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Scattering by two penetrable cylinders at oblique incidence.
I. The analytical solution
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The Mueller scattering matrix elements (S;;) and the cross sections for the scattering of an electromagnetic plane
wave from two infinitely long, parallel, circular cylinders at oblique incidence are derived. Each cylinder can be of
arbitrary materials (any refractive index). The incident wave can be in any polarization state. To find the
scattering coefficients needed for calculating S;; and the cross sections, the multiple scatterings are taken into
account for all orders. The formal solutions of the scalar wave equation are obtained for the three regions concerned
(the region outside the two cylinders and the region inside each cylinder), and the scattering coefficients are found
by satisfying the boundary conditions. The scattering coefficients for some special cases (normal incidence, small
radii, perfectly conducting cylinders, and a single cylinder) are given and discussed. The results for these special
cases are compared (numerically or analytically) with those obtained in other published works. To our knowledge,
this is the first comprehensive study of the two-cylinder problem. Applications of this formalism, including
calculations of S;; and the cross sections, will be presented in part IT of this series [J. Opt. Soc. Am. A 5,1097 (1988)].

1. INTRODUCTION

The scattering of electromagnetic waves from objects has
attracted the attention of many scientists. Lord Rayleigh!
was the first to obtain the solution to the problem of the
scattering of a plane wave from an infinitely long, dielectric
cylinder at normal incidence by using the original formalism
of Maxwell. Other problems have since been solved by
using somewhat different formalisms.

Adey? obtained the scattering coefficients for two coaxial
dielectric cylinders at normal incidence by solving the scalar
wave equation for the three different regions. The solution
was obtained by matching the boundary conditions between
adjacent regions.

The scattering of electromagnetic plane waves from an
infinitely long, dielectric cylinder at oblique incidence was
determined by Wait,3 who obtained the scattering coeffi-
cients by solving the scalar wave equation in the regions
inside and outside the cylinder. The boundary conditions
were then applied on the surface of the cylinder. Inthe case
of normal incidence, the two polarization modes, the TE and
the TM modes (see Section 2 for definitions), are uncoupled.
However, in the case of oblique incidence the two modes are
coupled.

The problem of determining the scattering of electromag-
netic waves from two or more cylinders at normal incidence
has been treated by many others. Twersky? obtained an
approximate solution for many parallel, conducting cylin-
ders at normal incidence by taking into account various
orders of multiple scatterings. In another paper, Twersky®
applied this method to two conducting cylinders.

Rows® solved the scattering of cylindrical and plane waves
by two parallel conducting cylinders at normal incidence
using the Green’s-function approach. When the proper
boundary conditions were applied, an infinite set of integral
equations was obtained, from which the scattered fields were
found. Row also did experimental work in the microwave
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region by measuring the electric fields in the near-field
region. To our knowledge, Row’s results are the only experi-
mental data published on this subject.

Millar” used an approach similar to that used by Row: to
find a solution for the scattering of an electromagnetic plane
wave from an array of parallel, infinitely conducting cylin-
ders of small radii.

Olaofe8 derived expressions for the scattered fields from
two infinitely long, identical, dielectric cylinders at normal
incidence. He obtained his solution by solving the scalar
wave equation and satisfying the boundary conditions.

Others extended or modified Olaofe’s solution to other
similar problems. Krill and Farrell® used Olaofe’s approach
to find the solution of the scattered electromagnetic plane
waves from two perfectly conducting, infinitely long half-
cylinders lying upon a perfectly conducting sheet. Ragheb
and Hamid!? derived the solution of the scattering of a plane
wave from a number of infinitely long, identical, conducting
cylinders.

The solution of the scattering of electromagnetic waves
from two cylinders of arbitrary material and small radii at
oblique incidence was obtained by Wait.!! Wait solved the
problem by finding the current distribution on the surface of
each cylinder from which the scattered field was derived.
He noted that the general case (cylinders of arbitrary mate-
rial and radii) was a complicated one.

The general solution of the problem of scattering from one
cylinder has been of great help to experimentalists. Howev-
er, there is no known general solution for the two-cylinder
problem in the literature. As mentioned above, the solution
exists for only some special cases: small radii, a perfect
dielectric, or perfectly conducting cylinders; the last two
solutions were obtained for normal incidence only. There
has been a great demand from experimentalists for a general
solution for the two-cylinder problem expressed in terms of
Stokes vectors and Mueller matrices. The purpose of this
paper is to obtain an analytical solution for the scattering of
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two infinitely long, parallel cylinders of different radii and
materials at oblique incidence, i.e., the completely general
case.

We believe that the solution presented in this paper will
have applications in biology, chemistry, atmospheric sci-
ence, and engineering.

In Section 2, the scattering coefficients are found by solv-
ing the scalar wave equation and applying the boundary
conditions. In Section 3, the Mueller scattering matrix ele-
ments (S;;) are expressed in terms of the scattering coeffi-
cients. In Section 4, expressions for the scattering and the
extinction cross sections are derived by using the Poynting
vector. In Section 5 special cases are discussed. Finally,
some discussion of the results is made in Section 6.

2. FORMALISM

The purpose of this section is to find the amplitude scatter-
ing coefficients of two parallel cylinders that are due to a
plane-wave excitation.

Consider two parallel, infinitely long, circular cylinders C,
and Co. Theradius of eachisa; (j = 1,2). The permittivity,
conductivity, and permeability of each cylinder are ¢;, o, and
u;, respectively, while those of the surrounding medium are
€, 00, and po. The two cylinders are located in two separate,
cylindrical coordinate systems O; and O,. The coordinates
of each system are pj, ¢;, and z. The axis of each cylinder lies
along the z axis. The distance between their centers is d.

The direction of propagation of the incident electromag-
netic plane wave makes an angle 6y with the axis of each
cylinder. The projection of the propagation vector kg on
the x-y plane makes an angle ¢o with the x axis, as shown in
Fig. 1.

We define the TM and TE polarizations (modes) of the
incident wave as follows: (a) The case in which the incident
electric field is parallel to the incident plane, i.e., the plane
that contains the z axis and the direction of propagation of
the incident wave, is referred to as TM polarization. (b)

Fig. 1. Two infinitely long, circular cylinders, C; and C,, are locat-
ed in two separate cylindrical coordinate systems, O; and Os. The
coordinates of each system are pj, ¢;, and z. The axis of each
cylinder lies along the z axis; the distance between their centers is d.
The direction of the incident field makes an angle f, with the axis of
each cylinder, and its projection on the x—y plane makes an angle ¢
with the x axis.
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The case in which the incident electric field is perpendicular
to the incident plane is referred to as TE polarization.

