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Acoustic scattering by two identical spheres is theoretically, numerically and
experimentally studied by highlighting the role of the symmetries of the scatterer. Incident
and scattered "elds are expanded over the di!erent irreducible representations of D

=h
, the

continuous symmetry group of the scatterer. Then, from the boundary conditions, one
obtains for each irreducible representation an in"nite system of linear complex algebraic
equations where the unknown scattering coe$cients are uncoupled. This feature greatly
simpli"es the treatment of the problem and speeds up calculations. Far"eld form functions
are computed in the cases of Neumann boundary conditions (rigid spheres) and elastic
boundary conditions (elastic spheres immersed in water). A series of experiments based on
ultrasonic spectroscopy is performed in the case of two stainless-steel spheres immersed in
water. The comparison between the theoretical and the experimental results provides quite
a good agreement.

( 2001 Academic Press
1. INTRODUCTION

Acoustic scattering by many bodies of various shapes has been the subject of several works
during the last 40 years. A general and widely spread way to treat scattering problems by
many objects that are relatively close to each other is by using the techniques of multiple
scattering [1, 2]. The multiple-scattering formalism can be simpli"ed by taking into account
the symmetry properties of the scatterer. Symmetry considerations are extensively used
in quantum physics with, for instance, applications in crystallography [3], in
electromagnetism [4] and in quantum chaos [5, 6]. Recently, symmetry properties have
been used for the "rst time in acoustics. In order to simplify the multiple-scattering
formalism the two-dimensional problem of acoustic scattering by two identical cylinders
has been studied, highlighting the role of the symmetries of the system [7]. In this work,
incident and scattered "elds are expanded over the di!erent irreducible representations of
C

2v
, the "nite symmetry group of the scatterer. Then, from the boundary conditions, an

in"nite set of four linear algebraic equations (each one associated with a given
representation) is obtained where the unknown coe$cients of the scattered "elds are
uncoupled. This method signi"cantly simpli"es the numerical treatment of the problem.
Afterwards, this study has been extended to scatterers of three and four cylinders involving,
respectively, the "nite symmetry groups C

3v
and C

4v
[8].

The case of acoustic scattering by two identical spherical bodies (as two spheres or two
spherical shells) has been often treated by means of the multiple-scattering method (see
references [9}12]) but never by emphasizing all the symmetry properties of the scatterer.
0022-460X/01/130423#17 $35.00/0 ( 2001 Academic Press



424 P. GABRIELLI AND M. MERCIER-FINIDORI
The present work deals with theoretical, numerical and experimental study of the scattering
of a plane acoustic wave by two identical spheres. The mathematical formalism developed is
based on the techniques of multiple scattering including elements of group theory in order
to take into account the symmetries of the two-sphere scatterer. This greatly simplify the
mathematical analysis of the problem. Indeed, when one considers scattering by a sphere,
the invariance of the Helmholtz equation under rotations about the centre of the sphere
leads to the search of mode solutions by separation of variables of the form f (r)>

lm
(h, /).

This is directly linked to the following mathematical results: the spherical harmonics
>

lm
(h, /), with l "xed and m"!l,2,#l, form a basis for the (2l#1)-dimensional

irreducible representation of O (3), the invariance group of the sphere. These mathematical
considerations are implicitly used in the partial wave expansions of the incident and
scattered "elds. In the two-sphere scatterer case, the invariance of a single sphere under the
continuous group O(3) is broken, but, however, the full system is invariant under another
continuous group, labelled D

=h
in the mathematical literature (see, for example, references

[13, 14]).
In section 2, some properties of the continuous group D

=h
are recalled, particularly the

symmetry transformations. The incident and scattered "elds are expressed as sums of
functions belonging to the irreducible representations of D

=h
. The unknown coe$cients

de"ning the scattered "elds are to be determined from the boundary conditions. It should be
noted that the use of the symmetry properties allows to uncouple the pairs of unknown
coe$cients de"ning the scattered "elds. The boundary conditions are then applied at the
surface of only one sphere for each irreducible representation. This algebraic approach is
valid for general boundary conditions and is displayed in the cases of Neumann boundary
conditions (rigid spheres) and elastic boundary conditions (elastic spheres immersed in
water). An in"nite set of in"nite systems of algebraic equations is obtained. Each system,
associated with a given representation, can then be solved numerically by truncation and
used to obtain the far"eld from function. Section 3 deals with numerical and experimental
results. The numerical evaluation of the backscattered total form function is carried out in
the cases of two rigid spheres and two elastic spheres immersed in water for various
geometrical con"gurations. Moreover, a series of experiments based on ultrasonic
spectroscopy is performed in the case of two stainless-steel spheres immersed in water.
Experimental data are compared with theoretical ones. The variations of the form function
due to the interference phenomenon as well as the sharp minima corresponding to elastic
resonances are experimentally observed to be in quite a good agreement with the theory. In
section 4, the interest of the method presented in this paper is highlighted and future
extensions in the context of multiple scattering suggested.

