained by

combining (25), (26), (29), and (30). The far field
can then be written as follows:

aﬁi exp[ikhd (cost—cosa) 1fo0(8,e) 4-exp[ — ik3d (cost—cosa) 1/ (6,0)

) 4

&d

—i—;—g—[exp[ik%d (cosf-+cosa) ] fP(m,e) f2(8,x) +exp| ~ikid{cosB+cosa) ]f2(0,0) 12(6,0) ]

ik2d

+7[6Xp[ik%d (6080*-cosm)]f““(O,a)f”“(fr,O)f“"(ém)+eXp[“*ik%d (cosh—cosa) 1f*(m,c) f(0,m) f*(8,0) ]

ik3d

+%E6Xp[ik%d(msﬂ+m&x)]f () f(0,5) f4(,0) 2 0yr)

~+exp[ —ikd (cosf+cosa) 1f(0,0) 1, 0) f0(0,m) f*(6,0) ]

exp[%k%d(ccsﬁ+casa)}(

2ikd}
+expl —~ik5d (ces&+cosa)](

We have presented in (31) a relation between the
scattered far field of the combination and those of the
component cylinders. We wish to point out that a
similar relation holds between the corresponding fields
at all points of space. But this relation will not be
detailed here.

5. SPECIAL CASE. SCATTERING BY TWO
CONDUCTING CIRCULAR CYLINDERS
The abstract relations obtained above can be
verified in the special case of scattering by two parallel,
arbitrary circular cylinders A and B with corresponding
sets of parameters ¢ and 4. For a single cylinder, say 4,
we have ‘

Uo= Z P00 H D (br,)eintte—a), (32)
i ]

where C,¢ is the appropriate scattering coefficient for

fb“(vr,a}l?sa“'f““(e,w)+2Def”"(ar,a}ﬂaef“"{9,x))
+ {3 2 @)+ D % (,2)} 1 (60,)
72(0,0) Dog? 1%0(0,0)+ 2D f=0(0,) Doo f2(8,0)

+o(@d-Ht (3D

+{$/(0,0)+Da? f*(0,0)} f*(6,0)

any of the usual boundary conditions; e.g., if the field
vanishes on the cylinder’s surface r=a, then C.°
= = J o (ka)/ H ;@ (ka) ; if the normal derivative vanishes,
we replace the functions J.(ke), H,®(ka) by their
derivatives with respect to their arguments, etc, The
use of the asymptotic form of H,®(kr,) in (32) yields
the far field

8%‘3::&; i 3

yaem { g—iﬁ& ..._.) 2 Cﬂtzgiﬁ{&-a} }
(ra)t wk/ =

e’ik?@

— ol &a, s
- a)%f (8ay)

(33)

where the function in braces is the unperturbed pattern.
Similarly, for cylinder B (whose radius and boundary
conditions differ in general from those of 4), we replace
a by bin (32) and (33).
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The corresponding perturbed pattern may be
obtained by specializing the general series of “Neumann
type” in Eq. (3) of reference 2; see reference 13 for a
derivation ‘of the series and for a .discussion of its

2\}
fo*(8,0)=exp[ —ik}d cosa]e"i’”‘(-—k) 2 Crteint—
T n
_%exp[ik%d cosa ]
ai

—iBl ih2d
+exp[ 1kd cosale - ( _2_ )
d T

exp[ikid cosa]e”‘“
+ g
ks
X Z (_l)cn”,aein"’(ﬂ—r)

n'’t

ZITRON AND S.
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physical significance. If we now expand this result in
inverse powers of d and retain all terms of degree &,
we find (with reference to an origin midway between
those of the cylinders)

2
l,_,;-ir/:Z(_k)Z (,_. l)n—lcnbe—-imx Z (__. 1)Cn,aein’(0——1r)
. n n’