Any incident wave (a circularly polarized one, for exam-
ple) can be described as a superposition of these two polar-
izations, and we treat them separately.

A. Incident TM Waves

If we assume that ei“! represents the time dependence, the z
component of the incident electric field (Eiz’}c) in each of the
two coordinate systems is given by

Ei™ = Ey sin 6, exp[io(j — 1)] z i (Aop))
m

. X exp[—im(¢; — ¢o)llexp(ikyz cosby).  (2.1)

Here and in subsequent formulas, j = 1, 2, referring to each
of the two cylinders. J,, is a Bessel function of the first kind.
The incident wave is chosen to have a phase of zero at the
center of cylinder 1, so that 6 = kod cos ¢ sin 0, is the phase
of the incident wave at the center of cylinder 2. (The loca-
tion of the incident wave phase is, of course, arbitrary. Al-
ternatively, the phase can be chosen to be zero at the center
of cylinder 2 or at any other point in space.) )¢ and kg are
given by

Ay = kg sin 0, kS = —ipgw(og + iwep). (2.2)

Since the cylinders are infinitely long, the electric field
inside or outside each cylinder varies as exp(ikgz cos 6p). In
addition, the z component of the field (inside or outside each
cylinder) satisfies the scalar wave equation. If u represents
the z component of E or H, then

Viu + k% = 0. (2.3)

The z component of the scattered electric field from cylin-
der j can therefore be written as

Eﬁf" = Z af,’ng(,,z,)(Aopj)exp[—im(fb}- = ¢o)lexp(ikyz cos b,),

m

(2.4)

where a¥), are referred to as the TM scattering coefficients of
cylinder j. The index o of these coefficients refers to the
outside field. H? is the Hankel function of the second kind.
The Hankel function of the second kind is required because
it represents an outgoing cylindrical wave at infinity, consis-
tent with the use of a time dependence of ei«t,

Similarly, the z component of the electric field inside
cylinder j can be written as

Eizxj)side = Z a¥) Jn(Njpj)exp[—im(¢; — ¢o)lexp(ikyz cos 0;),

(2.5)

where al({;), are the TM internal (index i) coefficients of cylin-
derj. \jand k;are givenby

A = (k2 — K cos? 6p) "2,
kf = —ipjw(oj + iejw). (2.6)

Inthe case of hormal incidence, the scattered field and the
internal field do not contain cross-polarized components.
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In other words, the modes of the internal field and of the
scattered field are the same as the mode of the incident field.
For oblique incidence, the scattered wave and the internal
wave are a superposition of the TE and the TM modes,
regardless of the incident wave mode. Therefore the z com-
ponent of the scattered magnetic field from cylinder j can be
written as

Hgfa = z bg%HfE)()\jpj)exp[—im(fi’j = ¢o)]exp(ikz cos O),
m

2.7

where bY) are the TE scattering coefficients of cylinder j and
the z component of the magnetic field inside cylinder j is
given by

Hiside = Z b (Njp)exp[—im(d; — ¢o)lexp(ikez cos by),

(2.8)

with the TE internal coefficients bY).

The effective incident field upon one cylinder is equal to
the original incident field plus the scattered field from the
other cylinder. Ifyi"¢isthe original incident field, 3 is the
scattered field from cylinder 1, and ¢§® is the scattered field
from cylinder 2, then the total field (yt°'3!) outside the two
cylinders is

ll/total — winc + ll/slca + ‘p;ca' . (29)

With ¢ being the electric field, the z component of the
total electric field outside the two cylinders is found from
Eq. (2.9), with /¢, ¢35, and ¢5§° given by Eqgs. (2.1) and (2.4),
respectively:

Bt = (limEy sin 0 explis(j — D]p(\op;)

+ aQL HP (\p)lexp[—im(¢; — )]

+ aBH® (\op)exp[—im(d), — ¢o)])exp(ikyz cos b)),
(2.10)

wherej,k=1,20rj,k=2,1.

Similarly, the z component of the total magnetic field
outside the two cylinders is found from Eq. (2.9), with /inc =
0 and with ¥ and 5 given by Eq. (2.7):

Hal = Z (b HP (Agp;)exp[—im(e; — )]

+ b HO (\pp)exp[—im(gy, — ¢o)llexp(ikyz cosfy).
(2.11)

In order for the boundary conditions to be applied, the
electric field and the magnetic field outside cylinder j must
be expressed in terms of the coordinates of cylinder j. This
means that the scattered field from cylinder 2 must be trans-
formed as an incident field upon cylinder j. In other words,
(o, ¢1) in Egs. (2.10) and (2.11) must be transformed to (pj,
;). This transformation can be done by using the results
from Appendix A. Therefore Eq. (2.10) can be written as
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Etotal = Z ({i™E, sin 6, exp[id(f — D)]J,,(A\op;)

m

+ e HP (o)) + AR (Aop))}

X exp[—im(¢; — ¢o)])exp(ikyz cos ), (2.12)

where

4B = N (=)™ EDaBHE, (\d)explill — m)dql.
i

(2.13)
In a similar way, Eq. (2.11) can be transformed to
Hew = N (b0 HY (\p)) + Bl o))
X exp[—im(¢; — ¢o)]lexp(ikyz cos d), (2.14)

where

BY = N (-1 E-0pBHE, (\d)explill — m)g.
1

(2.15)

It should be noted that the total electric field in Eq. (2.12)
or the total magnetic field in Eq. (2.14) can be expressed in
terms of the coordinates of cylinder 1 (j = 1, & = 2) or
cylinder 2 G = 2,k = 1). The two expressions can be shown
to be equivalent. However, in the stage of applying the
boundary conditions, both expressions are needed, as is
shown at the end of this section.

All the incoming and outgoing fields of both cylinders are
contained in our formalism; i.e., all orders of multiple scat-
tering are included.

To apply the boundary conditions, expressions for E, and
H, (inside and outside each cylinder) must be found in terms
of E, and H,. They are obtained from Maxwell’s equations,

mkg cos 6,E7 OH}
Eg‘ = 1 0 OEZ + luw 1, (2.16)
k% — k2 cos? 0, (4 dp
mky cos 6, OET
o — 020 B — (o + iew) |
k% — k2 cos? 0, p 9p,

(2.17)

where E7, E', Hy, and H}' are the components of the fields
for each mode m. The general solution of the wave equation
is obtained by adding the contributions of all these modes,

E,= > Ep, H,=) Hj.
m m

The ¢ component of the total outside electric field in the
coordinate system of cylinder j is found by substituting Egs.
(2.12) and (2.14) into Eq. (2.16), with & = kg, 0 =
and p = pj:

00, € = €,
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B — z [exp[—im(tl)j = ¢p)] (mko cos 0, B, sin 0,

= k% — k3 cos? 0, o;

X exp[id(j — 1)]J,,(\gp;) + aLHP (Ngp;)
+ AL (o)} + igeN[BDHP (A, p;)

+ B&g, ()\Opj)])]exp(ikoz cos ), (2.18)

where a prime indicates the derivative with respect to the
argument.