2. MATHEMATICAL FORMALISM

The scattering of a plane acoustic wave by a system of two identical spheres of radius a is
studied. The geometry of the problem as well as the notations used are shown in Figure 1.
In particular, the centres of the two spheres are separated by a distance d. Three spherical
co-ordinate systems (r, h, /), (r

1
, h

1
, /) and (r

2
, h

2
, /) are de"ned and, respectively, referred

to O, O
1
and O

2
. The propagation vector k of the incident plane wave is perpendicular to the

Oy-axis and forms an angle a with the Oz-axis. In the co-ordinate system (r, h, /) the
incident wave is expressed as

U
inc

(r, h, /)"U
0
4n

`=
+
l/0

`l
+

m/~l

ilj
l
(kr)>

lm
(h, /)>*

lm
(a, b), (1)



Figure 1. Two-sphere co-ordinate systems.
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while the total scattered "eld from the two spheres can be expressed as

U
s
"U1

s
(r
1
, h

1
, /)#U2

s
(r
2
, h

2
, /) (2)

with

U1
s
(r
1
, h

1
, /)"U

0

`=
+
l/0

`l
+

m/~l

A
lm

h(1)
l

(kr
1
)>

lm
(h

1
, /), (3)

U2
s
(r
2
, h

2
, /)"U

0

`=
+
l/0

`l
+

m/~l

B
lm

h(1)
l

(kr
2
)>

lm
(h

2
, /). (4)

Here and in what follows the exp(!iut) time dependence is suppressed. j
l

and h(1)
l

,
respectively, denote spherical Bessel functions of the "rst and third kinds, >

lm
denotes the

spherical harmonics, and A
lm

and B
lm

are the unknown scattering coe$cients. Usually, this
scattering problem is solved by applying boundary conditions for the total "eld
U

t
"U

inc
#U

s
at the surface of each sphere. By using addition theorems for spherical wave

solutions of the Helmholtz equation [15], an in"nite system of two linear complex algebraic
equations is then obtained where the unknown coe$cients A

lm
and B

lm
are coupled.

In order to solve this problem, a new method based on the use of the symmetries of the
scatterer is proposed. The two-sphere scatterer, as shown in Figure 1, is invariant under the
following symmetry transformations classi"ed in six classes: (1) E the identity
transformation; (2) C(u), the rotation through any angle u about the Oz-axis; (3) p

v
, the

mirror re#ection in the planes Oyz and Oxz; (4) I, the inversion; (5) IC(u), the mirror



TABLE 1

Character table of D
=h

D
=h

E C (u) p
v

I IC (u) Ip
v

A
1g

(K"0) 1 1 1 1 1 1
A

1u
(K"0) 1 1 1 !1 !1 !1

A
2g

(K"0) 1 1 !1 1 1 !1
A

2u
(K"0) 1 1 !1 !1 !1 1

EKg
(K"1, 2,2#R) 2 2 cos (Ku) 0 2 2 cos (Ku) 0

EKu
(K"1, 2,2#R) 2 2 cos (Ku) 0 !2 !2 cos (Ku) 0
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re#ection in all the planes passing through O and perpendicular to the Oz-axis; (6) Ip
v
, the

rotation through n about the Ox- and Oy-axis.
The action of the symmetry transformations on an arbitrary function U(r, h, /),

U(r, h, /)"
`=
+
l/0

`l
+

m/~l

a
lm

U
l
(r)>

lm
(h, /), (5)

is given by

EU(r, h, /)"U (r, h, /), (6)

C(u)U (r, h, /)"U(r, h, /#u), (7)

p
v
U(r, h, /)"G

U(r, h, n!/)

U(r, h, !/)

(mirror reflection in the Oyz plane)

(mirror reflection in the Oxz plane)H, (8)

IU(r, h, /)"U(r, n!h, n#/), (9)

IC (u)U(r, h, /)"U (r, n!h, n#/#u), (10)

Ip
v
U(r, h, /)"G

U(r, n!h, /)

U(r, n!h, n!/)

(n rotation about the Ox-axis)

(n rotation about the Oy-axis)H. (11)

These transformations form the continuous group of in"nite order, labelled D
=h

[13, 14],
which constitutes the symmetry group of the scatterer. Four one-dimensional irreducible
representations labelled A

