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surface Helmholtz ntegral equation at certain characteristic frequencies is investigated. Feb, L%W-D

The problem of characteristic frequencies is numerically reflected in an ill-conditioning of
the coefficient matrix arising from the transformation of the integral equation to a linear
set of equations. By means of a rank revealing factorization the rank deficiency of the
coefficient matrix is determined, and thereby the necessary number of equations to be added
to the original system of equations can be found. One of the most popular methods to
overcome this “non-uniqueness™ problem is the Combined Helmholtz Integral Equation
Formulation (CHIEF) proposed by Schenck [1]. However, CHIEF points placed on or
.near a nodal surface of the corresponding interior problem, do not provide a linearly
independent constraint, and the problem of selecting “good’ CHIEF points is still a topic

e mj-%@i&“_‘crj% In this paper the CHIEF is used with a rank revealing factoriz-
ation, and 1t 1s shown that the necessary pumber of “good” CH[EF@GE can be predicted;
is ‘200

furthermore, a method of determining whether a CHIEF point is presented. The

new approach has been tested on an axisymmetric BEM formulation with one or several
CHIEF points. i
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1. INTRODUCTION

Boundary element methods (BEM) have successfully been used for solving radiation and
scattering problems in acoustics for some years. One of the most significant advantages
of BEM compared to the finite element method (FEM) is that a three-dimensional problem
may be described by a two-dimensional integral equation so that only the boundary of
the (e.g., exterior) domain has to be discretized. Not only does this solve the problem
of handling domains of infinite extent, which obviously are difficult to handle with FEM,
but the work of discretizing a problem to obtain a numerical solution is significantly
reduced. '

One of the problems frequently addressed in BEM is the problem of characteristic
frequencies in exterior boundary integral formulations. These characteristic frequencies are
a result of the formulation into an integral equation (Fredholm integral equation of the
second kind), and are the eigenfrequencies of a corresponding interior problem, but they
have no physical meaning.for the exterior problem under consideration.

This “non-uniqueness” problem is numerically manifested in a rank deficiency of the
BEM coefficient matrix, and in order to obtain the unique solution that is known to exist
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analytically, several modified integral equation formulations that provide additional
constraints to the original system of equations have been proposed [1-13]. A summary of
the different formulations and their advantages/disadvantages has recently been given in
reference [2]. Suffice it to say here that in general a theoretically robust formulation suffers
from being complicated and/or computationally inefficient. On the other hand, a simple
formulation, easy to implement, like the CHIEF proposed by Schenck [1], leaves the user
without the assurance of having obtained the correct solution.

In the CHIEF formulation proposed by Schenck [1] the Helmholtz integral equation
for exterior problems is used with interior points (CHIEF points) to produce the
constraint that is necessary to obtain a unique solution, when the constraint is satisfied
along with the surface Helmholtz integral equation formulation. This formulation has
the drawback that points placed on a nodal surface of the corresponding interior

roblem do not provide a linearly independent constraint and are therefore useless
\/g‘bad” CHIEF points). The term “good” CHIEF points is used for points that do
provide a hnearly independent constraint. Another problem in using CHIEF is how to
determine how many “good” CHIEF points are needed to obtain the correct solution:
recently it has been reported [2] that the use of only one *“good” CHIEF point is not in
general sufficient at higher characteristic frequencies. In reference [2] it was suggested that _
\ this phenomenon was due to a rank deficiency greater than one at higher characteristic
frequencie .

The problem of characteristic frequencies and interior nodal surfaces is of practical
importance due to the numerical treatment. When discretizing the problem bad solutions
occur not only at the characteristic frequencies, but in a range of frequencies near the
characteristic frequencies, Likewise are CHIEF points placed near (and not only on)
the interior nodal surfaces’ “bad” CHIEF points. The “bandwidth™ of the zone
leading to false solutions depends on the frequency, the sgghlstlcation of the method «—
(the order of the polynomials used to approximate the geometry and the acoustic
variables), and on the “fineness’” of the mesh used. Since it is unlikely that one would
choose a frequency exactly equal to a characteristic frequency, it should always (at
least in theory) be possible to circumvent the non-uniqueness problem by making the
mesh finer. However, this is a strategy that leads to an enormous amount of computational
work and storage required. According to this point of view the use of CHIEF and other
methods to circumvent non-uniqueness may be regarded as methods to enable the user
to maintain a mesh as coarse as possible for a given accuracy. (A rule of thumb is to
choose the mesh size to be half or one-third of a wavelength.) The computational work

[ a formulation to circumvent non-uniqueness is therefore an important parameter to be
considered. i

Recently, szur@mposmon (SVD) has been used to evaluate some of the
new methods of circumventing the non-uniqueness problem {14]. In this paper the SVD
is used not only to detect non-uniqueness but also to estimate the quality of the CHIEF
point, including problems where a rank deficiency greater than one occurs.