In a similar manner, the ¢ component of the electric f1eld
inside cylinder j is found by substituting Egs. (2.7) and (2.8)
into Eq. (2.16), with k = kj, 0 = gj, ¢ = ¢j, and p = p;:

i ( oo) R, cos
Eg}mde=z{exp[ lmd’ O]I:m 0 0 U)J ( )

k? — k§ cos? 6 pj

+ mjw)\ b(’)J (7\ )]} exp(ikgz cos fy). (2.19)

By using Eq. (2.17), we obtain the ¢ components of the
magnetic field outside and inside cylinder j:

H};tal _ Z [exp[—im(d)j - ¢o)]

k% — k% cos? 0,

m

k 6
x (ms 0 [B9.H® (Agp;) + BB, (Agp))]

Pj
= (g + ieg)Nofi™Eq sin 0, exp[id(j — 1)]J,,(Aop;)

+aQLH? (\pp)) + ALY, (xop,)})]

X exp(ikgyz cos ), (2.20)

Hiyside = Y expl=im(9; = do)l [ mkocosby .y - (o))
g k% — k§ cos® 0, p;

m

- (0'] + iejw))\ja,(,’,),J;n()\]p}):I} exp(ikoz Ccos 90).
(2.21)

Application of the boundary conditions (the tangential
components of E and H are continuous) at p; = a;(j = 1, 2),

total — mSIde otal — pryinside
Eitel = B Hiewl = pinside,

Elotel = Emslde Hf,:’m} = H‘;}S"de, (2.22)

yields eight coupled linear equations for the scattering coef-
ficients a¥), a¥), bY), and bY). Tt is not possible to separate

om? m» mm*
the eight equations into two groups so that one group con-
tains the TE coefficients bY) and b¥) and the other group
contains the TM coeff1c1ents aV and a). 1t is possible,

om
however, to simplify them further by ehmmating the coeffi-
cients of the internal fields al), a{2), b{), and b{2. The
following expressions for the scattering coefficients are then

obtained:
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. mkycos @
0, = ——L bQHD (\a;) + BLJ,(\a)]y;
a;S;
; k2 J.(\a))
l m
- (N J Naj) =L
wS; [nox %) - A n(R%j Jn(Na))
X {i™E, sin 0, exp[is(j — 1)] +ADY (2.23)
- mkgcosf
b = ——2 {i™Eq sin 6y exp[id(/ — 1)]J,,(A\ga;)
a;¥;
iwBY)

+aD HP (\aj) + AN T, (@ )i\, —
j
ﬂ, J (Aoa )

X | =5\

>\ J O\ ) m J) zJ,'n()\oaj)]- (2.24)

where j, 1 =1, 20r],l=2 1 and

K | Hi0u)
5= p o ) Zm 0%,
I R s e P T
. (2)0\00) ’ 1240) ,
T L Tt m“f“j’"‘xzﬂﬁ’“"“f) |
11 '
Aps = — — —
YN N

It is clear from Eqs. (2.23) and (2.24) that the scattering
coefficients of each cylinder are modified by the presence of
the other cylinder. We may write these two equations as the
independent scattering coefficients of one cylinder plus a
correction term to account for multiple scatterings.

B. Incident TE Waves

The scattering coefficients for incident TE waves are ob-
tained from the symmetry as we discuss here. Maxwell’s
equations are symmetric in the components of the electric
and magnetic fields by the replacements

E—H, E—-H,

(0 + iew) — iuw,

ipw — (0 + lew).
Accordingly, the magnetic and electric scattering coeffi-
cients ¢Y), and d¥), are obtained from aV), [Eq. (2.23)] and b(’)

[Eq. (2. 24)] respectively, by the replacements ad), — cf,’,Z,,
bY) — —dY) and ipw s (0 + iew) to get

. mkycos 6y .
D= [dOHD (\a)) + DY) (AN,

a;y;

iy o o i)
+yJI: Inlhot) - 'JmO\O J) JIn(\a;)

X {i"H, sin 8, exp[uS(] - 1]+ chy, (2.25)

mk; cos 6,
a;S;

)

dy) = {i™H, sin 8, exp[i6( — 1)]J,, (Aoa))

iDW
+ e HD (\ga) + CjMgaiNg; — — 22

K} kf Jn(Na)
" —Inlhog) = J (M) , (2.26)
0

i 7 (_A‘ ;
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where C{) and D) are defined as in Egs. (2.13) and (2.15),
with a(k) and b replaced by ¢ and d%, respectively.

Equations (2 23) and (2.24) for TM polarization and Eqs.
(2.25) and (2.26) for TE polarization provide an exact solu-
tion for the two-cylinder problem in terms of the scattering
coefficients a¥), by}, ¥, and d¥), (j = 1, 2). The solution
applies in the near-field region as well as in the far-field
region and for any separation.

The scattering coefficients for both cases (TE and TM)
are functions of the radii, the refractive indices, the separa-
tion between the two cylinders, and the angles 6y and ¢o.

3. FAR-FIELD APPROXIMATION AND §;

The purpose of this section is to find the Mueller scattering
matrix elements S;; in the far-field region.

We begin the sequence of developing the analysis by find-
ing expressions for the scattered electric fields parallel and
perpendicular to the scattering plane (the plane containing
the z axis and the direction of propagation of the scattered
field) in the far-field region. From these expressions, we
construct the amplitude scattering matrix, and, finally, we
find the Mueller scattering matrix from the amplitude ma-
trix by using the Stokes vectors.
~ One way to measure the scattered field is to move a detec-
tor in a circle around the scatterer. The center of this circle
is, in our case, conveniently chosen to be at the center of
cylinder 1. The plane of this circle is often called the plane
of measurement. If the scatterer is two cylinders, then the
plane of measurement may be chosen to be perpendicular to
the z axis (the axis of each cylinder). In the following dis-
cussion this plane is chosen. Therefore the scattering plane
is perpendicular to the plane of measurement. In the limit
that the radius of the circle mentioned above is large, the
following points are true:

(1) The observed scattered field on the circumference of
the circle (or at any distance far away from the center of the
circle) at any direction is the algebraic sum of the scattered
fields from cylinders 1 and 2 along that direction. For ex-
ample, the p component of the total scattered field at a large
distance is the algebraic sum of the p component of the
scattered field from cylinder 1 and the p component of the
scattered field from cylinder 2. This is not true (except for
the z component) at finite distances from the center of the
circle because the unit vector associated with any compo-
nent of the scattered field from cylinder 1 has a different
direction from that scattered from cylinder 2.

