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ABSTRACT 

Theoretical and experimental studies were conducted to 

investigate the wave induced oscillations in an arbitrary shaped 

harbor with constant depth which i s  connected to the open-sea. 

A theory termed the "arbitrary shaped harbor" theory i s  

developed. The solution of the Helmholtz equation, v2f + ka
f = 0, 

i s  formulated as an integral equation; an approximate method is 

employed to solve the integral equation by converting i t  to a matrix 

equation. The final solution i s  obtained by equating, at the harbor 

entrance, the wave amplitude and i ts  normal derivative obtained f rom 

the solutions for the regions outside and inside the harbor. 

Two special theories called the circular harbor theory and the 

rectangular harbor theory a re  also developed. The coordinates inside 

a c i r r i ~ l a r  a n d  a rectangular harbor a re  separable: therefore, the 

solution for the region inside these harbors i s  obtained by the method 

of separation of variables. For the solution in the open- sea region, 

the s m e  method i s  used as that employed for the arbitrary shaped 

harbor theory. The f i n d  solution i s  also obtained by a matching 

prnceihlre s i m i l a r  t n  that i l s e d  f n r  the arhitrary s h a p e d  harbor theory. 

These two special theories provide a useful analytical check on the 

arbitrary shaped harbor theory. 



Experiments were conducted to verify the theories in a wave 

basin 15 ft wide by 3 1 ft long with an effective system of wave energy 

dissipators mounted along the boundary to simulate the open-sea 

condition. 

Four harbors were investigated theoretically and experimentally: 

0 circular harbors with a lo0 opening and a 60 opening, a rectangular 

harbor, and a model of the East and West Basins of Long Beach Harbor 

located in Long Beach, California. 

Theoretical solutions for these four harbors using the arbitrary 

shaped harbor theory were obtained. In addition, the theoretical 

solutions for the circular harbors and the rectangular harbor using the 

two special theories were also obtained. In each case, the theories 

have proven to agree well with the experimental data. 

It i s  found that: ( 1) the resonant frequencies for a specific 

harbor a r e  predicted correctly by the theory, although the amplification 

factors at resonance a re  somewhat larger than those found experi- 

mentally, (2)  for the circular harbors,  as the width of the harbor 

entrance increases,  the amplification at rcsonance dccrcsses , but the 

wave number bandwidth at resonance increases, ( 3 )  each peak in the 

curve of entrance velocity vs incident wave period corresponds to a 

distinct mode of resonant oscillation inside the harbor, thus the 

velocity at the harbor entrance appears to be a good indicator for 

r a sollance in harbor s of complicatecl shape, (4) the results show that 

the present theory can be applied with confidence to prototype harbors 

with relatively uniform depth and reflective interior boundaries. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

A natural or  an artificial harbor can exhibit frequency- (or 

period-) dependent water surface oscillations when exposed to incident 

water waves in a way which is similar to the response of mechanical 

and acoustical systems which a re  exposed to exterior forces, pressures 

o r  displacements. For a particular harbor, i t  i s  possible that for 

certain wave periods the wave amplitude at  a particular location inside 

the harbor may be much larger  than the amplitude of the incident wave, 

whereas for other wave periods significant attenuation may occur at  the 

same location. This phenomenon of harbor resonance has generally 

been thought to be caused by waves f rom the open-sea incident upon 

the harbor entrance, although other possible excitations may be earth- 

quakes, local winds, and local atmospheric pressure  anomalies, etc. 

These resonant oscillations (also termed s eiche and harbor 

surging) can cause significant damage to moored ships and adjacent 

structures. The ship and i ts  mooring lines also constitu*e a dynamic 

system; therefore, if the period of resonant oscillation of the harbor 

i s  close to that of the ship-mooring system, an extremely serious 

problem could result. In addition, the currents induced by this 

oscillation can cause navigation hazards. 



- 2 -  

There have been natural and artificial harbors in various 

locations around the world where r e  sonant oscillations have occurred 

and have caused damage to ships and dockside facilities, e. g. Table 

Bay Harbor, Cape Town, South Africa; Monterey Bay, California and 

Marina del Rey, Los Angeles, California. In order  to correct  an 

existing resonance problem one must f i r s t  be able to predict the 

response of that particular harbor to incident waves, i. e. the expected 

wave amplitude at various locations within the harbor for various wave 

periods, so that the effect of any change of the interior can be investi- 

gated. Until quite recently such a study was done using a hydraulic 

model alone. If an acceptable analytical solution of the problem could 

be developed i t  could be used in conjunction with a hydraulic model to 

prnvide  n g ~ i i d e  for  the most effective and efficient use of the laboratory 

model. 

1.2 OBJECTIVE AND SCOPE O F  PRESENT STUDY 

The major objective of this study i s  to investigate, both 

theoretically and experimentally, the response of an arbitrary shaped 

harbor of constant depth to periodic incident waves. The harbors a r e  

considered to be directly connected to the open-sea with no artificial 

boundary condition imposed at the harbor entrance. The laboratory 

experiments a r e  conducted in order to verify the theoretical solution 

for different harbors. 



In Chapter 2 previous studies of the harbor resonance p~ob lem 

a re  surveyed. A theoretical analysis i s  presented in Chapter 3 by 

which one may predict the response of an arbitrary shaped harbor of 

constant depth to incident wave system. In Chapter 4 a theoretical 

analysis is  presented for two harbors with special shapes: a circular 

harbor and a rectangular harbor. These analyses provide theoretical 

results which can be compared to those of the general theory developed 

in Chapter 3 .  In Chapter 5 the experimental equipment and procedures 

a re  described. The experimental and theoretical results a re  presented 

and discussed in Chapter 6. Conclusions a re  stated in Chapter 7. 



CHAPTER 2 

LITERATURE SURVEY 

2.1 WAVE OSCILLATIONS I N  HARBORS O F  SIMPLE SHAPE 

A significant amount of work has been done on resonant 

oscillations i n  harbors of idealized planform such as  a circular harbor 

or  a rectangular harbor. The methods of approach used for solving 

these problems ranged from imposing a prescribed boundary condition 

at the harbor entrance to matching, a t  the harbor entrance, the solution 

obtained for the regions inside and outside the harbor. 