2. FORMULATION

For time-harmonic waves, and with the time factor ¢*’ omitted, the general Helmholtz
integral formula [15] can be expressed in terms of the complex pressure p and the complex
surface velocity normal to the body v:

CPP(P) = j (p(Qﬁg(»—’ + k2o (Q)G( R))ds + dnp'(P). W)
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This formula is valid in an infinite homogeneous medium {¢.g., air) outside a closed body
B with a surface S. In the medium p satisfies V?p + k’p = 0. Q is a point on the surface
S, and P is a point either inside, on the surface of, or outside the body B. The quantity
R =|P — Q| is the distance between P and Q, and G(R)=e **/R is the free-space
Green function, k = w/c is the wavenumber, where @ is the circular frequency and c is
the speed of sound, i is the imaginary unit, and z, is the characteristic impedance
of the medium and n is the unit normal to the surface S at the point Q directed away
from the body. The quantity C(P) has the value 0 for P inside B and 4n for P
outside B. In the case of P on the surface S, C(P) equals the solid angle measured from
the medium (= 2z for a smooth surface) [10]. Equation (1) may be solved numerically
by defining a mesh to discretize the body B. The acoustic variables p and v are then
supposed to follow a specific shape (e.g., quadratic) between the nodes of the mesh.
In this way the geometry and the acoustic variables of the problem are defined by the
values on the finite number (M) of nodes. In many problems the values of » are known
or may be expressed in terms of p by an impedance relation: p(Q) = z(Q)w(Q) (note,
however, that this formula is useful only for a locally reacting surface). In order to obtain
M equations matching the M unknown values of the pressure p, the point P is placed on
the M nodes of the surface S. The resulting equations may then be expressed in matrix

form as 5
Dy = :
Dp =My + p’, (2)

where bold capital letters denote matrices and bold lower case letters denote vectors. The
use of M and D for the matrices refers to the fact that they contain integrals over the Green
function and its derivative, respectively—these terms are often interpreted as the monopole
term and the dipole term.

Using the boundary conditions with equation (2) reduces equation (2) to

Cx=y% _ (3)

where X_w unknown vector and_y is the known vector. For the problem of scattering

from a rigid surface C equals D and y equals p’, and for a radiation problem where v is
known, C equals D and i
i

3. SINGULAR VALUE DECOMPOSITION

By the transformation of the integral equation to a linear set of equations the problem
of characteristic frequencies becomes reflected in an ill-conditioning of the coefficient
matrix C. The condition number x may roughly be described as the factor a disturbance
of an element in the matrix C, or the right side y, may be multiplied by in the solution
vector x, and the matrix is ill-conditioned if the condition number is large, As the elements .
of € are a result of approximations (discretization and numerical integration) the
uncertainty of these elements is usually much larger than the machine epsilon (the accuracy
with which numbers are represented internally in the computer). If the condition number
is infinite the matrix is singular.

In handling singular/ill-conditioned matrices singular value decomposition (SVD) is
often considered the ultimate tool (see, e.g., the book by Press et al. [16]). The singular
value decomposition of a square N x N matrix A is defined as

A=UWVT 4

where V7 denotes the transpose of the matrix V. This decomposition is always possible
[16], and programs to perform the SVD are available both for mainframes and for
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PCs (routines are listed, e.g., by Press et al. [16]). The matrices U and V are orthogonal,

Le., :
2 1<k N o 1<k <N
z Uy Uy = akn{ }! Z Uy Uy = 5Jm{ }: (5a, b)

& l<ngN = I<n<N

where «, denotes the element in row i and column k, and § is the Kronecker delta. W is
a diagonal matrix, and the values w; (or in brief w)) in the diagonal of W are called the
singular values. Without loss of generality the columns of the matrices U, V and W may
be arranged in order of descending w/s so that w, is the largest element and w,, is the

smallest. Since U and V are orthogonal their inverses equal their transposes, and the

inverse of A is
A l=V. [diag(1/w))} - UT, (6)

Analytically this formula behaves well if none of the w/s are zero, but numerical
problems arise if one or several of the w;'s are small compared to the accuracy of the
elements of A. The condition number « of a matrix is defined as the ratio w, /wy, and,
as previously mentioned, the matrix is said to be ill-conditioned/singular if this ratio is
large/infinite.