(2) It is permissible to replace the Hankel and Bessel
functions with their limiting asymptotic expressions. The
calculation of the fields at large distances from the scatterers
(the scattering region) is often referred to as the far-field
approximation.

Since we want to find expressions for the scattered electric
fields in the far-field region, the two orthogonal polariza-
tions considered in Section 2 are considered separately here
as well.

A. Incident TM Waves
The Mueller matrix S;; is defined in terms of the amplitude
scattering matrix in the far-field region. The latter matrix
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is defined in terms of the components of the field that are
perpendicular and parallel to the scattering plane. The
scattered electric field is expressed in terms of the three
cylindrical components E,, Ey, and E,. The components E,
and E, are parallel to the scattering plane, while E, is per-
pendicular to the scattering plane.

In the far-field region, the Hankel function of the second
kind may be replaced by its asymptotic value

[ 2 \2 o e .
HP(\p) = <—) exp(—ikgp)i™ exp(iw/4). (3.1)

The z component of the scattered electric field from cylin-
der j in this region is found by substituting Eq. (3.1) into Eq.
(2.4):

Escﬂ = G z lma exp[ lm(d)] ¢0)], (3'2)

where G = (2/m\op)1/? exp(im/4)exp(—iXop)exp(ikoz cos bp).
Similarly, the z component of the scattered magnetic field
from cylinder j is found by substituting Eq. (3.1) into Eq.
2.7):

=@ Z by, exp[—im(s; — ¢o)]; (3.3)

E,/p — 0 in the scattering region. Therefore Eq. (2.16)
reduces to

ingw OH,
k% sin® 4, 39,

o = 3.4)

The ¢ component of the scattered electric field from cylin-
der j is found by substituting Eq. (3.3) into relation (3.4),
and we obtain

wa Gurowhy

py > i, expl=im(g; — ¢p)]. - (35)

2 i 2
kg sin® 6 <~

In the far-field region, ¢ = ¢1 = ¢, and pa = p; — d COS ¢.
Therefore the ¢ component of the total scattered electric
field, E5® = E5* + E3, is

sca _ Gurgwhg

Bl mp(1) 6}
K2 sin 0, ; ™6 + b1 exp(iNgd cos ¢)]

X exp[—im(¢d ~ )]} (3.6)

The factor exp(iAod cos ¢) in Eq. (3.6) accounts for the phase
difference between the scattered waves from the two cylin-
ders.

Similarly, the z component of the total scattered electric
field (the sum of the z components of the scattered electric
fields from cylinders 1 and 2) in the far-field region is

B =G z {imall) + a2 exp(iN,d cos )]

X exp[—im(¢ — ¢o)]}. (8.7

The p component of the scattered electric field is given by

‘. (3.8)
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The total scattered electric field in the far-field region is
E5 =g E5°° + &, E37 + 8 B, (3.9)
where &,, &,, and &, are unit vectors along the z, p, and ¢
directions, respectively.
Equation (3.9) can be written as the sum of two compo-

nents, the first one being parallel to the scattering plane and
the second being perpendicular to it:

EP = 0, i + 2,0, B, (3.10)

with 8p, = sin 62, + cos 0¢2, and &pe; = &,. We then get

1 .
Ex = ; {m [a® + al? exp(iXyd cos d))]qu}, (3.11)

sc8 — Ho® (1) (2) ; s
Eys ; {ko sin 6, [bih + b2 exp(ingd cos @)]d,, ps (3.12)

where

2 1/2 . .
b = ( ) i™ exp(iw/4)expl—im(¢ — ¢p)]
TAP

X exp(itkyz cos fp)exp(—iXyp).

Two elements of the amplitude scattering matrix are given
by Egs. (3.11) and (3.12). To find the other two elements,
the following polarization must be considered.

B. Incident TE Waves

From the symmetry of the problem, the scattered electric
fields parallel and perpendicular to the scattering plane can
be found from Egs. (3.11) and (3.12). If b9 is replaced by
), a¥) is replaced by d¥), and the right-hand sides of Egs.
(3.11) and (3.12) are multiplied by ko/uow [this factor (ko/
uow) makes the incident electric field perpendicular to the
incident plane of unit amplitude], then the following expres-
sions for the fields are obtained:

k() .
E?)caar = 2 {%Tsin—oo [d((#')l + dg%)z exp(l}\od COos ¢)]¢m}’

m

(3.13)

Eg=> {—1— [ef + com exp(idgd cos ¢)]¢m}-

sin 0,

(3.14)

Equations (3.11)-(3.14) can be written in a matrix form,

B o 2\ (=ihgp)exp(ir/d)exp(ik 6)
Fsca _(7‘_)\0'0> expl—ingp)explim/4)expliryz cos Oy

per
< Ty, Ty|| Epm (3.15)
T, T,f|Eie '
where the elements of the amplitude scattering matrix T},
Ty, Ty, and T4 are given by
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T, = z ___lm_ [a(l) + q® exp(ilgd cos )]
“ | sin 6 om - om

X exp|[—im(¢ — ¢0)]}, (3.16)

im

7= {Sin el + o2 exp(idyd cos )]
0 .
m

X exp[—im(¢ — ¢0)]}’ 3.17)

i ks .
T3 = Z {Sin 00 ;0—“; [dg];')l + dl(gr)l exp(l>\0d COos ¢)]

X exp[—im(¢p — ¢0)]}, (3.18)

i KW )
e ; {Sin 8y ko (66 + bom exp(idgd cos 9)]

X exp[—im(¢ — ¢0)]}- (3.19)

It is seen from Eq. (3.15) that the scattered electric field
from the two cylinders is a superposition of both the TM and
the TE modes even though the mode of the incident field is
either TM (E:,’;C, =0, EL“;, =1)orTE (Ei,“e“r =1, Eg‘acr =0). The
two cylinders change the polarization state of the incident
field. :

In order to find the Mueller matrix, we must first define
the Stokes vectors for the incident and scattered fields.
Therefore we discuss them briefly.

The Stokes parameters are a set of four quantities (written
as a column matrix) that describes the polarization state of
the radiation. Following the nomenclature of Walker,!2 we
denote them by I, @, U, and V, and they are related to the
electric fields by

kO * "
I= Tv <EparEpﬂr + Epel‘Eper>’

167 (3.20&)

0
k, N .