1g
, A

1u
, A

2g
, A

2u
, and an in"nite number of two-dimensional

irreducible representations labelled E
1g

, E
1u

, E
2g

, E
2u

,2EKg
, EKu

,2 are associated with
this symmetry group. They are classi"ed according to K"Dm D. For the one-dimensional
irreducible representations (K"0), the group elements E, C(u), p

v
, I, IC(u) and Ip

v
are

represented by 1]1 matrices given in the corresponding column of the character table
(Table 1). For the two-dimensional irreducible representations (K"1, 2,2,#R), each
character of the classes E, C(u), p

v
, I, IC (u) and Ip

v
is the sum of the diagonal elements, or

trace, of the corresponding 2]2 matrices given in Table 2. All the characteristics of D
=h

are
gathered in the character table (Table 1). The notations g or u are, respectively, used for
irreducible representations which are even or odd under inversion I. Index 1 (respectively 2)
is used for the one-dimensional irreducible representations (corresponding to K"0) which
are even (respectively odd) under re#ection p

v
. The character table (Table 1) permits one to



TABLE 2

Group elements of the two-dimensional representations of D
=h

E C (u) p
v

I IC (u) Ip
v

EKg A
1

0

0

1B A
e*Ku

0

0

e~*KuB A
0

1

1

0B A
1

0

0

1B A
e*Ku

0

0

e~*KuB A
0

1

1

0B
EKu A

1

0

0

1B A
e*Ku

0

0

e~*KuB A
0

1

1

0B A
!1

0

0

!1B A
!e*Ku

0

0

!e~*KuB A
0

!1

!1

0B

ACOUSTIC SCATTERING BY TWO SPHERES 427
express any function U as a sum of functions belonging to the irreducible representations
of D

=h

U"U(A)#
`=
+

K/1

U(EK), (12)

where one de"nes for the one-dimensional irreducible representations (K"Dm D"0)

U(A)"U(A1g)#U(A1u)#U(A2g)#U(A2u), (13)

and for the two-dimensional irreducible representations (K"Dm D"1, 2,2,#R)

U(EK)"U(EK
g)#U(EK

u), (14)

A
U(Em`)

U(Em~)B"A
U(Em`g)

U(Em~g)B#A
U(Em`u)

U(Em~u)B. (15)

m` and m~, respectively, stand for the positive and negative values of m; m`"#1,
#2,2,#R and m~"!1, !2,2,!R.

The incident "eld de"ned by equation (1) in the spherical co-ordinate system (r, h, /) is
now written in the spherical co-ordinate system (r

2
, h

2
, /) (in which it will be particularly

convenient to apply the boundary conditions)

U
inc

(r
2
, h

2
, /)"U

0
4ne*(kd@2)#04a

`=
+
l/0

`l
+

m/~l

ilj
l
(kr

2
)>

lm
(h

2
, /)>*

lm
(a, b) (16)

and modi"ed into the form

U
inc

(r
2
, h

2
, /)"U

0
4ne*(kd@2)#04aC

`=
+
l/0

il j
l
(kr

2
)>

l0
(h

2
, /)>*

l0
(a, b)

#

`=
+

K/1

`=
+
l/K

il j
l
(kr

2
)>

lm`(h
2
, /)>*

lm`(a, b)

#

`=
+

K/1

`=
+
l/K

il j
l
(kr

2
)>

lm~(h
2
, /)>*

lm~(a, b)D. (17)
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The incident "eld can now be expressed as a sum of functions belonging to the irreducible
representations of D

=h
. Using relations (12}15) and (17), one obtains

U(A)
inc

"U
0
4ne*(kd@2)#04a

`=
+
l/0

ilj
l
(kr

2
)>

l0
(h

2
, /)>*

l0
(a, b), (18)

U(Ep)
inc

"U
0
4ne*(kd@2)#04a

`=
+
l/K

ilj
l
(kr

2
)>

lp
(h

2
, /)>*

lp
(a, b), (19)

where p denotes m` or m~. Furthermore, from the character table of D
=h

(Table 1), the
components of the incident "eld are written as

U(A1gu)
inc

"K[E#C(u)#p
v
$I$IC(u)$Ip

v
]U(A)

inc
, (20)

U(A2gu)
inc

"K[E#C(u)!p
v
$I$IC(u)GIp

v
]U(A)

inc
, (21)

over the one-dimensional representations and

U(Epgu)
inc

"K@[E#e*puC(u)$I$e*puIC (u)]U(Ep)
inc

, (22)

over the two-dimensional representations. In the previous equations, K and K@ are
unknown coe$cients determined by using relations (13}15), (20}22) and the action of the
elements E, C(u) (6, 7) on U(A)

inc
, U(Ep)

inc
. One obtains

K"1
8
, K@"