In order to investigate the properties of the SVD further it is convenient to regard A
as the matrix of a linear mapping,

y = Ax: (7)

i.e., the vector x is mapped on to the vector y by equation (7). The columns in U and V
calculated by a SVD are connected by the simple relation

Av; = wu,. (8)
e W
Any vector x e R may be expressed by the columns of V,
X=Gv+ &+ - + &y, 9

and the vector y on to which x is mapped by equation (7) may be expressed by using
equation (8) and equation (9) as

; .
y=2 4w (10;
j=1

In this way (in view of equation (8)) the w,’s may be regarded as the magnification of thc
v,’s when mapped on to the corresponding u,’s (in some sense similar to a “transfer
function™), If A is regular (non-singular) then when x goes through all possible combi-
nations of the columns of V (by equation (9)) y will go through all possible combination:
of the columns of U. Consequently, the columns in V span an orthogonal basis for thc
solution space of A, and the columns of U span an orthogonal basis for the range of A.
(Range refers to “what may be ‘reached’ by the linear mapping defined by A”.)

If A is singular then one or several of the w;'s are zero (say, the last N — R ones, R <N,
and the corresponding last column(s) of V are called singular vectors and are by equation
{(8) mapped into the zero-vector:

Av,= 0. (it}

In this case A is said to be rank deficient (the rank of A is R), and two additional subspaces
are needed in the discussion of the mapping. The last N ~ R columns of V are called thc
nuil space of A (since they are mapped into the zero vector), and the corresponding (last
N — R) columns of U are called the orthogonal complement of A (since this vector spac<
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TABLE 1
The connection between the four fundamental subspaces and the SVD

Name Basis vectors Dimensions
Range 0,0, ., U R
Orthogonal complement Wl ol iy N—R
Solution space Yi, Va0, Ya R
Null space }rM,:'. .‘:’m‘ f_:R

may not be “‘reached” by A). The solution space of A is then spanned by the first R columns
of V, and the range of A by the first R columns of U. These properties are summarized
in Table 1,

If A is the coefficient matrix of a system of equations to be solved for a known right
side b, i.e.,

Ax =bh, (12)

a singular matrix corresponds 1o one of two alternatives: either the system of equations
has no solution (b is not in the range of A); or the system of equations has one or several
infinities of solutions, since in this case any combination of the zero-vectors (vg, (..., ¥y)
may be added to a specific solution (b is in the range of A, and may be expressed as a
linear combination of the first R columns of A). In contrast to, e.g., the simple source
formulation [1], a solution is known to exist at the characteristic frequencies when using
the Helmholtz integral equation, and the latter alternative is therefore the actual one.
The number of zero w, elements is, as previously stated, the rank deficiency of the
matrix A, and is also the number of missing linearly independent equations that must
be added in order to maintain a system in which the number of linearly independent
equations equals the number of unknowns. The problem is therefore to add additional
constraints to the system of equations in order to obtain a unique solution (or in other
words in order to pick out the correct combination of the singular vector(s)).

Numerically, an exact singular matrix seldom occurs, but the situation described above
is manifested in an ill-conditioned matrix. The numerical rank of a matrix may be defined
as the number of w;’s below a certain value. If equation (6) is used without modifications
at a characteristic frequency, the solution vector may be drawn towards infinity in a
direction that is almost a singular vector or, in the case of a rank deficiency higher than
one, a combination of the singular vectors due to approximations made and/or round-off
errors. (The solution is polluted with a constant times the singular vector(s).)

4. USING SVD IN BEM

In the CHIEF approach one uses the Helmholtz integral equation with interior points
in order to produce the necessary constraints at characteristic frequencies [1]. However,
a CHIEF point placed on or near a nodal surface of the corresponding interior problem
does not provide a linearly independent constraint and is useless [11]. One approach to
this problem is to distribute a number of CHIEF points hoping that a sufficient number
of CHIEF points do not fail on or near a nodal surface. The resulting overdetermined
system of equations is then solved by means of a least-squares procedure. Note that the
SYD may also be used in the case of an M x N matrix (M > N). In thiscase Uisa M x N
column-orthogonal matrix, and the matrices ¥V and W are both N x N. The (generalized)
condition number is still defined as the ratio w,/wy. A matrix for which the number of
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rows does not equal the number of columns is termed a rectangular matrix, whereas a
matrix for which the number of rows equals the number of columns is called square. In
terms of accuracy the SVD is more favourable than the normal least-squares procedure
for ATA since the matrix ATA has the condition number «? if the rectangular matrix A has
the condition number k.