Q= 2wpy (EporEper = EperEper) (3.20b)
kg N .

U= 2wpg (Epa"EPe" + EperEpar>’ (3.20¢)
ky * *

V=-i 2""”0 <Epal'EDer - EperEpar>7 (3.20d)

where Ep,; and Ey,, are the electric fields parallel and per-
pendicular to the incident plane or to the scattering plane if
the Stokes parameters of the incident field or the scattered
field, respectively, are to be found. The angle brackets ( )
signify the time average. I represents the total intensity,
while @, U, and V together represent the polarization state.
The Stokes parameters are related by the following inequal-
ity: I? = Q> + U® + V2, where 2 is replaced by = for
completely polarized light.

It is worthwhile to note that Eqgs. (3.20a)-(3.20c) are the
same if either et or e~ is used for the time dependence,



H. A. Yousif and S. Kohler

whereas V is dependent on this choice. Thus Eq. (3.20d)
can be interpreted as the difference between the irradiances
of the right-handed circular polarization and the left-hand-
ed circular polarization. (We chose the sense of rotation of
the electric field to be counterclockwise for right-handed
circular polarization as looking toward the source; i.e., eit
was chosen.)

The relation between the incident and the scattered
Stokes vectors can be written in terms of the 4 X 4 Mueller
matrix S with elements S;;:

r Su S S Su |[r
Q|_( 2 \|S2n S22 Su Su|l@ A
vl (‘”‘ol’) Sar S3p Szz Sy || U
Ve S S S Su LV

(3.21)

This equation defines the Mueller matrix and can be consid-
ered a mathematical model that describes the interaction
between the incident field and the optlcal device (the two
cylinders in our case).

The definitions of the Stokes parameters [Egs. (3.20)] and
the T matrix [Eq. (3.21)] give the relations among the
Mueller scattering matrix elements (S;;) and the amplitude
scattering matrix elements: '

1 = BUT R+ 1Ty + 1T + T/,
1o = BT = T2 + 17,2 = | Tl3,
Si5 = Re[T,T; + T, Ty,
Syy = Im[T,T] + T, Ty,
Syy = WIT, 2 = T, = T, + T4,
Syy = WUT P+ ITol? — 1T, = 147,
Sy = Re[T\ T3 = T;T}],
Sy = Im[T, T} + T,T;),
Sa; = Re[T,T; + T, T4,
Sgp = Re[T1TZ - T2T§],
Sgy = Re[ToT) + TsTy),
Saq = Im[T,T; + TsT}],
Sy = Im[T,T; + T;T}],
Sy = Im[T, T} + T,T;),
Sy =Im[T, T} + T;T}],
Sy =Re[T,T, — T,Tj],

where Re and Im represent the real and imaginary parts,
respectively, of the quantities of interest.

A comprehensive discussion of the Mueller matrix and the
Stokes vectors and their physical meanings can be found in
Ref. 13. Anexcellent description of the experimental proce-
dures to determine them was given by Bickel and Bailey.!4

We also point out that the 16 elements of the Mueller
matrix are not independent. There are nine independent
relationships among these elements.!5
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4, CROSS SECTIONS IN THE FAR-FIELD
REGION

In this section, expressions for the total scattering and ex-
tinction cross sections per unit length are obtained for the
two polarizations of the incident wave (the TM and TE
polarizations considered in Section 2).

We express the scattering cross sections in terms of the
scattering coefficients and the extinction cross section in
terms of the forward-scattering amplitude.

We begin by finding the rate at which energy is extracted
from the incident beam because of scattering. The scatter-
ing cross section can then be found. In asimilar manner the
rate at which energy is extracted from the incident beam
because of absorption is calculated. The extinction cross
section can then also be found.

The scattered or absorbed energy per unit time will be
found from the real part of the Poynting vector.

In the discussion in Subsection 4.A we refer to the two
cylinders as the scatterer. Since the scatterer is of an infi-
nite length, the cross section per unit length is the quantity
of physical interest.

A. Scattering Cross Section Per Unit Length

The scattering cross section per unit length is the total power
scattered in all directions by a length (I) of the scatterer
when the irradiance of the incident beam is assumed to be
unity. Therefore the scattering cross section per unit length
(Csca) may be written as

Cyep = lim Peca 4.1
P T @D

where Py, is the scattered power in watts, [ is the length of
the scatterer in meters, and I; is the irradiance of the inci-
dent plane waves in watts per meter. It is clear from Eq.
(4.1) that the ST units of the scattering cross section per unit
length are meters.

The total scattered power can be found by integrating the
radial component of the scattered Poynting vector (S,) over
a large surface that encloses the scatterer. It is natural for
this problem to choose a cylindrical surface of length [ and
radius p. ' The advantage of choosing such a surface is that
the radial component of the Poynting vector is perpendicu-
lar toit. Therefore Eq. (4.1) can be written as

IS, dA
Cyea = lim - , 4.2)
-

- U
where dA is the differential element of the cylindrical sur-
face.
The Poynting vector is related to the electric field (E) and
the magnetic field (H) by

= LE X H*, (4.3)

where H* is the complex conjugate of the magnetic field (H).

The radial component of the Poynting vector (S,) can be
expressed in terms of the components of the fields; this
follows directly from Eq. (4.3):

S, ="y Re[E,H, - E.H,). (4.4)

The total scattered power may be found by integrating Eq
(4.4) over the cylindrical surface. This gives
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12 (2n
Psca = 1/2 Re j j (EZ,CBH:SC" - EicaH;sca)dqst, (4.5)
0

where E3* and E;* are the ¢ component and the z compo-
nent, respectively, of the total scattered electric field and are
given by Eqs. (3.6) and (3.7). H3is the z component of the
total scattered magnetic field in the far-field region and is
obtained by adding the contribution from each cylinder.
From Eq. (3.3) we find that

=G Z {im[bSh) + b2 exp(irgd cos ¢)]
m

X exp[—im(¢ ~ ¢y)]}, (4.6)

for which G is defined as for Eq. (3.2).
The ¢ component of the scattered magnetic field H3? in
the far-field region can be obtained by using Eq. (2.17), i.e.,

gqw  OES®

kZsin%0, 9p

H® =~ =i . 4.7
This result is obtained by dropping the first term of Eq.
(2.17) in the far-field scattering region and setting o = 0, ¢ =
€0, and k = k. We consider the medium outside the cylin-
ders to be nonabsorbing to simplify the analysis.