McNown ( 1 9 5 2 )  studied both theoretically and experimentally some 

of the response characteristics of a circular harbor of constant depth 

excited by waves incident upon a small entrance gap. The analysis was 

to solve Laplace's equation: 

with certain prescribed boundary conditions. The boundary conditions 

used included the linearized f r ee  surface condition at thc watcr eurfscc 

and the condition that the velocity normal to all solid boundaries was 

zero. However, the assumption was made at the harbor entrance that 

the c res t  of a standing wave occurred at the entrance when the harbor 

was in resonance and the water surface remained essentially horizontal 

across  the small entrance. Thus, for resonant motion, this hypotheses 
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led to a boundary condition identical to that for a completely closed 

circular basin. Therefore, the wave frequencies associated with 

resonant oscillations would bc thosc cigcnvalucs for thc frcc oscillation 

of a circular basin. Based on this assumption, McNown computed the 

amplitude variation inside the harbor for various modes of oscillation 

and found the theoretical results compared reasonably well with the 

experiments. This imposed condition at the harbor entrance i s  not 

satisfactory in the sense that the slope of the water surface at the 

harbor entrance should be part  of the solution of the problem and 

should not be imposed initially. However, i t  can be shown that the 

resonant frequencies (or the wave numbers) associated with the circular 

harbor a r e  indeed close to that for the f ree  oscillation in the closed 

L a s i l l  il llle erltr auce ia v e r y  sn~al l .  

Using the same idea of assuming an antinode at  the harbor 

entrance for resonant oscillation, Kravtchenko and McNown ( 1955) have 

studied seiche (wave oscillations) in a rectangular harbor. In that 

study the definition of resonance was similar to that used by McNown 

(19521, i. e. the modes of oscillation corresponding to the closed basin 

configuration were termed resonant all others termed non-resonant. 

For non-resonant oscillations the boundary condition, at the harbor 

entrance would have to be determined from observations in the 

laboratory. 

Extending McNown's work for circular harbors,  ( 1954, 

1957) investigated, both experimentally and theoretically, the problem 

of the rectangular harbor with a wide entrance. Both the experimental 
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and mathematical models consisted of a rectangular harbor with an 

asymmetric entrance to which a relatively long wave channel was 

connected. A theoretical solution was obtained for the amplitude 

distribution within the partially closed harbor by matching up the 

entrance velocities between the two domains: the harbor and the 

attendant wave channel. Good agreement was found between the 

theoretical solution and the experimental data. However, the solution 

obtained was not for the more realistic problem of a harbor connected 

directly to the open-sea. 

Biesel and LeMehaute (1955, 1956) and LeMehaute (1960, 1961) 

studied the resonant oscillations in rectangular harbors with various 

types of entrances: fully open, partially open, change in depth at the 

entrance and combinations of these as well as  a sloping beach inside 

the harbor. The harbor was connected to a wave basin having a width 

less  than half of a wave length and an infinite length in the direction 

of wave propagation. The method which was used was based on 

complex number calculus with a direct application of the superposition 

of Wle various incidenl, refleeled, and transmitted waves. An 

expression was developed for the amplification factor (defined as  the 

wave amplitude at the rear  of the harbor to the incident wave 

amplitude). However, in order to use that result an empirical 

reflection coefficient and attenuation parameter a r e  needed, in general 

the values of these parameters a re  not obvious. 

The problem of a rectangular harbor connected directly to the 

open-sea has  been ably treated, theoretically, by Miles and Munk ( 196 1). 

Their work was an important contribution since i t  included the effect of 



-7 - 

the wave radiation from the harbor mouth to the open-sea. This 

effect limits the maximum wave amplitude within the harbor for 

the invicid case to a finite value even at  resonance. They considered 

an arbitrary shaped harbor and formulated the problem as an integral 

equation in  terms of a Green's function. This 

g(x, y, s), must satisfy the Helmholtz equation 

and have a vanishing normal derivative on the 

Green's function , 

inside the harbor: 

boundary of the harbor 

except at the entrance where the normal derivative of the Green's 

function i s  a delta function. Unfortunately, as  they have noted, the 

Green's function for an arbitrary shaped harbor i s  beyond reach. Thus, 

they have applied this general formulation to a harbor of simple shape: 

a rectangular harbor, and found most interestingly that a narrowing of 

the harbor entrance leads not to a reduction in harbor surging 

(oscillation), but to an enhancement. This result was termed by them 

the "harbor paradox". At that time, there were considerable 

differences in opinion a s  to the existance of the paradox. LeMehaute 

(1962) suggested that if it had been possible to introduce the effect of 

viscous dissipation into the anlysis the paradox would become invalid. 

(However, the present study on circular harbors, both theoretically 

and experimentally, has supported the ''harbor paradoxt', although 

the experimental data also show that viscous dissipation of energy i s  

most important for harbors with small openings. (see Subsection 

6.2.2). ) 
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Ippen and Raichlen (1962) and Raichlen and Ippen (1965) have 

studied, both theoretically and experimentally, the wave induced 

oscillations in a smaller rectangular harbor connected to a larger 

highly reflective rectangular wave basin. The solution was obtained 

by solving the boundary value problem in both regions, i. e. the region 

inside the harbor and the region in the wave basin, using the matching 

condition that the water surface is continuous at the harbor entrance. 

Because of the high degree of coupling between the small rectangular 

harbor and its attendant wave basin the response characteristics of 

the harbor as a function of incident wave period were radically different 

from a similar prototype harbor connected to the open-sea. The 

former was characterized by a large number of closely spaced spikes 

as opposed to the latter that would have discrete resonant modes of 

oscillation. Those results most emphatically demonstrated the 

importance of adequate energy dissipators in the model system when 

investigating resonance of a harbor connected to the open-sea. It was 

pointed out that in order to reduce the coupling effect of the reflections 

of Lhe wave energy w h i c h  i s  radiated from the harbor entrance, 

efficient wave absorbers and wave filters in the main wave basin a re  

necessary. A subsequent study by Ippen, Raichlen and Sullivan (1962) 

showed that the coupling effect i s  indeed significantly reduced by the 

use of artificial energy dissipators in the main wave basin. 

Ippen and Goda (1963) also studied, both theoretically and experi- 

mentally, the problem of a rectangular harbor connected to the open- 

sea. In that analysis the waves radiated from the harbor entrance to 



the open-sea were evaluated using the Fourier transformation method 

which was different from the point source method employed by Miles 

and Mnnk (1961). The solution inside the rectangular harbor w a s  

obtained by the method of separation of variables and expressed in 

te rms of the slope of water surface at the harbor entrance. The 

solution in the open-sea region was obtained by superimposing the 

standing wave and the radiated wave (also expressed in terms of the 

slope of the water surface at  the harbor entrance). Thus by matching 

the wave amplitude, at the entrance, from the solutions in both 

regions the final solution was obtained. Fairly good agreement was 

found between the theory and the experiments conducted in a wave 

basin (9 ft wide and 11 ft long) where satisfactory wave energy dissi- 

patora wcrc inotdlcd around thc boundary t o  simulatc thc "opcn oca". 