Z C ae—zna z ( l)n’ IC b Z ezn"(ﬂ——r)

ntt

“((2) £ Comrn s (—ircu 5 -y

_Lexp[zkld cosa Jettd g2 . N - »
1 % (= 1):Cote 3 (~DL(n—n')'=FICo e o040, (39)
d? 2tk 1rk n’
2\1%
fo?(6,0) = exp[ik}d cosa Je— "/ ( -;) 2Cplein@
T 7
exp[ik3d cosaje*? 2
+ z e—zﬂrl2(__)2(_ I)Cnae—ina Z (_. I)Cn,bein’ﬁ
d% 7rk n n’
exp[ik3d cosa_e2d .
4 p —z31r/4( ) Z ( l)nC b —ina Z ( l)n —lcn, Z ( l)c ,bgin’’8
exp[ —ik3d cosa Je#3? 2\2
+ ? e—iw(_) Z (__ l)cnae—-ina Z (__ l)n'—lcn'b Z (__ 1)n”—lcn”a
d? wk/ = a Coar
X 3 (= 1)Cpoibein''e
_Lexp[—- k3d cosa Jeid e—irl2 4 2 . .
i — ) X Coteina 30 (= 1)[(0'—n)?—5]Cae™+0(dY), (35)
d? 2tk \wk/J = n’

which we shall first compare with the expansion of the
closed-form approximation given in Eq. (6) of reference
2. That approximation was first obtained by keeping
only the largest term of each order of scattering and
hence its expansion is not quite as accurate as (34) and
(35). To carry out the comparison, we specialize (34)
and (35) to the case of two identical cylinders (a=5).
Then, comparisen shows agreement so far as the non-
interaction terms and the terms of degrees d—* and d—
are concerned. The first of our terms of degree 4%
agrees with the term of order d—* in the expansion of
Twersky’s result. But our second term of degree d—*
is new. This is to be expected for the following reason.
The closed form referred to above is obtained by

18YV. Twersky, J. Acoust. Soc. Am. 24, 42 (1952).

summing the leading terms only, of the successive
orders of scattering, that is, the successive bounces.
Our term of degree d—%, on the other hand, contains
higher-order contributions from the second bounce, in
addition to the leading term of the fourth bounce.

The procedure used above for obtaining (34) and
(35) is long and tedious. These results need not be
obtained by that procedure. The use of the abstract
formulas (25) and (26) simplifies the -calculation
considerably and should do the same in any other case
where the scattering problems for the component
cylinders are separable. All we need do is substitute the
specific unperturbed patterns f*(f,e) and f¥(6,a)
into (25) and (26), respectively. The results follow
immediately and agree with (34) and (35), respectively.
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6. EXPLANATION OF THE RESULT

Expression (31) for the scattered far field of the
combination of two cylinders appears, at first glance,
to be complicated. However, it is not as abstruse as it
seems. A closer examination of these expressions
reveals the significance of these various terms and
factors. We note first that the terms are grouped in
increasing orders of accuracy. We note also that they
are grouped in pairs. The first members of each pair
represent fields ultimately scattered by cylinder 4,
while the second members of the pairs represent fields
ultimately scattered by cylinder B. The first pair
corresponds to single scattering while the other pairs
correspond to multiple scattering. The factors

exp(=tskid cosh)

represent the phase differences for the scatterers relative
to the point of observation, while the factors

exp(=£ikid cosa)

take into account the phase of the incident wave at
the center of a scatterer when the incident wave has
zero phase at the origin. The f’s containing a 8 depend-
ence are scattering patterns, whereas the f’s containing
specific values for 8 are excitation factors accumulated
in the multiple scattering. We note also that the factors
of the form e*"? where n=0, 1, 2, 3 refer to the increase
tkd in the phase of a wave in going from one scatterer
to another and that # signifies the number of bounces.
As an illustration of the above remarks, let us
consider some of the terms in more detail. The term

(e%7/7%) exp[ ik3d (cosd— cosar) ]f*(8,2)

would occur in the case of no interaction, i.e., in the
limit of infinite spacing. The factor exp[%skd(cosf)]
takes account of the fact that the origin is not at the
center of A. The positive sign preceding cosf shows
that the scattered wave came from cylinder 4. The
negative sign in the exponent of the factor exp(—ikid
Xcosa) shows that cylinder A4 received the initial
excitation. It gives the phase of the incident wave at 4.
The term

(ei*/r¥) exp[ikid(cosf+cosa) | fir,0 P fio,m ™

differs from the first term in the following respects.
The positive sign in the factor exp(-+3skd cosa) shows
that cylinder B received the original excitation as
does the factor fr,o®. The phase factor e¥*¢ represents
the increase of the phase of the wave in going from B
to 4.