By substituting Eq. (3.7) into Eq. (4.7), we obtain the
following expression for H3™:

€W . .
H® =~ m G ; {im[all) + a2 exp(iNgd cos ¢)]

X exp[—im(¢ — ¢o)]}. (4.8)

In Eq. (4.5) the integrand does not depend on z. There-
fore it reduces to

2%
PBcﬂ = é_ Rejo (E;caH‘z'sca - EimH;sca)d(b. (4.9)

If the expressions for the fields (E,, H,, E,, and H,) are
substituted into Eq. (4.9) and if the integration over ¢ is
performed, then, by using some of the properties of Bessel
functions, we obtain the following expression for the cross
section per unit length for the TM polarization of the inci-
dent wave:

o™ = M0 oy 4T

sca 9 sca
)\0

cT™I (4.10)

2 sca ?
)\0

where

Cial= > {lall +1aP + Re > v[e #aDa;?®
m n
+ e®aDq } (4.11)
Call=>" {lbé‘"’J? + 6P + Re > v[ePb{b,?
m n

+ efp@p: } (4.12)
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¥ = (=1)" ™" exp[~i(n — m)dgld,,_,(\d),

B=(n—m)r/2,
and 7 is the impedance of the medium outside the cylinders.
TMI and TMII refer to the scattered TM and TE polariza-
tions, respectively.

In Eq. (4.2), I; = 1/2n is the irradiance of the incident wave.
This last result is a consequence of our original assumption
that the amplitude of the incident wave for the TM polariza-
tion case is 1.

The cross section per unit length for the incident TE
polarization may be found from that of the TM polarization.
Ifall) and a2 are replaced by d'2) and d? and if b)) and

2 .
b2 are replaced by c{) and c!2, then the following expres-
sion is obtained:
40w rer, 4409 ren
CIE= CIEl 4 —— CTEIL (4.13)
2 sca 2 sca
AO” }\07]
where
75t = I + e + Re S e e
m n
+ eiﬁcg?,{c;g)]}, (4.14)

m

Coa=> {|df,},{|2 +1dP + Re ' y[ePd{d,?
n

+ eiﬂdg?,{dgf,”]}- (4.15)

TEI and TEII refer to the scattered TE and TM polariza-
tions, respectively.

The irradiance (I;) of the incident wave is now equal to 7/2
because of our original assumption that the amplitude of the
incident magnetic field is 1.

B. Extinction Cross Section per Unit Length

If the scatterer has a finite conductivity, some of the incident
energy is absorbed. The absorbed energy is converted into
other forms, such as heat. The absorbed power (Pg) is
related to the incident irradiance (I;) by

Pabs = Qabsli’

where Qs is the absorption cross section.

Since scattering and absorption remove energy from the
incident field, the iricident wave is attenuated. The extinc-
tion cross section is designed to account for the attenuation
of the incident waves. Therefore we may define this cross
section as the power removed from the incident radiation by
scattering and absorption (Pey) when the irradiance of the
incident field is assumed to be unity, i.e.,

Pext = Qext,liy (4.17)

(4.16)

where Q. is the extinction cross section.
The extinction cross section is the sum of the absorption
cross section and the scattering cross section:

Qext = Qabs + Qsca‘ (4.18)
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The above statement is another way of stating that energy is
conserved.

To find the extinction cross section, we must find the total
energy per unit time that is removed from the incident beam
by scattering and absorption. This can be calculated by
integrating the radial component of the Poynting vector
(Sf,’“) over the cylindrical surface (described in Subsection
4.A).

Syt = Y Re(BYH,* - ELH + EYH = BHY),  (419)

where { and s refer to incident and scattered fields, respec-
tively. Discussion of Eq. (4.19) can be found in many refer-
ences. See, for example, Ref. 16.

It is clear from Eq. (4.19) that the radial component of the
Poynting vector (S¢**) depends on the polarization state of
the incident wave; therefore we must find the extinction
cross sections for the two independent polarizations (the
TM and TE polarizations).

1. TM Polarization
Since the incident magnetic field has no component along
the z axis, i.e., H}'® = 0, Eq. (4.19) reduces to

S =Y Re(BLH) ~ EXHy ~ EXH).  (4.20)

The power that is due to extinction may be found by
integrating Eq. (4.20) over the cylindrical surface, which we
described in Subsection 4.A:

P

ex

e (=
= lim f f Spdpdz. (4.21)
== =2

Since the integrand has no z dependence, Eq. (4.21) re-
duces to

Si’“pdd). (4.22)
T ! 2

By substituting Eq. (4.20) into Eq. (4.22), we obtain the
extinction power per unit length (Pyorm = Pext/l):

Po = lim! j

Pyorm = 5 Re L{ (BLH,® — E:H — ESH)pdg.  (4.23)

If the appropriate expressions for E, H, E3, and Hf,, are
substituted into Eq. (4.23), then the first integral is zero, and
the second integral is the complex conjugate of the third
integral. Therefore Eq. (4.23) may be written as

Pnorm = —Rej E;H;spdd) (4.24)

If the limit is divided into two parts [the first part being
(==, 0) and the second being (0, )], then Eq. (4.24) may be
written as

0 . .
Promn = —Re j (=) H}(~¢)pds
0 N *
+Re | BUOH;(0)pdo. (4.25)

Each of the integrals [in Eq. (4.25)] may be taken by using
the stationary phase method, which is given in Ref. 17, p.
749. By using Eq. (4.17), we can obtain the extinction cross
section Ceyp = Qext/l:
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Coxt = — fg Re[Ty(¢ = 7 + ¢y)]. (4.26)

2. TE Polarization

For the TE polarization, the expression for the extinction
cross section per unit length can be written from the symme-
try relation [T, is replaced by T: in Eq. (4.26)]:

Coe = — kioRe[Tzw =1+ ¢l @27)

'Equations (4.26) and (4.27) also result from the well-known

optical theorem.

5. SPECIAL CASES AND LIMITING CASES

A. Perpendicular Incidence

The case of perpendicular incidence corresponds to 8y = 7/2.
The scattering of electromagnetic waves from two parallel
cylinders at normal incidence becomes a two-dimensional
problem (the fields do not vary in the z direction). The
scattering coefficients reduce to

ky ki .

— Jm(koaj)Jm(kjaj) -— Jm(kja'j)Jm(koaj)

0 = Mo Ky

Aom =

Ry .. k.
#—" H (kya)J,(ka;) = ” J(kja) HP (koa;))
0 7

X {imE, exp[is(j — 1)] + AU} (5.1)

The cross modes reduce to zero; i.e., b = b = 0. This
result is similar to that for a single cylinder (no coupling
between the TE mode and the TM mode for perpendicular
incidence).