The theory in the fast paragraph was discussed for the case of a real matrix A. Handling
the complex BEM coefficient matrix in equation (3) may be done either by a complex SVD
routine or by rewriting the complex system of equations in equation (3) into a real system
of equations, With C=A +iB, x = x* + ix!, and y = y® + iy' one may rewrite equation (3)

as
A ~B\/xY\ /"
6 W)-() @
e et

If x, = x§ + ix} is a singular vector,

A —B\/x}
6 ) s

then it immediately follows that — x{ + ix§ is a singular vector as well, and this vector is
evidently orthogonal to X, = x§ +ixg. It can be shown that the singular values of the
matrix in equation (12) are always pairs of same value due to the special structure of the
2N x 2N matrix, and that the two columns in U and V corresponding to the two identical
w;’s have the above-mentioned property. In the following examples only one value of the
pair of w;’s is shown. In order to investigate the behaviour of the singular values (the w;’s)
near a fictitious eigenfrequency, SVD has been performed on the square BEM coefficient
matrix in the case of a rigid sphere. The axisymmetry of the geometries in the examples
presented has been used, and hence the test case is made on an axisymmetric BEM
formulation where only the generator of the bodies has been discretized. The generator
of the sphere was divided into 19 line segments and 20 nodes, and p was assumed to follow
a linear variation between the nodal values (v is zero).

One of the important properties of the SVD is illustrated by Figure 1, which shows the
singular values of the BEM coefficient matrix in a range of frequencies near the first
characteristic frequency at ka = n. From the figure it is evident that the first 19 singular
values are practically constant in the range of ka =3:128 to ka = 3:156, whereas the
last singular value shows a strong dependence of the “distance” to the characteristic
frequency. Since the first singular value w, is almost constant in this range of frequencies,
the condition number x = w,/w, (N =20) has inverse dependence on the last singular
value and becomes large as the frequency approaches the characteristic frequency, Hence
the problem of characteristic frequencies is directly refiected in the last singular value.
Since only one singular value becomes small at ka = x, only one good CHIEF point is
needed to add sufficient constraint to the system of equations, and the condition number
calculated by the SVD for the overdetermined system of equations produced by the BEM
coefficient matrix with a CHIEF point in the centre of the sphere is x = 2-6, which is very
close to the best possible theoretical value, unity.

5. NUMERICAL RANK

As briefly mentioned in section 3, one must decide on a threshold for the w;’s under
which the matrix is said to be (numerically) rank deficient. In order to investigate
the connection between the last (smallest) singular value and the error made by the
BEM formulation without any CHIEF points, the error made by the BEM in the case of
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Figure 1. The 20 singular values for a 20-node discretization of a rigid sphere near first characteristic frequency
at ka =mn.

scattering of a plane wave of magnitude unity (dimensionless for convenience) by a rigid
sphere, and the last singular value, are plotted as functions of the dimensionless
wavenumber ka in Figure 2. The error is calculated as the length of the residual vector—the
residual vector is the vector containing the difference between the analytical solution and
the BEM solution at the nodes. For this figure two BEM calculations have been made:
the first with a 20-node discretization (the same as used for Figure 1) and the second with
a 40-node discretization.

The figure shows that for both discretizations the last singular values are practically
identical whereas the error depends strongly on .the discretization. This may be
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Figure 2. Solution-error and Jast singular value near fiest characteristic frequency at kq = n. [J, Last singular
value for 20-node discretization; =, last singular value for 40-node discretization; —, solution-error for 20-node

discretization; ————, solution.error for 40-node discretization,
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explained by the close relation between the last singular value and the condition
number: as mentioned previously the condition number may be regarded as the “blow-up”
factor for the error made (due to the approximations) by the BEM formulation, and
evidently the degree of approximation is larger for the 20-node formulation than for the
40-node formulation. Hence, although the last singular value is the same in the two
situations, the resulting error is not. However, the last singular value obviously proves to
be a good estimate of the error, and thus it is possible to use the last singular value as
an error indicator. Hence it is possible to decide on a threshold for the singular values,
and to decide to improve the standard BEM formulation, e.g., by adding CHIEF points
if this threshold is crossed. As mentioned above, the resulting error is not a function of
the last singular value only, and hence the threshold should be chosen with regard to the
actual implementation of the Helmholtz integral equation. For any practical implemen-
tation one could keep the ratio of wavelength to element size constant, and examine the
error made by this particular implementation for cases in which the non-uniqueness
problem does not occur. The threshold could then be defined by examining the last singular
value for the implementation as the frequency is moved close to a characteristic frequency.
The threshold would then be the largest of the last singular values in the band of
frequencies where the error is unacceptably high compared to the level found in the first
experiment.