I 401

1

F1c. 5. Plane wave normally incident upon two
parallel circular cylinders.

We shall now explain a typical term of the last
square bracket. The first term in the last square bracket
of (31) represents the scattering by A of a term of
order d—% initially scattered by B. The phase factor
¢ takes account of the travel of this wave from B
to 4.

The positive sign preceding cosa shows that cylinder
B was excited initially. The differentiation of the
scattering amplitudes shows the effect of a higher-order
excitation of 4 by the field initially scattered by B,
since the higher-order response of B, (which acts as an
excitation for A4), is representable, near 4, as a deriva-
tive of a plane wave with respect to angle of incidence.

The explanation of further terms in the final result
proceeds on the same lines as the explanations given
above. We omit these explanations for the sake of
brevity.

7. TOTAL SCATTERING CROSS SECTION OF A
COMBINATION OF TWO IDENTICAL
CIRCULAR CYLINDERS

We consider a plane wave normally incident on a
pair of identical circular cylinders. The circumstances
are illustrated in Fig. 5.

The computation of the total scattering cross section
o of the two identical circular cylinders is facilitated by
the use of (30) in conjunction with the following well-
known theorem!415:

o=—(4/k) ReF(x/2,w/2), (36)
where F(f,2) is the scattering amplitude (30) of the
combination. The phase factors are simplified for the
values #=w/2, a=/2. The fact that the cylinders are
identical enables us to write f'=f®=f®. Further
simplifications result from the geometrical symmetry
of the problem, namely,

POm)=f(r0), fx/2,0)=70,7/2)
=flx,x/2)=f(x/2, 7).

The total scattering cross section in terms of the

1Y, Twersky, J. Appl. Phys. 25, 859 (1954).
16 C. H. Papas, J. Appl. Phys. 21, 318 (1950).
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spacing is then

o=—(4/k) Re| (2wk)}eir/s)

8. ADDITIONAL REMARKS

It is clear that interactions of degree greater than
d~* can be computed by the inclusion of more terms in
the expansions used to obtain these results.

It is also clear that the method applies to cases of
more than two scatterers, but the computations would
be more tedious than in the case of two scatterers. The
computations might be simplified by using a “con-
sistency”” method employed in reference 3 rather than
tracing the successive scattering in detail. This method

N. ZITRON AND S. N. KARP

L8 T ) e P
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Y

(37)

involves a steady-state point of view. The response of
each cylinder is expanded in a neighborhood of each of
the other cylinders. Each cylinder will then be excited
by the incident plane wave and by an approximately
plane wave from each of the other cylinders. These
considerations introduce certain undetermined coeffi-
cients which can be determined by imposing the
requirement that the fields scattered by the various
cylinders be consistent with one another. Evaluation
of the coefficients will provide the solution.
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The method of Part I is extended to cover the three-dimensional scalar problem for two bodies of arbitrary
shape. All interaction terms of order ™ and d™2 are given.

1. STATEMENT OF THE PROBLEM

HE method employed previously in the case of
multiple scattering of plane waves by two widely
spaced cylinders of arbitrary shape can be applied,
also, to the corresponding three-dimensional scalar
problem for two bodies of arbitrary shape. The assump-
tions of spacing large compared to the wavelength and
the dimensions of the bodies and that the individual re-

* The research reported in this article was sponsored by the
Air Force Cambridge Research Center, Air Research and Develop-
ment Command, under contract.

} Present Address: Dept. of Engineering Science, The Florida
State University, Tallahassee, Florida.

1 Norman Zitron’s work in connection with Part II was per-
formed at Harvard University and was supported by the Office
of Naval Research under contract with the Gordon McKay
Laboratory.

sponses of the scatterers are known apply also to this
case.

The situation is the following. A plane wave of unit
amplitude

u= exp[ ik (x sinfy cospo+y sinf singo+2 cosfo)], (1)

where 6y and ¢, are the angles of incidence (see Fig. 1),
is incident upon the combination of two bodies. The
response of each body in isolation to the incident plane
wave is of the form

U= ff i f n (010074”4’0).

r n=0 re

@

Here we are referring to spherical coordinates, 7, 6, ¢,
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