These previous studies of the wave induced oscillations in a 

harbor with a special shape have helped to understand some of the 

characteristics of the harbor resonance problem. However, the 

practical application of these studies is limited simply because i t  i s  

not probable that the shape of an actual harbor will be as simple as 

those studied. 

In the following section previous studies on harbors of more 

complex shape will be surveyed. 
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2.2 WAVE OSCILLATIONS IN HARBORS O F  COMPLEX SHAPE 

Knapp and Vanoni (1945) conducted a hydraulic model study 

in connection with the harbor improvements at the Naval Operating 

Base, Terminal Island, California (The present East  and West Basins 

of Long Beach Harbor). The initial phase of that study helped to 

choose the lroptimum" mole alignment and an extensive ser ies  of 

experiments was then conducted to completely determine the water 

motions in the basin so defined. A harbor response in which the 

r n ~ x i m u m  vertical water motion anywhere within the basin was plotted 

against incident wave period was obtained for a range of prototype wave 

periods f rom 10 sec to 15 min. Contours of water surface elevation 

throughout the basin were determined for various wave and surge 

periods. These measurements have delineated the characteristic 

modes of oscillation of the basin and established the regions of maxi- 

mum and minimum motion in the basin. That study demonstrated the 

need and the meri t  of a model study to determine the location and the 

magnitude of the amplification in a harbor of complex shape when 

exposed to incident periodic waves. 

Research and model studies on the surging problem in Table Bay 

Harbor, Cape Town, South Africa were conducted by Wilson between 

1942- 195 1. (That work was made known in two papers: Wilson, 1959, 

1960. ) In that study Table Bay Harbor was shown to be affected by two 

forms of surging, one of which was responsible for the ranging of 

moored ships, the other for a pumping action of the basin and attendant 

navigational hazard. These model studies helped to reduce the surging 

inside the harbor. 
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Although model studies can provide many answers and a r e  by fa r  

still  the most reliable way of obtaining information concerning the wave 

induced oscillations i n  harbors,  they a r e  generally very expensive. and, 

most importantly, require a considerable amount of time. Therefore, 

many researchers  have searched for methods of theoretically analyzing 

the wave induced oscillations in  a harbor of arbitrary shape which 

although perhaps not replacing the model tests at least provide a useful 

guide for the experimental program. 

Wilson, Hendrickson and Kilmer (1965) have studied the two - 

dimensional and three-dimensional oscillations in an open basin of 

variable depth. For the two-dimensional oscillation the method is 

similar to oGne used earl ier  by Raichlen (196513) in which attention i s  

directed to free oscillations in a closed basin. In the analysis they 

have assumed that the wave lengths a r e  large compared to the water 

depths; the equation of continuity combined with the linearized dynamic 

f ree  surface condition was written i n  the form of a difference equation. 

The periods of oscillation and the variation of the water surface 

elevation within the harbor were obtained by solving for the eigenvalues 

and eigenvector s of the resultant system of difference equations. How- 

ever,  in this approach, an artificial boundary condition was assumed 

at the entrance to the harbor or bay. The boundary condition which 

was used results  either f rom an assumed nodal line at the entrance or 

using certain observed amplitudes. Although this method of approach 

gives some useful answers, i t  i s  not a complete solution to the problem. 



-An ideal solution would automatically take care of the entrance 

condition by matching the wave amplitudes and velocities at the harbor 

entrance derived from solutions for the domain of the harbor and of 

the open-sea. 

Leendertse (1967) has developed a numerical model for the pro- 

pagation of long-period waves in an arbitrary shaped basin. In that 

study, the partial differential equations for  shallow water waves 

(continuity and linearized momentum equations) were replaced by a 

difference equation to operate in spatial- and time- coordinates on 

definite points of a grid system. The results agreed well with certain 

field measurement; however, the water surface elevations at the open 

boundary still must be given. 

Most recently a study conducted by Hwang and Tuck ( 1969) 

developed an analytical method to solve the harbor resonance problem 

for harbors of arbitrary shape and constant depth connected to the 

open- sea. Their method of approach i s  to superimpose scattered 

waves which a re  caused by the presence of the boundary on the standing 

wave system. The scattered waves are conlputed by a distribution 

of sources (chosen as  the Hankel function ~ ( " ( k r )  ) with an unknown 
0 

strength to be determined along the coastline and the boundary of the 

L) 

harbor. Thus the potential function rpt(x) at any point ;(x, y) in space 

can be expressed as: 
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3 

where yo(x) represents the standing wave system and q(Go) i s  the 

source strength along the entire coastline which includes the boundary 

4 

of the harbor. The strength q(x ) was determined numerically such 
0 

that the boundary condition ?%= 0 was satisfied along the entire 
an 

reflecting boundary. This method did not require a matching condition 

at the harbor entrance; the calculation of the source strength q(<) 

along the entire reflecting boundary must be terminated at some 

-t 

distance f rom the harbor entrance (q(x ) = 0 between that location and 
0 

-F 
- )  Physically, this implies that the influence of the source distri-  

bution at  some distance away from the entrance i s  negligible; however, 

for an arbitrary shaped harbor the position at which the source strength 

becomes zero i s  not obvious unless t r ia l  calculations a r e  made. 

Although the theoretical solutions for wave induced oscillations 

in  harbors, especially for an arbitrary shaped harbor, a r e  limited, 

there i s  a considerable amount of literature in other fields such as 

optics, acoustics, electromagnetics, and mechanical vibrations which 

deal with similar physical problems. Some of these studies which a re  

pertinent a r e  concerned with the scattering of acoustic waves by 

surfaces of arbitrary shape (Friedman and Shaw (1962), Banaugh and 

Goldsmith (1963 a, b), Shaw (1967), etc. ), sound radiation from an 

arbitrary body o r  vibrating surfaces (Chen and Schweikert ( 1963 ), 

Chertock (1964), Copley (1967), Kuo (1968), etc. ), and the scattering 

of electromagnetic waves by cylinders of arbitrary cross  section 

(Mullin, Sandburg, and Velline (1965), Richmond (1965), etc. ). 
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Mathematical equations which describe these problems a r e  nearly 

identical to those for the water wave problem. Thus, similar 

analytical techniques may be used for the harbor resonance problem. 

In fact, the investigation of Hwang and Tuck ( 1969) as well as this 

independent study a r e  closely related to some of the literature just 

cited. 