Equation (5.1) shows explicitly that the scattering coeffi-
cient of each cylinder is modified by the presence of the
other. AY (which is given in Section 2) represents the
modification to the single-cylinder coefficient. The first
term on the right-hand side of Eq. (5.1) (containing Ej) is
identical to the single-scattering coefficient for cylinder j.
We refer to it as such. The second term (containing A% is.
due to multiple scattering. We may look at this second term
as a correction to the zero-order scattering coefficient. The
expression for AY), includes a Hankel function, which results
in the multiple scattering becoming unimportant, as it
should, if the separation between the two cylinders becomes
large. af!) and a2, then reduces to the correct expressions
for the single cylinders at normal incidence.

The expressions for the scattering coefficients given by
Eq. (5.1) are more general than those given by Olaofe,? be-
cause Olaofe’s expressions are valid for only two dielectric,
identical cylinders. Our equations cannot be put in a form
such that they are identical to those given by Olaofe, because
we use e for the time dependence in our solution, whereas
Olaofe based his solution on the e~ factor. Consequently,
our equations involve the Hankel function of the second
kind, and Olaofe’s equations involve the Hankel function of
the first kind. However, we verified by numerical compari-
sons that his expressions and ours give exactly the same
results.
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B. Low-Frequency Approximation
We consider the case in which Aga; and Aoas are 1. (This
limit can be achieved either with low frequency or with small
radii.)
In this limit, the only nonvanishing term is m = 0. In
- other words, (15’2l =0ifm # 0. Therefore the general expres-
sion for a¥), reduces to

1+ BHP (\d)e®

all) = —E,sin 4, T4 (5.2)
BIHP () - —
HP (\d) + €

a® = —E, sin 0, (el (Ood) + e | (5.3)

HPO\))? — %

where
k% ’ k% ’
To Jo(xlal)z]o(xoal) e ——— Jo(Alal)Jo(Aoal)
OB k ’
'u— H (Aoal)t]o(xlal) - J0(>\1a1)H0 (}\oal)
0 0
2 2
M Jo(x2a2)J0()\oa2) - Jo(A2a2)J0(>\oa2)
B=——3" ,

k2

—2 HP' (\ag)do(Agg) — —— J5 (M) HE (Agay)
Horg Hohs

and b = p@ =0,

The assumption made, that the m = 0 term is the leading
term, is easily justified. The induced current on the surface
of each cylinder does not depend on the angle ¢ if the radius
is small. As a consequence, the scattered field from each
cylinder does not depend on the angle ¢. It is worth noticing
that the previous approximation uncoupled the linear equa-
tions of the scattering coefficients even though this problem
is still a three-dimensional one.

For perfectly conducting cylinders Eqgs. (5.2) and (5.3)
simplify considerably. It is easy to write the following ex-
pressions for the scattering coefficients {Bessel functions of
the first kind [Jy(Aoz;) and Jo(Aoas)] are set to 1, since their
arguments are small}:

all) = —E, sin 00{

HP(\a5) — HP(\d)e?
HBQ)(Aoal)H(()Z)(Xoaz) - [HSZ)(Aod)]Z}
(5.4)
HP(\ap)e® ~ HP(\d)
HP(\aDHP (\gag) — [Hg)(}‘od)]z}.

al) = —E,sin §, {

(5.5)

Equations (5.4) and (5.5) are essentially those given by
Wait.!! However, Wait expressed his results in terms of the
modified Bessel function, which is related to the Hankel
function of the second kind (which we used in our solution)
as follows:

KO('YG) = _1/27riII(()2)(Aoa),

where
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Y= i)\o.

With this substitution, Egs. (5.4) and (5.5) reduce exactly to
Wait’s results.

In the case of a large separation with respect to all the
radii, Eqgs. (5.4) and (5.5) can be expanded to zero order in

THP A od)]Z/HP (Aoa1)HP (Noaz). The following expressions

for a'}) and a{% are then found:

" E,sinf, E,sinf, HP(\,d) is
%0 =~ ) @ @ e, (5.8
Hi?(\ay)  Hi?(Nas) Hi (Nay)
4@ = _ Fosin Bue”  Eysin 0y, HP(\d) . (5.7)
T HPOGg)  HPOG) HP ()

The scattering pattern of a single cylinder of radius a is
the same whether the incident wave is planar or cylindrical if
b/a > 10, where b is the distance between the cylinder and
the source of the cylindrical waves (the radius of curvature of
the cylindrical wave).!® Therefore, for the two cylinders,
the scattered field from one cylinder in the neighborhood of
the other resembles a plane wave when d/a; > 1.

Equations (5.6) and (5.7) reveal the fact that each cylinder
is excited by the incident field and by the scattered field
from the other cylinder. The first term on the right-hand
side of Eq. (5.6) represents the zero-order scattering coeffi-
cient (the response of cylinder 1 as if it were by itself in the
field). The second term represents the response of cylinder
1 to the scattered field from cylinder 2, which is Ej
sin GoHP (A\od)ed/HP (Aoas).

The signs justify further discussion. The first term repre-
sents a direct excitation from the incident field; therefore
the scattered field suffers one reflection (scattering), which
explains the minus in that term. (The zero-order scattered
field from cylinder 1 is out of phase with the incident field in
the neighborhood of cylinder 1 apart from the phase that is
due to the complex scattering coefficient). The second term
represents indirect excitation of cylinder 1 (the incident
field hits cylinder 2 first and then cylinder 1). Therefore the
wave suffers two reflections (scattering), which explains the
plus in that term.

HP(\d) in the second term takes into account the
strength of the scattered field from cylinder 1 in the neigh-
borhood of cylinder 2, as well as the phase of the wave.
Careful examination of the argument of the Hankel function
of the separation reveals the fact that it represents the phase
difference between the incident field and the zero-order
scattered field from cylinder 2 in the neighborhood of cylin-
der1. (The phase factor in the Hankel function is due to the
cylindrical character of the wave, and it has nothing to do
with the scattering process.) A similar discussion also ap-
plies to Eq. (5.7).

C. Perfectly Conducting Cylinders

The case of perfectly conducting cylinders does not appear
to have been treated previously; as a consequence of infinite
conductivity, there are no fields present within the cylin-
ders. The expressions for the scattering coefficients reduce
to
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_ I 0na)  (Nay)
af,lnl = _LmEO Sin 00 "”’5)' Lt - "2# A(()%'zly (5'8)
HP(\a,) HP(\ay)

Inhoay)  In(Agas)
HP(N\ay)  HP(\ay)

In addition, b{) = b2 = 0.