1

[2(1#e2*pu)]
. (23, 24)

So, by using the action (6}11) of the elements of D
=h

and relations (20}24), the incident "eld
is expressed in each irreducible representation as

U(A1gu)
inc

"U
0

3n
2

e*(kd@2)#04a
`=
+
l/0

il j
l
(kr

2
)[1$(!1)l]>

l0
(h

2
, /)>*

l0
(a, b), (25)

U(A2gu)
inc

"U
0

n
2

e*(kd@2)#04a
`=
+
l/0

il j
l
(kr

2
)[1$(!1)l]>

l0
(h

2
, /)>*

l0
(a, b), (26)

U(Epgu)
inc

"U
0
2ne*(kd@2)#04a

`=
+
l/K

il j
l
(kr

2
)[1$(!1)l]>

lp
(h

2
, /)>*

lp
(a, b). (27)

The total scattered "eld given in relations (2}4) is

U
s
"/

0G
`=
+
l/0

A
l0
h(1)
l

(kr
1
)>

l0
(h

1
, /)#

`=
+
l/0

B
l0
h(1)
l

(kr
2
)>

l0
(h

2
, /) (28)

#

`=
+

K/1

`=
+
l/K

[A
lm`h(1)

l
(kr

1
)>

lm`(h
1
, /)#B

lm`h(1)
l

(kr
2
)>

lm` (h
2
, /)]

#

`=
+

K/1

`=
+
l/K

[A
lm~h(1)

l
(kr

1
)>

lm~(h
1
, /)#B

lm~h(1)
l

(kr
2
)>

lm~ (h
2
, /)]H.
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Relations (12}15) and (28) lead to

U(A)
s

"/
0

`=
+
l/0

[h(1)
l

(kr
1
)A

l0
>

l0
(h

1
, /)#h(1)

l
(kr

2
) B

l0
>

l0
(h

2
, /)], (29)

U(Ep)
s

"/
0

`=
+
l/K

[h(1)
l

(kr
1
)A

lp
>

lp
(h

1
, /)#h(1)

l
(kr

2
) B

lp
>

lp
(h

2
, /)], (30)

where p denotes m` or m~. One can now apply the action of the elements of D
=h

on the
components U(A)

s
and U(Ep)

s
of the scattered "eld. From elementary geometrical

considerations and usual relations for the spherical harmonics >
lm

[16] this action is
de"ned by

EU(A)
s

"/
0

`=
+
l/0

[h(1)
l

(kr
1
)A

l0
>

l0
(h

1
, /)#h(1)

l
(kr

2
) B

l0
>

l0
(h

2
, /)], (31)

C(u)U(A)
s

"/
0

`=
+
l/0

[h(1)
l

(kr
1
)A

l0
>

l0
(h

1
, /)#h(1)

l
(kr

2
) B

l0
>

l0
(h

2
, /)], (32)

p
v
U(A)

s
"/

0

`=
+
l/0

[h(1)
l

(kr
1
)A

l0
>

l0
(h

1
, /)#h(1)

l
(kr

2
) B

l0
>

l0
(h

2
, /)], (33)

IU(A)
s

"/
0

`=
+
l/0

[h(1)
l

(kr
2
)A

l0
>

l0
(h

2
, /)#h(1)

l
(kr

1
) B

l0
>

l0
(h

1
, /)](!1)l, (34)

IC(u)U(A)
s

"/
0

`=
+
l/0

[h(1)
l

(kr
2
)A

l0
>

l0
(h

2
, /)#h(1)

l
(kr

1
) B

l0
>

l0
(h

1
, /)](!1)l, (35)

Ip
v
U(A)

s
"/

0

`=
+
l/0

[h(1)
l

(kr
2
)A

l0
>

l0
(h

2
, /)#h(1)

l
(kr

1
) B

l0
>

l0
(h

1
, /)](!1)l (36)

for the one-dimensional representations and by

EU(Ep)
s

"/
0

`=
+
l/K

[A
lp
h(1)
l

(kr
1
)>

lp
(h

1
, /)#B

lp
h(1)
l

(kr
2
)>

lp
(h

2
, /)], (37)

C(u)U(Ep)
s

"/
0

`=
+
l/K

[A
lp
h(1)
l

(kr
1
)>

lp
(h

1
, /)#B

lp
h(1)
l

(kr
2
)>

lp
(h

2
, /)]e*pu, (38)