CHAPTER 3 

THEORETICAL ANALYSIS FOR AN ARBITRARY SHAPED HARBOR 

The theoretical solution for the wave induced oscillations in 

an arbitrary shaped harbor with a constant depth i s  presented in  this 

chapter. The solution to the boundary value problem i s  formulated 

as an integral equation, and an approximate method i s  presented to 

solve this integral equation by converting i t  to a matrix equation 

which can be solved using a high-speed digital computer. The final 

solution i s  obtained using a matching condition at  the harbor entrance, 

i ,  e. equating, at  the harbor entrance, the wave amplitude and i ts  

normal derivative obtained from the solutions in  the regions outside 

and inside the harbor. The numerical analysis i s  described in this 

chapter and examples are  presented which confirm the numerical 

techniques used; a comparison of the theoretical and experimental 

results  dealing with thc full problem of thc response of a harbor to 

incident waves will be presented in Chapter 6. 

3 . 1  DEVELOPMENT OF THE HELMHOLTZ EQUATION 

In order to solve the problem mathematically, the flow 

i s  assumed irrotational so that a velocity potential I may be defined, 

such that the fluid particle velocity vector can be expressed as the 

3 + 
gradient  of the velocity potential ,  i .  e. u = V d ,  where  t i  i s  the velacity 



vector with components u, v, and w i n  the x,  y, and z directions 

respectively, and V i s  the gradient operator defined as 

a +  a * -  a +  + -+ -+ - i + - J + -k, in  which i ,  j ,  and k a r e  the unit vectors respec-  
ax ay a~ 
tively in  the directions x, y, and z .  A definition sketch for the coordi- 

nates i s  presented in  Fig. 3. 1. F r o m  the continuity equation for an 

Fig. 3. 1 Definition sketch of the coordinate system 

U 

velocity 
Bottom (z=-h) r;ulnpur~erlts 

--t 

i.ncompressible fluid, V u = 0 ,  and the definition of the velocity 

1- 

potential, Laplace's equation i s  obtained: 

- ' 2  v e u = v  @ = O  (3 .  1) 

Therefore, the problem is to find the velocity potential I, which 

7 7 1 P ~ / / / m / / m R / / / / N / / 7 / / ~ ~  

satisfies Laplace's equation, Eq. 3. 1, subject to a number of p re-  

scribed boundary conditions;. one of these i s  that the fluid does not 

penetrate the solid boundaries which define the l imits  of the domain of 

interest .  Therefore, the outward normal velocities a t  the boundary of 

a a the harbor ,  a t  the coastline, and a t  the bottom a r e  zero,  i. e. - = 0 an 
on solid boundaries. 
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The form of the soluti-on of the velocity potential P, which i s  

sought is: 

2 TT where o i s  the angular frequency, defined as - (T i s  the wave period), T 

,i, i s  the imaginary number ,Jz, and f (x, y)  i s  defined as  the wave 

lurlclivrl w h i c h  describes the variation of iP in the x and y - directions. 

Substituting Eq. 3.2 into Laplace's equation (Eq. 3. 1) the 

following expression results  : 

It i s  expected from consideration of small amplitude water wave 

theory that the function Z(z) will be in an exponential form rather than 

in  a sinusoidal form. Therefore, since the lefthand-side of Eq. 3. 3 

i s  independent of z and the right-hand- side i s  independent of x and y, 

each side can be set  equal to the same constant chosen here a s  -k2 

to insure Z(z)  varying exponentially. Thus the following set of 

equations i s  obtained: 

d2 z (i) ==k2z, i . e . d a Z - k 2 ~ = 0  dza 

dm The boundary condition at  the bottom i s  - (x, y, -h ; t )  = 0 ,  in  
d z 

which the depth i s  assumed constant. Eq. 3.4 and the boundary 

condition at  the bottom suggest the solution: Z(z)  = A. cosh k (h t z), 

where A i s  a constant to be determined. The dynamic free  surface 
0 



condition from small amplitude wave theory, neglecting surface 

tension, can be combined with this expression and Eq. 3 .2  to give: 

where q i s  the wave amplitude a t  the position (x, y )  and at  the time t, 

A. i s  the wave amplitude a t  the c res t  of the incident wave (see Fig. 
1 

3. I ) ,  and g i s  the acceleration of gravity. 

A = -  L 

o cosh kh 

Therefore, the function Z(z) in the velocity potential, Eq. 3 . 2 ,  can 

be expressed as: 

Aig cosh k(zSh) 
Z(z) = - 

cosh kh 

Thus the velocity potential 9 becomes : 

1 Aig cosh k (zSh) - A d  H (x,y,  z ;  t) = - cosh kh f ( x , ~ ) e  
A0 ( 3 . 8 )  

Substituting Eqs. 3. 6 and 3. 8 into the linearized kinematic free 

surf ace condition obtained from the small amplitude wave theory: 

the well known "dispersion relation" for water waves i s  obtained: 

is2 = gk tanh (kh) . (3. 10) 



The dispersion relation re la tes  the wave frequency to the wave number 

and the depth of the water;  therefore, the a rb i t ra ry  constant, k, used 

in Eqs. 3.4 and 3. 5 is the w a v e  i l u r n l e r ,  k, whicli appears in  the 

dispersion relation, where k is defined a s  - 2n (L i s  the wave length). L 7  

In order  to complete the expression for the velocity potential 

@, i. e. Eq. 3.2, the main problem which remains i s  to determine the 

wave function f (x, y ) ,  which sat isf ies Eq. 3.  5,  commonly known a s  the 

Helmholtz equation (Eq. 3. 5 is repeated he r e  fo r  clarity. ): 

subject to the following boundary conditions: 

(i) = 0 along all fixed boundaries such a s  the coastline and 

the boundary of the harbor (where n denotes the outward 

normal f rom the boundary). 

(ii) a s  ,/xa t Y2 -+my there i s  no effect of the harbor on the wave 

system; this is defined a s  the radiation condition. Physi- 

cally, the radiation condition means that the outgoing 

radiated wave emanating f rom the harbor entrance will 

decay a t  an infinite distance f rom the harbor. Mathernati- 

cally, the radiation condition i s  needed in order  to ensure 

a unique solution of wave function f (x, y )  in the unbounded 

domain. 

In the following section (Section 3 .2 )  the method for solving the 

Helmholtz equation, Eq. 3.  5,  for  an a rb i t ra ry  shaped harbor will be 

presented, thereby allowing one to determine Lhe wave induced 

oscillations i n  such a harbor. 
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3 . 2  SOLUTION O F  THE HELMHOLTZ EQUATION FOR AN 

ARBITRARY SHAPED HARBOR 

The procedure in  the developinent of the theory of the 

response of an arbitrary shaped harbor to incident wave systems i s  

as  follows: 

(i) The domain of interest  shown in Fig. 3.2 i s  divided into 

two regions: the infinite ocean region (Region I), and 

tht: region bounded b y  the limits of the harbor (Region 11). 