Equations (5.8) and (5.9) are general equations for the
case of perfectly conducting cylinders and may be used for
any separation. The scattering coefficients for perfectly
conducting cylinders at oblique incidence are simpler than
those for the perpendicular incidence of an arbitrary materi-
al. In the former case, the scaling technique may be used
(replace kg with kg sin 8), whereas this simple scaling tech-
nique cannot be used in the latter case.

The first term on the left-hand side of Eq. (5.8) or (5.9)
represents the zero-order scattering coefficient of cylinder j
(j = 1 or 2), and the second term represents the multiple
scattering coefficient (the interaction) between the two cyl-
inders.

Numerical results for the scattering amplitude as a func-
tion of the observation angle in the far-field region were
compared with those obtained by Ragheb and Hamid at
normal incidence®; a perfect agreement was obtained.

al? = —i"E,sin 6 AL (5.9

D. Single Cylinder

We permit the scattering coefficients of the second cylinder
[a? and b?] to be zero. This implies that the second
cylinder does not exist and leads to A% = B2, = 0. Our
equations then reduce to two linear equations with two un-
knowns, a' and b{Y). By using the relations

2
JmO‘Oal)Hg)—l(}‘Oal) - H:(g)()\oal)J 1(Agay) = — ’
7rL7\0a1
) ®) = 2m o
Hyl1(Noay) + Hih(Nay) = 'AaJHm (May),
001

HY (Nay) = BHRL (Nay) = Hik 1 (Agay),

Eqgs. (10) and (11) of Ref. 3 are obtained. The comparison
with Wait’s equations described above, which was made by
letting the scattering coefficients of the second cylinder be
zero, is equivalent to letting the radius of the second cylinder
be zero. This case cannot be studied numerically because of
the singularity of the Hankel function. In order to study
this limit numerically, we instead let the separation between
the two cylinders become large. The scattering coefficients
of two independent cylinders (noninteracting cylinders)
were obtained. These results were compared with Egs. (10)
and (11) of Ref. 3 (in which the equations are programmed
separately), and exact agreement was obtained. The square
of the scattering amplitude was plotted as a function of the
observation angle for selected values of the tilt angles in
order to compare the results with those of Kerker et al.,1?
and we found exact agreement (the two curves are indistin-
guishable). Also, we found that the cross-polarized compo-
nents of the scattered field are equal to each other and that
they vanish in the forward and the backward directions, as
they should for a single cylinder. In the same way, we were
able to verify the results obtained by Lind and Greenberge®®

for the extinction cross section as a function of size parame- -
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ter. Finally, we compared the Mueller scattering elements
for a single cylinder at normal incidence with those obtained
by Bohren and Huffman!3; we found them also to be in exact
agreement.

An alternative method to obtain the calculations for a
single cylinder is to let the refractive index of the second
cylinder be the same as the medium outside the cylinders.
The validity of this method was also verified. The details of
these comparisons and derivations can be found in the doc-
toral dissertation of Yousif.2!

6. SUMMARY AND DISCUSSION

The analytical solution of the scattering of electromagnetic
plane waves by two cylinders is obtained. This solution is in
terms of the scattering coefficients from which the scattered
fields, the cross sections, and the Mueller scattering matrix
elements (S;;) are constructed by using fundamental princi-
ples of electromagnetic theory.

In order to derive the scattering coefficients, the solutions
of the wave equation inside and outside each cylinder are
constructed, and the boundary conditions are applied at the
surface of each cylinder. The effective incident field upon
one cylinder includes not only the plane-wave incident field
to make the solution an exact one but also the scattered field
from the other cylinder. This solution is exact, as expressed
by Eqgs. (2.10), (2.11), etc. This proof is accomplished by
using the translational theorem of Bessel functions (see Ap-
pendix A).

For each incident polarization state (TM and TE), four
coupled linear equations for the scattering coefficients are
obtained [see Egs. (2.23), (2.24), (2.25), and (2.26)].

The expressions [Eqs. (4.26) and (4.27)] for the extinction
cross sections could have been obtained directly from the
optical theorem. The derivation in Section 4, however, pro-
vides an excellent opportunity to test the consistency of our
solution.

This investigation was programmed on a high-speed com-
puter. The results of the calculations are presented in part
II of this series.?2

APPENDIX A: TRANSLATIONAL THEOREM
OF BESSEL FUNCTIONS

The Hankel function of the second kind (Hf,f) =dJn —iYn)
can be constructed from Egs. (6) and (6) on p. 361 of Ref. 23:
HP(@)exp(Fimy) = Z HP (Z)J(z)exp(Filp). (A1)

1

Comparing the triangle on p. 361 of Ref. 18 with the triangle
0104P in Fig. 1, it is easy to see that

v=9¢, =7 — ¢y
Z=)\0d;

(a) = 7\0917
Z = NPy,

therefore Eq. (A1) may be written as

Hf,%’()xopl)exp(q:im%) = Z [(‘l)ngll(xod)Jl(Aopz)
l

X exp(£ilg,)]. (A2)
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Similarly,
HP (\gpp)exp(Fimepy) = (—=1)™ z HE, (N (Nopy)
7

X exp(xilg,). (A3)

In the solution (Section 2) we have the following expressions:

S COHD (rgppexpl—im(s; - o), (a9

where C¥ (j = 1, 2) is the scattering coefficient of cylinder j.

Equation (A4) can be expressed in terms of the coordi-
nates of cylinder 1 or cylinder 2. This can be done by using
Eqgs. (A2) and (A3):

Z CWHP (Ao exp[—im(s; — ¢o)]
= > C > (~D'HEMd) I (hg2)
m !
X exp(ild)z)exp(imqbo):!, (A5)
Z CEHD (Npy)exp[—im(py — ¢g)]
= Z [(—1)'"05,%’ Z HP, (\d)J(A\gpy)
m )

X exp(il¢1)exp(im¢o)]. (A6)

By interchanging the order of the summations on the right-
hand sides of Eqs. (A5) and (A6), as well as the indices, and
assuming that they converge uniformly, we may interchange
the order of the summations again. This leads to the follow-
ing equations:

COHP Ny exp[—im(d; ~ ¢o)]
= dJ,,(A\gpo)exp[—im(py — ¢)]

X 3" COHE, (d)explil = m)ql, (A7)
I

COHD (A opylexp[—im(py — ¢g)]

= Jm(Aopl)eXp['—im(‘bl - ¢0)]

X z (=1)H*mCOH® (\dexpli(l — m)¢y]. (A8)
1

Equations (A7) and (A8) are the expressions required for
translating the scattered field of one cylinder as incident
upon the other.
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