IU(Ep)
s

"/
0

`=
+
l/K

[B
lp
h(1)
l

(kr
1
)>

lp
(h

1
, /)#A

lp
h(1)
l

(kr
2
)>

lp
(h

2
, /)](!1)l, (39)

IC(u)U(Ep)
s

"/
0

`=
+
l/K

[B
lp
h(1)
l

(kr
1
)>

lp
(h

1
, /)#A

lp
h(1)
l

(kr
2
)>

lp
(h

2
, /)](!1)le*pu (40)

for the two-dimensional representations. The total scattered "eld is de"ned as

U(A1gu)
s

"/
0

`=
+
l/0

[h(1)
l

(kr
1
)A(A1gu)

l0
>

l0
(h

1
, /)#h(1)

l
(kr

2
)B(A1gu)

l0
>

l0
(h

2
, /)], (41)
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U(A2gu)
s

"/
0

`=
+
l/0

[h(1)
l

(kr
1
)A(A2gu)

l0
>

l0
(h

1
, /)#h(1)

l
(kr

2
)B(A2gu)

l0
>

l0
(h

2
, /)], (42)

U(Epgu)
s

"/
0

`=
+
l/K

[h(1)
l

(kr
1
)A(Epgu)

lp
>

lp
(h

1
, /)#h(1)

l
(kr

2
)B(Epgu)

lp
>

lp
(h

2
, /)], (43)

where A
lp

and B
lp

are the unknown scattering coe$cients written for each irreducible
representation of D

=h
. Moreover, the character table of D

=h
(Table 1) gives

U(A1gu)
s

"K[E#C(u)#p
v
$I$IC(u)$Ip

v
]U(A)

s
, (44)

U(A2gu)
s

"K[E#C(u)!p
v
$I$IC(u)GIp

v
]U(A)

s
, (45)

U(Epgu)
s

"K@[E#e*puC(u)$I$e*puIC(u)]U(Ep)
s

. (46)

where K and K@ are the coe$cients previously determined in equations (23, 24). Using
equations (31}40), (41}43) and (44}46), one "nds that the scattering coe$cients must satisfy

B(A1gu)
l0

"$(!1)lA(A1gu)
l0

, (47)

B(A2gu)
l0

"$(!1)lA(A2gu)
l0

, (48)

B(Epgu)
lp

"$(!1)lA(Epgu)
lp

. (49)

It appears from relations (47}49) that the coe$cients de"ning the scattered "eld are
uncoupled; only one series of coe$cients is associated with a given irreducible
representation. Finally, from equations (41}43) and (47}49), the decomposition of the total
scattered "eld over the irreducible representations of D

=h
is given by

U(A1gu)
s

"/
0

`=
+
l/0

A(A1gu)
l0

[h(1)
l

(kr
1
)>

l0
(h

1
, /)$(!1)lh(1)

l
(kr

2
)>

l0
(h

2
, /)], (50)

U(A2gu)
s

"/
0

`=
+
l/0

A(A2gu)
l0

[h(1)
l

(kr
1
)>

l0
(h

1
, /)$(!1)lh(1)

l
(kr

2
)>

l0
(h

2
, /)], (51)

U(Epgu)
s

"/
0

`=
+
l/K

A(Epgu)
lp

[h(1)
l

(kr
1
)>

lp
(h

1
, /)$(!1)lh(1)

l
(kr

2
)>

lp
(h

2
, /)]. (52)

Generally, the unknown scattering coe$cients are determined from the boundary
conditions at the surface of the spheres. In fact, because account has been taken of the
symmetries of the scatterer, one just has to apply boundary conditions at the surface of only
one sphere. Besides, boundary conditions are separately written in each irreducible
representation. For example, in the case of Dirichlet boundary conditions (soft spheres), one
can write

(U(X)
inc

#U(X)
s

)
r2/a

"0, (53)

where X denotes A
1g

, A
1u

, A
2g

, A
2u

, E
pg

or E
pu

. The addition theorem [15]

h(1)
l

(kr
1
)>

lm
(h

1
, /)"

`=
+

l{/0

`=
+
j/0

C(lm D l@0 Djm)jj (kr
2
)>jm (h

2
, /)h(1)

l{
(kd)S

2l@#1

4n
(54)
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allows one to express the scattered "eld (50}52) in the co-ordinate system (r
2
, h

2
, /). The

C(lm D l@m@ Djk) coe$cients are de"ned from Wigner symbols by

C(lm D l@m@ Djk)"i~l`l{`j(!1)mJ4n(2l#1)(2l@#1)(2j#1)

]A
l l@ j

0 0 0BA
l l@ j

!m m@ kB. (55)