The coastline which in part  forms the shoreward limit of 

Region I i s  located along the x-axis and i s  considered to 

be perfectly reflecting and perpendicular to the bottom. 

(ii) The wave function f, i s  determined in  Region I in  terms 

a t  the harbor of the unknown normal derivative - 
9n 

entrance. Likewise, the wave function f2  i s  evaluated 

in Region I1 in  terms of the unknown normal derivative 

8% - at the harbor entrance. 8 11 

(iii) The condition i s  used that at  the entrance the wave 

amplitude and the slope of the water surface obtained 

from the solution in  Region I must equal to these quantities 

obtained f rom the solution in Region 11, i. e. with reference 

to Fig. 3 . 2 ,  at y=O in  the region between A and 3, f, = f, 

8% - af2 and -- - .  This "continuity condition" i s  used to 
an an 

solve for the unknown normal derivatives of the wave 

(Note that the function f ,  at  the harbor entrance: an. 



Region I (Open-sea) 

v2f, s k2fl = 0 

integration 

Fig. 3.2 Definition sketch of an arbitrary shaped harbor 



negative sign resul ts  f rom the sign convention that the 

outward normal to the domain of in teres t  i s  considered 

to  be positive. ) 

(iv) Once the normal derivative of the wave function af2 a t  an 
the harbor entrance is obtained, the wave function f, i n  

Region 11, i. e. inside the harbor,  can then be evaluated. 

In the Subsection 3 . 2 .  1, the solution of the wave function f2 

inside the harbor is presented, followed by the solution of wave 

function fl in the infinite ocean region presented i n  Subsection 3. 2. 2. 

In Subsection 3. 2 . 3  the procedure for matching the solutions a t  the 

harbor entrance i s  shown, leading to the desired resul t  of the 

response of an a rb i t ra ry  shaped harbor to incident wave systems. 

3 . 2 .  1 Wave Function h s i d c  thc Harbor (Rcgion 11) 

In Region II Green's identity formula (see Appendix I, 

Eq. A. 1. 1)  i s  applied and the Hankel function of the 1st kind and 

zero  o rder ,  ~ y ) ( k r ) ,  i s  chosen to be the fundamental solution of the 

two-dimensional Helmholtz equation, Eq. 3.  5. The function ~! ) (k r )  

i s  chosen because it satisfies the Helmholtz equation, and possesses  

the proper type of singularity a t  the origin, w h k h  will be discussed. 

Therefore, the wave function f, a t  any position i n  the domain of 

interest  can be expressed in  integral  fo rm a s  a function of the value 

af2 of f2 and the value of - a t  the boundary. (This derivation has  been 
an 

discussed by Baker and Copson (1950)  and i s  r e fe r red  to a s  Weber's 

solution of the Helmholtz equation; it i s  presented i n  Appendix I. ) 



3 

f 2  (x i -  -$SF, (z0)& ( ~ y ) ( k r ) )  - ~ : " (k r )  & (f, (gO))l .-I d ~ ( ; ~ )  (3. 11) 

3 4 

dhere:  f, (x') i s  the wave function f2 at the position x shown in Fig 

Fig. 3. 2, 

-+ 
x i s  the position vector of the field point (x, y)  inside the 

harbor ,  

f, (go) i s  the wave function f, on the boundary a t  the position 

4 

x i s  the position vector of the source point (xo, yo) on the 
0 

boundary (the significance of the aource point will be 

discussed presently), 

3 

af, (x0) 
i s  the outward normal derivative of f, a t  the boundary 

an 
+ 

source point x 
0' 

r i s  the distance between the field and source points,lxf - zoI, 
and 

,L i s  the imaginary number of JT. 

The integration indicated by Eq. 3. 11 i s  to be performed along 

the boundary of the harbor traveling i n  a counterclockwise direction 

a s  indicated i n  Fig. 3.2. 

It i s  worthwhile to point out that similar to the ar gurnents used 

i n  potential theory, Eq. 3 .  1 1  represents  the potential a t  the position 

2 as  a combination of the contributions f rom the two different kinds of 

singularities (or source points). Looking f i r s t  at the second par t  in  

the integrand of Eq. 3. 11, it i s  seen that this represents  a simple 

a d  
source o r  a sink located on the boundary with strength %f, (xo). On 
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the other hand, the f i rs t  part  in  the integrand of Eq. 3. 11 represents 

the contribution of the distribution of doublets located on the boundary 

with a strength f2  (<). These singularities a r e  evidently represented 

by Eq. 3.  11 because the asymptotic behavior of the imaginary part  of 

the Hankel function ~ ; " ( k r )  for very small k r  i s  a logarithmic 

singularity: 

Imaginary ( ~ ( ' ) ( k r ) ) - -  o IT log (kr)  

From Eq. 3.  11, i t  i s  clear that in order to be able to determine 

the wave function, f2,  at any interior point of Region 11, either the value 

3fa 
f, or  the value g ~ ;  on the boundary of the region must be known. The 

boundary conditions set  previously stated that the normal derivative 

af2 - 0, but of the wave function on the solid boundary i s  zero, i. e. - - 
an 

i t s  value at  the harbor entrance i s  unknown. At this point in  the 

derivation thc valuc of thc wave function f2 everywhere on the 

boundary i s  also unknown. In order to determine the wave function 

f 2  on the boundary, Eq. 3. 11 i s  modified by allowing the field point 

--t -4 

x to approach a boundary point xj (xi, yj ) from the interior of the 

harbor (see Fig. 3.2). If the boundary i s  sectionally smooth, the 

following expression can be obtained: (This derivation i s  prcscnted 

in Appendix 11. ) 



Rearranging Eq. 3. 12 one obtains: 

(3. 13) 

To solve Eq. 3. 13 for the value of f, on the boundary for an 

arbitrary shaped harbor, an approximate method i s  proposed. In the 

approximate method the integral equation i s  converted to a matrix 

equation. (Similar approaches used in solving an integral equation 

have been employed by others, e. g. , Banaugh and Goldsmith (1963), 

Chertock (1964), Copley (19671, Mikhlin and Smolitskiy (1967). ) This 

i s  accomplished by dividing the boundary into a sufficiently large 

number of segments where along each segment the average value on 

+ a -+ a (1) 
that segment of f8(x ), a , f s ( x o ) ,  ~ :"(kr) ,  - (H (kr)). is used. The o an o 

line integral of Eq. 3. 13, which represents the wave function f2 ,  i s  

approximated by a finite summation of the contributions of the 

singularities f rom each segment, where the singularities a re  the 

average values just mentioned and a re  considered to be located a t  

the center of each segment. 