6. ADDING A CHIEF POINT

Once one has determined the number of good CHIEF points needed to pick out the
correct solution to the problem by inspecting the singular vatues of the BEM coefficient
matrix, it becomes important to be able to estimate the quality of a CHIEF point. Note
that if the complex system of equations has been translated to a real system by equation
(13), a CHIEF point provides two independent equations to be satisfied along with the
normal BEM coefficient matrix corresponding to the two singular vectors shown to exist
in section 4 for the two identical singular values.

The SVD provides a very good tool for deciding whether a CHIEF point is good: the
singular vectors. When a matrix A is rank-one deficient (i.¢, when the last singular value
is zero), any constant times the singular vector may be added to a specific solution without
altering the right side. Consider the system of equations

Ax=y (= A(x +1x,)), teR. (15)

In order to pick out a solution from this infinity of solutions one may add an
extra equation (a CHIEF point) to lay the necessary constraint on the parameter 1.
This results in a rectangular system of equations. If the extra equation adds the necessary
constraint (a “good” CHIEF point) then the rectangular system is non-singular, implying
that the singular vector x, of equation (15) is not a singular vector for the rectangular
system nonthnviad aod o

o
(Tp%ﬂ <« al %, #0, (16a,b)

at’.\’ 2

since Ax, = 0. If equation (16b) is true (in practice the left side must be greater than a
certain threshold) then the rectangular system of equations is non-singular, and the
solution may be found as the least-squares solution of the rectangular system

The left side of equation (16b) may be used as a quality control of the extra equation,
since a small product implies that no additional constraint has been obtained.
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Figure 3. Quality control and solution error as functions of the p co-ordinate (8, z = 0) of the CHIEF point
for the case of a rigid sphere at ka = 6:2832. ——, Solution error; ———, quality control.

The theory described above is also valid for the case of the 2N x 2N real system
translated from the complex BEM coefficient matrix. Here the combination of two
singular vectors corresponding to two identical singular values is to be found from the two
extra equations added by a CHIEF point. Due to the special symmetry of the equations,
the largest of the dot products of an extra equation on the singular vector may be used
as a quality control. In order to test this formulation the case of a rigid sphere has been
considered at ka = 6-2832. The condition number of the BEM coefficient matrix in this
case was 12161, and a 30-node linear discretization has been used. The residual has been
calculated as the vector containing the difference between the analytical magnitude of the
nodal pressures and the magnitude of the nodal pressures calculated by the above described
method. At ke = 2z the interior nodal surface is a sphere with the same centre and the
radius a/2. In Figure 3 is shown the error calculated as the length of the residual vector,
and the value of the quality control calculated by equation (16b), as functions of the p
co-ordinate of the CHIEF point, the z co-ordinate and the @ co-ordinate being zero; the
sphere is centred in a cylindrical co-ordinate system (p, 0, z). It is evident that the quality
control is very well correlated with the solution error.

7..SVD, AT, HIGHER FREQUENGIES

At higher frequencies the non-uniqueness problem becomes more severe due to the close
spacing and to the “bandwidth” of the characteristic frequencies. One may very well
encounter the situation in which the bands of bad solutions are no longer distinct and the
solution is corrupted by two or more characteristic frequencies near any chosen frequency.
This situation is reflected in two or more small singular values calculated by the SVD with
corresponding singular vectors, and the (numerical) rank deficiency of the BEM coefficient
matrix is greater than unity. The strategy now is for each singular vector to choose a
CHIEF point that satisfies equation (16b) and thereby decreases the rank deficiency by one
in the resulting rectangular matrix, When this has been done for all singular vectors the
resulting rectangular matrix is fully ranked (the rank equals the column dimension) and
hence the non-uniqueness problem is solved. Note that a CHIEF point has to ‘““deal with”
only one singular vector (the one it has been selected with respect to) and hence it is
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Figure 4. Scattering by a rigid sphere for ka n@, Analytical solution;, ————, BEM solution with
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required only that equation (16b) is satisfied for this particular singular vector, whereas
the CHIEF point does not need to satisfy equation (16b) for any other singular vector,
because they are “dealt with” by other CHIEF points.