Finally, equation (53) leads to

`=
+
j/0

(d
ljGM(0)

lj )A(A1gu)j0 "a(A1gu)
l

S
l
(ka), (56)

`=
+
j/0

(d
ljGM(0)

lj
)A(A2gu)j0

"a(A2gu)
l

S
l
(ka), (57)

`=
+
j/0

(d
ljGM(p)

lj
)A(Epgu)jp

"a(Epgu)
l

S
l
(ka), (58)

where the matrices M(0)
lj

and M(p)
lj

are given by

M(0)
lj "

`=
+

l{/0

(!1)lC(j0 D l0 Dl@0)S
l
(ka)h(1)

l{
(kd)S

2l@#1

4n
, (59)

M(p)
lj
"

`=
+

l{/0

(!1)lC(jp D lp Dl@0)S
l
(ka)h(1)

l{
(kd)S

2l@#1

4n
. (60)

The vector S
l
(ka) which includes Dirichlet boundary conditions is given by

S
l
(ka)"!

j
l
(ka)

h(1)
l

(ka)
, (61)

while the vectors de"ning the incident wave are written as

a(A1gu)
l

"

3n
2

e* (kd@2)#04ail[1$(!1)l]>*
l0

(a, b), (62)

a(A2gu)
l

"

n
2

e* (kd@2)#04ail[1$(!1)l]>*
l0

(a, b), (63)

a(Epgu)
l

"2ne* (kd@2)#04ail[1$(!1)l]>*
lp

(a, b). (64)

Our algebraic approach developed for soft spheres is also valid for more general
boundary conditions. The scattering problem remains governed by equations (56}60) and
equations (62}64). It is only necessary to modify the vector S

l
(ka) in order to take into

account particular boundary conditions. In case of the Neumann boundary conditions
(rigid spheres), the vanishing of the normal derivative of the total "eld yields

S
l
(ka)"!

j@
l
(ka)

h(1){
l

(ka)
. (65)
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For two elastic spheres immersed in water, one obtains

S
l
(ka)"!

D*1+
l

(ka)

D*2+
l

(ka)
(66)

from the continuity of normal displacements and stress continuity relations. Here D*1+
l

and
D*2+

l
are the usual determinants of third rank with coe$cients depending on the longitudinal

and transverse velocities in the solid and the sound velocity in the liquid [17].
Therefore, the scattering of a plane acoustic wave by a system of two identical spheres

reduces to the solution of equations (56}58), an in"nite set of in"nite systems of linear
complex algebraic equations. Each system is associated with a given irreducible
representation of D

=h
. The unknown scattering coe$cients are uncoupled due to the

symmetry considerations, this greatly simpli"es the treatment of the problem. The systems
of equations can then be numerically solved by truncation and used to obtain the far"eld
form function [18] of the system for various angles of incidence a, angles of scattering h and
separation distances d.

The form function FF
=

in the direction (h, /) is de"ned by

FF
=

(h, /)" lim
r?=

2r

a K
U

s
U

inc
K . (67)

By taking the limit of each component of the scattered "eld, one obtains

FF
=

(h, /)"
2

ka
D f (A1g)#f (A1u)#f (A2g)#f (A2u)

#

`=
+

K/1

[ f (Epg)#f (Epu)] D, (68)

where

f (A1gu)"
`=
+
l/0

A(A1gu)
l0
>

l0
(h, /)e~*ln@2[e* (kd@2)#04h$(!1)l e~* (kd@2)#04h], (69)

f (A2gu)"
`=
+
l/0

A(A2gu)
l0
>

l0
(h, /)e~*ln@2[e* (kd@2)#04h$(!1)l e~* (kd@2)#04h], (70)

f (Epgu)"
`=
+
l/K

A(Epgu)
lp
>

lp
(h, /)e~*ln@2[e* (kd@2)#04h$(!1)l e~* (kd@2)#04h], (71)

From now on, interest is focused on the study of the form function for various
geometrical con"gurations and boundary conditions.

3. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENT

3.1. NUMERICAL CONSIDERATIONS

The determination of the total form function depends on the evaluation of the unknown
scattering coe$cients. These coe$cients are found by solving the truncated complex linear
systems, equations (56}58), exactly. The in"nite matrices M(0)

lj and M(p)
lj are, respectively,
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replaced by associated matrices of rank (N#1) and (N#1!K), with

N"sup(8, [ka#4(ka)1@3#1]). (72)

The above truncation order N has been chosen from the numerical discussions of Young
and Bertrand [2] and Nussenzweig [19], and it has been numerically tested. This truncation
order ensure a seven-digit accuracy in the computations. The unknown coe$cients are
determined for each irreducible representation, and numerical results of the total form
function are then obtained from equation (68). The matrices involved in the calculations are
well conditioned and they are directly solved by using the standard Gaussian elimination
method. The main advantage is to obtain uncoupled equations that can be solved
separately for each irreducible representation. It should be noted that another method to
solve this scattering problem has been already published [9}11]. In order to give a rough
idea of how much our method is better adapted to numerical calculations a simple
comparison is presented below.