Writing the integral equation Eq. 3. 13 as  a summation one 

obtains : 

where the boundary i s  divided into N segments, and: 

+ 
r i s  the distance between the points x. and Gi and i s  defined i j  J 

3 -+ 
as  r i j =Ixj-xil= r . . ,  

3 1  
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-t 

x i s  the position vector for the field point on the boundary, i 

2. i s  the position vector for the source point on the boundary, 
J 

and 

A s .  i s  the length of the jth segment of the boundary. 
J 

The segments of the boundary will be numbered counterclockwise 

starting f rom the right-hand-side of the harbor opening; with reference 

to Fig. 3 . 3  the starting point i s  point B. It should be noted that because 

of this approximate representation of the boundary, the original curved 

boundary i s  replaced by a boundary approximating it and composed of 

straight-line segments. 

Eq. 3. 14 can be written in  a matrix form as: 

o r  rearranging this expression: 

k where b = - - and the following notation i s  used: 
0 2 
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The evaluation of these matrix elements will be discussed in Section 

3 . 3  which deals with the numerical analysis. It should be noted that 

special care must be taken in evaluating the matrices,especially the 

elements when i=j .  

If the inverse of the matrix (boGn-I) exists, where I i s  the 

identity matrix, the vector X_ can be expressed as:  

X =  ( b o ~ n - ~ ) - '  (bocp)  , - - (3. 18) 

in which (b0Gn-I)' i s  defined as the inverse of the matrix (boGn-I). 

The vector P in Eqs. 3.16 and 3 .  18 involve the unknown normal 

derivatives of the wave function at the harbor entrance as well as the 

normal derivatives of the wave function on the boundary. These latter 

values a re  zero,  i. e. the values of the normal derivative of the 

wave function fg for the segment i=p+l , .  . . . . N a re  zero. The vector 

P can be represented in the following way: - 



inwhich,  U = Sij = { y  for iiij (the index i = 1.2 ,..... N, and the 
m for i= j  

index j=l,  2 , .  . . . . p). Since the total number of segment into which the 

harbor entrance i s  divided i s  defined as  p,the values of C - for J 

j=l, 2, . . . . . p a r e  the unknown normal derivatives of wave function f, 

a t  the harbor entrance, which i s  represented by the unknown vector 

C. - 

Substituting Eq. 3. 19 into Eq. 3.  16 and Eq. 3. 18 the following 

matr ix  equation resul ts  : 

o r  rearranging: 

X = ( b o ~ n - ~ ) - '  (boGUm)C = MC , - - (3 .2  1) 

where M = ( ~ " G ~ - I ) - '  -b0GUm i s  a N x p matr ix  and can be computed 

directly. 

3 

Eq. 3 . 2  1 shows that the wave function on the boundary, f, (xi), 

can be expressed a s  a function of the unknown normal  derivative of f2 

a t  the harbor entrance, i. e. : 

where i=l, 2 , 3 . .  . . . . N. 
Lf the l~ori-nal derivatives of the wave function C C2, C30 . - -  

C a t  the entrance of the harbor (which at this  point a r e  
P 

unknown) can be obtained, then the wave function f2 on the boundary 

of the harbor can be computed directly f rom Eq. 3.22. (It should be 

noted that Eq. 3. 22 can also be interpreted as  the contribution to the 



wave function on the boundary at  a particular point from the super- 

position of the effect of p small harbor openings). Once the wave 

function f2 on the boundary i s  known, the wave function in the interior 

of the harbor can be evaluated from Eq. 3. 11 expressed in discrete 

form as: 

N 

where 2 i s  the field point inside the harbor, r i s  the distance between 

the field point and the source point. Eq. 3 . 2 3  will be discus sed in 

more detail in Subsection 3 . 2 . 3 .  

In order to evaluate the normal derivatives at the harbor entrance: 

C1, C2,. . . . . C in Eq. 3.22, the wave function f l  in Region I at  the 
P 

entrance of the harbor must be expressed as  a function of the same 

normal derivatives : C 1 ,  C2, . . . . . C By matching these wave 
P' 

functions f l  and f, at  the harbor entrance,the normal derivatives 

C1, C2,. . . . . C can be evaluated from the resulting expression and 
P 

the complete solution to the response problem can be obtained. 

3.2.2 Wave Function Outside the Harbor (Region I) 

In Eq. 3.6, the wave amplitude y i s  expressed as a product 

of the incident wave amplitude at the crest  Ai, the wave function f (x, y), 

and the time varying function c -*Ot. Bccausc the analytical treatment 

i s  linear, the wave amplitude in Region I can be considered as 

composed of three separate parts: an incident wave, a reflected wave, 

(from the "coastline" with the harbor entrance closed), and a radiated 

wave emanating from the harbor entrance. Thus, the wave function 



in  Region I can be separated into three parts: 

f, = f .  -t f + f 3  
1 r 

where: fi represents an incident wave function, 

fr represents a reflected wave function considered to occur 

as  if  the harbor entrance were closed, 

fs represents the radiated wave function due to the presence 

of the harbor. 

It should be noted that Eq. 3. 24 implies that the wave amplitude in 

-Lot -Lot RegionI, q l = A i f l e  , i s e q u i v a l e n t t o q ,  = A i ( f i + f r f f 3 ) e  . 
This implies that any differences among the wave amplitudes for the 

three portions: qi , qr, and compared to the amplitude of q l  

a r e  incorporated in  constants contained i n  the wave functions: fi, f r ,  

and f a .  

The incident wave function, f., can be specified i n  an arbi t rary 
1 

fashion; for example, a periodic incident wave with the wave ray a t  

an angle a to the x-axis (the coastline in  Fig. 3 . 2 )  can be represented 

a s  fi(x, y )  = cos (ky sin a) e cos a. The reflected wave function f r ,  

can be represented by f,(x, y )  = fi(x, -y). For the case of a periodic 

incident wave with the wave ray perpendicular to the coastline (a=90°), 

the function which represents the x and y variation of the incident 

wave, f .  (x, y), can be represented by cos ky. This i s  thc cssc which 
1 

was treated experimentally in  this study and therefore the following 

discussion will be concerned with periodic waves normally incident 

to the coastline. 
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The wave function f, in Eq. 3.24 must satisfy the Helmholtz 

equation in  Region I (Eq. 3.  5): 

with the following boundary conditions : 

8% - (i) - - 0 on boundary AC and 
an 

0 (3 .  2 5 )  

Bc' (as  shown in Fig. 3 . 2 ) ,  

(ii) 3=-& on boundary AB (harbor entrance) , 
an an 

(iii) l im f l  = f i t  f r  , and the radiation condition (where r2 = x 2 t y 2 )  . 
r 2 + m  

Boundary condition (i) states that the normal velocity i s  zero at  

the coastline. The second boundary condition (ii) states that the slope 

of the water surface i s  continuous at  the harbor entrance and the value 

from Region I is equal in magni tude  to that obtained a t  the entrance 

f rom Region 11. The negative sign i s  specified for the adapted sign 

convention that the outward normal to the domain of interest  i s  con- 

sidered positive. For the case of normal wave incidence in  Fig. 3.2 

i t  i s  noted that the normal to the boundary in Region I i s  in the direc- 

tion of the y-axis. The las t  boundary csndition (iii) specifies that 

the radiated wave in Region I emanating from the harbor entrance 

will decay to zero at infinity, hence at infinity only the standing wave 

resulting from the incident and reflected waves remains. 