In order to provoke a higher rank deficiency, scattering of a plane wave with magnitude
unity from a rigid sphere for ka = 15-0397 has been considered. The generator of the sphere
has been discretized in 79 elements and 80 nodes. In this case two singular values become
very small due to the presence of another fictitious eigenfrequency at ka = 150335
(k. = w) [wy = 2466; w, /wy_, = 310; w,/wy_,=9-7), and the numerical rank deficiency of
the BEM cocfficient matrix is two. The magnitude of the pressure on the surface is shown
in Figure 4 as a function of the angle defined in the small inset in the figure. It is evident
that in this case two “good” CHIEF points are required to obtain an accurate solution
(the difference between the two curves is hardly noticeable). The CHIEF points are selected
with respect to the quality control.

8. DISCUSSION

The two important features of the SVD are as follows: (1) the singular values, which
allow the user to decide how many CHIEF points are needed (if any); (2) thessingular
veetors, which provide an excellent 1ool to check. the.quality-of thesCHIEE points.

The main disadvantages of the SVD are its great complexity and the fact that calculating
the SVD is quite time consuming compared to other methods. However, in BEM the time
consumed by setting up the equations is in most cases still larger than the time used to
solve the system of equations.

Recently, another method to estimate the singular values and the singular vectors—the
rank revealing QR factorization (RRQR)—has been discovered [17]. The RRQR is far
more efficient (in terms of time consumed and storage) than the SVD.

In numerical linear algebra the work of solving a system of equations by using a given
algorithm is often measured as the number of floating point operations (flops). A
multiplication or an addition each involves one flop [18). In order to solve an # x n system
of equations by the means of LU decomposition [16] 21n°/3 flops are involved. The LU
decomposition is the most efficient method of solving a general system of equations. The
number of flops used by the SVD algorithm is 127 and the QR algorithm uses 4n°/3 flops.

:77%
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However, when memory traffic is taken into account, the QR algorithm tends to be as
effective as the normal LU decomposition aigorithm. Moreover, the QR algorithm
may readily be used to solve overdetermined systems in the least-squares sense. The
rank revealing part of the RRQR factorization is a superstructure to the normal QR
factorization involving only an order of n? flops. Hence the extra work of a RRQR
factorization is negligible compared to that of a QR factorization. Once one has decided
on the equations to be added to the original system of equations it is possible to update
the QR factorization [18]. Hence it is not necessary to recalculate the factorization. In
short, it can be stated that the tools described in this paper can be obtained without a
significant amount of extra work, and they supply the user with an assurance of the quality
of the solution obtained—and also near characteristic frequencies when CHIEF points are
added.

Note that the attempt described in this paper is valid for any kind of extra equations
that one may wish to add to the original BEM coefficient matrix. This attempt may
therefore be used in more advanced formulations to circumvent the non- unigueness
problem, such as SuperCHIEF {13] or CHIEF-block [2). The extra equations obtained by

W/ an advanced CHIEF methods may be checked in the same way as ordinary

CHIEF points.

It must be emphasized that the test cases presented in this paper concern an axisym-

metric model in which the rank deficiency problem is less severe than in a general
three-dimensional formulation, but this method is valid for general three-dimensional
formulations as well,

9. CONCLUSIONS

In this paper the non-uniqueness problem of the exterior BEM formulation has been
investigated by means of singular value decomposition (SVD). It has been shown that the
rank deficiency of the BEM coefficient matrix at characteristic frequencies may be revealed

;, by the SVD.
Furthermore, it has been shown that due to the “bandwidth” of the charac-
/} teristic frequencies the rank deficiency of the BEM coefficient matrix may be greater
4 ? .than unity whe @ or sévera] characteristic frequencies are near the frequency of
Interest.
s The number of “good” CHIEF points needed to_obtain a unigue solution equals the
2 rank deficiency of the BEM coefficient matrix, and it has been shown that by making use
7 % of the singular vectors obtained by the SVD the quality of the CHIEF points can be
—  evaluated reliably. S
s " This formulation may also be applied to more advanced methods to overcome the
_% g non-uniqueness problem.

The author believes that this formylation provides a useful tool not only for solving the
non-uniqueness problem, but also for maintaining a mesh as coarse as possible for a given
accuracy. This latter feature becomes very significant when modelling complex structures _
at higher frequencies.
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