Method of Gaunaurd et al. ([9}11])
Two systems of (N#1!p) coupled equations must be solved, with p"0, 1,2, N and

N chosen to ensure "ve-digit accuracy. As noted by the authors, the matrices involved in the
calculations are severely ill conditioned and they do not admit solution by direct method
(standard Gaussian elimination). An iterative method (Gauss}Seidel) is used requiring no
more than 15 iterations to ensure the convergence at the desired "ve-digit accuracy for low
p values. Furthermore, in the context of acoustic scattering by two elastic spherical shells
[11], the Gauss}Seidel method diverges in the neighborhoods of resonance frequencies
when the shells are close to other. Finally, the C(lm Dl@m@ Djk) coe$cients are obtained by
using a recurrence relation.

Our method
Four systems of (N#1!p) uncoupled equations must be solved, with p"0, 1,2,N

and N chosen to ensure seven digits accuracy. The matrices involved in the calculations are
well conditioned and they are directly solved using standard Gaussian elimination method.
Furthermore, we have tested our method in the context of acoustic scattering by two elastic
spherical shells. Even in the con"guration leading to computational di$culties in reference
[11] (shells close to each other), the matrices remain well conditioned and the results are still
obtained by the standard Gaussian elimination method. The explicit expressions of the
C(lm D l@m@ Djk) coe$cients (55) have been beforehand performed for the maximal value
N

max
"40 by using a software application performing exact calculus (Mathematica [20]),

these coe$cients are then truncated at the double precision machine size format (15 digits
accuracy) and stored.

Then, the numerical evaluation of the backscattered (h"a#n) total form function has
been carried out in cases of the two rigid spheres (Neumann boundary conditions) and the
two elastic spheres (elastic boundary conditions) for various angles of incidence a and
separation distances d.

3.2. RIGID SPHERES

The results of the far"eld form function for two rigid spheres, versus the non-dimensional
wavenumber ka (in the restricted domain 0)ka)27), are displayed in Figures 2}4 for
separation distances of d"2a and 4a. Figure 2, Figure 3 and Figure 4, respectively, display
the cases of end-on incidence (a"0), broadside incidence (a"n/2) and oblique incidence



Figure 2. Computed form functions of two rigid spheres at end-on incidence (a"0) versus ka for the separation
distances: (a) d"2a, (b) d"4a.

Figure 3. Computed form functions of two rigid spheres at broadside incidence (a"n/2) versus ka for the
separation distances: (a) d"2a, (b) d"4a.
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(a"n/4). The variations of the total form function only depend on the interference
phenomenon due to the scattered waves by the two spheres. The oscillations are more
important as the separation distance grows. The computed results match those presented in
the study of Gaunaurd et al. [10] for the backscattering form function of two rigid spheres.
The study of these variations is not the main purpose of this present work, further details are



Figure 4. Computed form functions of two rigid spheres at oblique incidence (a"n/4) versus ka for the
separation distances: (a) d"2a, (b) d"4a.
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available in reference [10]. It should be noted that symmetry considerations permits one to
uncouple the scattering coe$cients. Moreover, the matrices involved in calculations are
better conditioned than those corresponding to the associated coupled problem; therefore,
this method greatly simpli"es the numerical treatment of the problem and speeds up
calculations.

3.3. ELASTIC SPHERES IMMERSED IN WATER

Numerical calculations and a series of experiments have been performed in the case of
scattering of acoustic waves from two stainless-steel spheres immersed in water. The
computations are carried out for the following parameters: water (o

0
"1 g/cm3,

c"1480 m/s) and stainless-steel (AFN Z30C13) spheres (o"7)6911 g/cm3,
c
l
"6062)7 m/s, c

t
"3240)6 m/s).