As mentioned ear l ier ,  the reflected wave function f i s  known 
r 

once the incident wave function fl is  specified. Therefore, to complete 

the evaluation of the wave function f,, the main problem i s  to evaluate 

the radiated wave function fS . Since the analytical treatment i s  linear, 
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the functions f i ,  f r ~  and fa all must satisfy the same differential 

equation, Eq. 3.25. In addition the boundary conditions in Region I 

can be simplified since the normal derivative of the wave function i s  

zero on the impermeable boundaries being considered. With reference 

a a to Fig. 3 . 2 ,  on the boundary CABC' +fi f f ) = -(f. t f r )  = 0, and r ay 1 

hence boundary condition (ii) can be replaced by af3 = -2 
an 

af at  harbor 
Bn 

entrance (boundary G) . Thus, the radiation function f3 in Region I 

can be formulated as satisfying the Helmholtz equation: 

with the following boundary conditions: 

(i) 5 = 0 on boundary and 
an 

= O  , (3.26) 

- 
BC1 (as shown in Fig. 3 . 2 )  , 

af3 = (ii) - 
an an 

on boundary TB (harbor entrance) , 

(iii) lim fg  = 0 and the radiation condition (where r 2  = xa + Y2) . 
ra +w 

It i s  noted the these boundary conditions a re  reduced from those 

associated with Eq. 3.25. 

To construct a solution for the radiated wave function f n  in 

Eq. 3 . 2 6 ,  Green's identity formula (Appendix I, Eq. A. 1. 1) will be 

used again and the fundamental solution ~ ( " ( k r )  used in previous 
0 

section will be used here also. The fundamental solution ~ ( " ( k r )  also 
0 

satisfies the radiation condition at  infinity, i. e. boundary condition 

(iii), since as kr- i t  asymptotically goes to zero: 
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If the fundamental solution is multiplied by the time dependent function 

e the resultant expression represents an outgoing radiated wave 

satisfying boundary condition (iii) (see Appendix I): 

The radiated wave function fa in Region I can be expressed 

using Weber's formula in a similar fashion as Eq. 3 .  11 was used 

for the expression of the wave function f, in Region 11.: 

3 4 

where xo i s  the source point (xo, 0) along the x-axis, x i s  the field 

point (x, y) in Region I, and r i s  the distance between the field point 

and the source point, i. e. r = J(x-xo)' + y2 (see Fig. 3.2). 

In order to find the radiated wave function fa on the x-axis, the 

field point (x, y) i s  allowed to approach the x-axis at  the point (xi, 0). 

{This approach i s  the same as in the treatment of Region 11.. ) Thus, 

the following equation can be obtained (see Appendix 11): 

The t e rm a [ ~ ( " ( k r ) ]  in the integral can be expanded to become 
a n -  o 

+ 
-k~! ' ) (kr)  - ar However, because the field point x. (x., 0)  and the 

an- 1 1  
+ a r  

source point x (x 0) a r e  all  on the x-axis, the t e r m-  is equal to o 0' an 

zero. Therefore, the f i r s t  t e rm inside the integral in Eq. 3.30 i s  

af equal to zero and can be eliminated. In the second term, Z(X,, 0) ,  

the normal derivative of the radiated wave function f a ,  i s  equal to zero 
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everywhere except across the harbor entrance. The integr a1 unit 

ds(xo, 0) becomes dxo because the integration i s  to be performed along 

x-axis. Thus, Eq. 3.30 can be simplified to: 

Using boundary condition (ii) of Eq. 3.26, Eq. 3 . 3  1 can be rewritten 

as: 

Eq. 3.32 shows that the radiation wave function fa at the harbor 

entrance can be expressed as a function of the unknown normal deri- 

vative of the wave function at the harbor entrance computed from 

a Region 11, i. e. in terms of =f, (xo, 0). 

Eq. 3.32 can be expressed in summation form similar to Eq. 

where the matrix H. = ~ L ' ) ( k r .  .)AS is  a p x p matrix (the evaluation 
1 j  IJ j' 

of the elements of this matrix especially for i= j  will be discussed in 

Subscction 3 . 3 . 3 ) ,  r . .  i s  the distancc 1 xi-xj 
I whcrcin x x arc thc 

1J i' j 

midpoints of the i
th 

and jth segments of the harbor entrance respect- 

ively. The term C. in Eq. 3.33 i s  the normal derivative of the wave 
1 
ih function f, at the j segment of the harbor entrance, As. i s  the length 

J 

of the jth segment of the harbor entrance, and p i s  the total number 

ol  segments into which the harbor elltrance has beau divided. 



Because the incident wave function plus the reflected wave 

function at the harbor entrance, f .  + f i s  a constant, by substituting 
1 r' 

Eq. 3 . 3 3  into Eq. 3 . 2 4  the wave function fl at the harbor entrance 

can be represented as: 
P 

where i=l, 2 , .  . . . . p. The f i r s t  t e r m  at the right hand side of Eq. 3 . 3 4  

represents the incident wave plus the reflected wave if the entrance 

i s  closed and for  convenience it i s  chosen as unity; the second term 

represents the contribution of the radiated wave to the total wave 

system. 