3.3.1. Experimental set-up

The experimental results are obtained by ultrasonic spectroscopy. This method consists
of using short ultrasonic pulses for excitation and calculating the Fourier transform by
a fast Fourier transform (FFT) algorithm of the gated-averaged signal re#ected from the
two spheres of radius a"1)5 cm. The experiment has been carried out in a monostatic
con"guration; only one ultrasonic transducer is used both for emission and reception
(backscattering). The usable frequency bandwidth ranges from 250 to 700 kHz which
corresponds to the restricted ka domain 16)ka)44)5. The received signal is ampli"ed,
averaged, sampled and stored in order to perform further calculations by FFT. The
intensity spectra calculated are then normalized by those obtained from a perfectly
re#ecting surface. This permits one to eliminate the frequency response of the transducer
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and the perturbations produced by the electronic measure chain. In this way, one can
directly compare the theoretical and experimental results.

3.3.2. Comparison between numerical and experimental results

Experimental data are compared with the theoretical form function calculated from
equation (68) in Figures 5}7. The smooth variations of the total form function with ka are
due to the interferences between the waves scattered by the spheres as in case of the two
rigid spheres. Furthermore, numerous rapid variations of sharp characteristic shape, which
are theoretically predicted, can be experimentally observed. They correspond to elastic
resonances linked to the eigenfrequencies of the elastic vibrations of the scatterer.

Figures 5 and 6 display the comparison between the theoretical and experimental results
in case of the broadside incidence (a"n/2, h"3n/2) for the separation distances d"2a
and 4a. Experimental results show reasonable agreement with those obtained by
computation particularly in the interval 16)ka)27 which is included in the frequency
bandwidth of the transducer. The upper limit of ka in the calculations is due to the maximal
value N

max
"40 used in the evaluation of the C(lm Dl@m@ Djk) coe$cients. In the domain

ka(16, small perturbations appear in the signal because of the limited bandwidth of the
transducer used. The variations of the form function due to the interference phenomenon as
well as the sharp minima corresponding to elastic resonances are experimentally observed
to be in quite a good agreement with the theory. When the two spheres are touching each
other (d"2a), a relative discrepancy between the theoretical and experimental results is
observed (Figure 5). This can be interpreted by the waves scattered from the "xing points of
the spheres.

In case of the end-on incidence (a"0, h"n) for a separation distance d"2a (Figure 7),
the experimental results do not agree with the theoretical ones. The interference
phenomenon is then strongly dependent on the angular precision of the transducer
Figure 5. Form functions of two stainless-steel spheres immersed in water at broadside incidence (a"n/2)
versus ka for the separation distance d"2a: **, theory; } }, experiment.



Figure 6. Form functions of two stainless-steel spheres immersed in water at broadside incidence (a"n/2)
versus ka for the separation distance d"4a: **, theory; } }, experiment.

Figure 7. Form functions of two stainless-steel spheres immersed in water at end-on incidence (a"0) versus ka
for the separation distance d"2a: **, theory; } }, experiment.
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positioning. Moreover, such a con"guration, which requires a perfect alignment of the
two-sphere system with the transducer, is very di$cult to obtain.

4. CONCLUSIONS AND PERSPECTIVES

In this paper, an exact formalism has been developed in order to calculate the total
scattered "eld by two identical spheres. This new approach, applied for the "rst time in this
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context, includes symmetry considerations of the scatterer system. The use of group
representation theory permits one to obtain, for each irreducible representation of D

=h
(the

symmetry group of the scatterer), an in"nite system of algebraic equations where the
unknown scattering coe$cients are uncoupled. This feature greatly simpli"es the treatment
of the problem and speeds up calculations. Numerical computations have been carried out
in the cases of Neumann boundary conditions (rigid spheres) and elastic boundary
conditions (elastic spheres immersed in water). It should be noted that the formalism
developed here can be easily extended to other realistic physical problems by taking into
account various boundary conditions.

Furthermore, a series of experiments based on ultrasonic spectroscopy has been
performed in the case of two stainless-steel spheres immersed in water. The experimental
form functions are compared with the theoretical ones. The variations due to the
interference phenomenon as well as the sharp minima corresponding to elastic resonances
are experimentally observed in quite a good agreement with the theory in case of the
broadside incidence.

This new approach can also be applied to other multiple scattering problems such as
sound scattering from two non-identical spheres (the symmetry group involved is C

=v
), two

spherical shells, or an arbitrary number of spherical objects when symmetries are present
(for instance, three spheres centred at the vertices of an equilateral triangle and involving the
D

3h
symmetry group).

Moreover, it would be interesting to search the location of the resonances in the complex
ka-plane following the method developed in reference [7] for two-dimensional problems.
This would allow one to classify the resonances according to the (2l#4) irreducible
representations of D

=h
. Therefore, one could also observe the splitting up the elastic

resonances (associated with only one sphere) due to the symmetry breaking in the transition
from the symmetry group O (3) to D

=h
. It would be interesting to experimentally con"rm

these physical e!ects.
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