3 . 2 . 3  Matching the Solution for Each Region at the Harbor 

Entrance 

Eq. 3 . 2 2  shows that f rom the solution in Region 11, the 

wave function at the boundary of the harbor can be expressed in terms 

of the normal derivatives of the wave function f, at the .entrance of the 

harbor, C.. The corresponding equation in Region I, Eq. 3 . 3 4  shows 
J 

h a t  the w a v e  function at the harbor eiltrailce can also be expressed as 

a function of C Since the water surface must be continuous at the 
j' 

harbor entrance, the wave functions from Regions I and 11 must be 

equal at the entrance, i. e. fl = f,. Thus, by matching the two solutions 

at the harbor entrance, one i s  able to determine the unknown function 

C This i s  done in  the following fashion: 
j' 

Take the f i r s t  p equations from Eq. 3 . 2 2  for the wave function 

f, at the harbor entrance: 



in which  the index i= l , 2 ,  . . . . . p, (p is  the number of segments into 

which the harbor entrance i s  divided). The matrix M in Eq. 3. 35 i s  a 
P 

p x p matr ix  obtained from the fir s t  p rows of the matrix M. 
+ -i 

Equating Eqs. 3 .  34 and 3.  35, i. e. f, (xi) = f, (xi), for i = l ,  2 , .  . . . p 

the following matrix equation i s  obtained: 

M C = 1 -t boHC_ I (3.36a) 
P- - 

C - = ( M  - bOH)-' - 1 , (3.36b) 
P 

where M and H a r e  each p x p matrices,  (M -b H)-I i s  the inverse 
P P 0 

A of the matrix (M -b H),  the t e r m  b is equal to -- as  defined ear l ier ,  
P 0 0 2 

and 1 i s  the vector with each p element equal to unity. Therefore, the 

value of the normal derivative of the wave function at the harbor 

entrance for each of the p-segments, C_, can be obtained from Eq. 

3.36b. 

With the normal derivatives of the wave function f, at the harbor 

entrance obtained by this matching procedure, the wave function on the 

boundary can now be calculated from Eq. 3.22 and the wave function at  

any position inside the harbor can be determined from Eq. 3.23 or the 

equivalent expression: 
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where ;. i s  at the mid-point of the jth segment of the boundary, x i s  
J 

4 

the position of the interior point and r i s  the distance between x and 
j 

4 + 
x, i. e. r= Ix.-XI. It should be noted that Eq. 3.23 i s  written in  the 

J 

f o rm of Eq. 3 . 3 7  because the normal derivative of the wave function 

at the boundary i s  zero except at the harbor entrance. 

In order to determine the response of the harbor to incident 

waves, the wave amplitude inside the harbor i s  usually compared to 

the incident plus the reflected wave amplitude which exists in the "open- 

sea" in the absence of the harbor, i. e. the harbor entrance i s  closed. 

A parameter called the "amplification factor" i s  defined as  the ratio of 

the wave amplitude at any position (x, y )  inside the harbor to the incident 

plus reflected wave amplitude at  the coastline (with the entrance closed). 

In Eq. 3 .38 ,  R i s  defined as the amplification factor. The wave 

function f, (x, y) i s  a complex number; therefore, i n  compnting the wave 

amplitude the absolute value i s  taken. 

3 .  2.4 Velocity at  the Harbor Entrance 

With the wave function f2 (x, y) determined in Subsection 

3 . 2 . 3 ,  the calculation of the velocity potential $ (x, y, z;t) for the region 

insidc thc harbor i s  now complete: 

1 Aig cosh k(zlh) -Lot qx, y, ~ ; t )  = - cosh kh fz  (xt Y) e Lo 



- 3 9 -  

In accordance with the definition sketch presented in Fig. 3. 1, 

the velocities at  the position (x, y, z )  in the directions of x, y, z a r e  

defined as follows: 

'am 1 ~~g C O S ~  k ( ~ i - h )  
u(x, y, z;t)  = Real tG) = ~ e a l [ -  0 cosh kh - ax af2 (x, y)e-'ot] ,!3.40a) 

1 Aig cosh k(x+h) 
V(X, y, z;t) = Real (-$) = =Real [ E  cash kh 

af2 - (x, y)e-'ot] 
ay 

, (3.40b) 

and the total velocity at any position (x, y, z )  and time t ,  can be 

expressed as: 

The velocity at  the harbor entrance i s  of interest because it i s  

directly related to the kinetic energy transmitted into the harbor. This 

total velocity VI i s  a periodic function of time. In order to find the 
.L 

maximum total velocity for all time, the function ~ " ' j x ,  y, z;t) i s  differ - 

entiated with respect to time and the derivative i s  se t  equal to zero; 

from this condition one can determine the time for which the velocity 

i s  a maximum. Thus, the maximum total velocity, which i s  denoted 

:k 
as  Vo, at a particular position (x, o, z )  at the harbor entrance can be 

calculated as follows : 

% 2 ~ :  A; cos 2(a, -a, ) + Z A ~ A ;  cos 2(al -a,) )"I" (3.41) 



af, cosh k(zSh) = I  By I cosh kh 

wherein the subscripts R and I which appear in  the expressions for 

al , a,, as denote the rea l  par t  and imaginary part  respectively. 

As will be discussed in Subsection 6.2. 5,  experiments were 

conducted to measure the velocity at the harbor entrance using a hot- 

film anemometer. The hot-film sensor was oriented with i ts  long- 

itudinal axis parallel both to the "coastline" and the bottom, and, hence, 

it was primarily sensitive to the velocities in  the y and z directions 

(the v and w components respectively). For comparison with the 

cxperimentd data  the theoretical value of the ma-ximum resultant 

velocity of the v and w components, which i s  denoted as  Vo, can be 

determined by setting u2 equal to zero in Eq. 3.40d (or Al = 0 in 

Eq. 3.41): 



( 3 . 4 2 )  
where Az , A3, a,, and a3 a r e  defined in Eq. 3.4 1. 

3 . 3  THE NUMERICAL ANALYSIS 

Section 3.  2 was concerned only with the transformation of 

the Weber's solution of the Helmholtz equation (Eq. 3. 11) into an 

integral equation (Eq. 3. 13) and the formulation of an approximate 

solution to this integral equation. In this section the methods for  

evaluating the elements of the matrices defined i n  Eqs. 3.  15 and 3 . 3 3  

will be discussed as well as  the numerical method for solving the 

wave function f, in Region I1 and the matching procedure. 

3 . 3 .  1 Region 11: Evaluation of Matrices Defined in Eq. 3. 15 

i) Off-diagonal elements of the matrix Gn 

As defined in Eq. 3.  14 the notation G. (x y . )  i s  used for 
1 i' 1 

-+ 
i= l , 2 ,  . . . . . N, to refer to the field points, and the notation x . ( x  y . )  J ' J 
for j= l ,2 ,  . . . . . N i s  used to refer to the source points. The elements 

(GuIij for  i f j  can be evaluated as follows: 

in which r . .  = J(xi-xjla + (y .  -JT.)' i s  the distance between the mid- 
1J  1 J 

points of the ith segment and the jth segment of the boundary. The 

Hankel function ~ ! l ) ( k r .  .) in Eq. 3 . 4 3  can be expres sed in terms of the 
1J 

Bes sel  functions by the equations : 



Hence, Eq. 3.44 i s  known once the argument k r  i s  known. 
i.i 

8 r 
> i n  Eq. 3.43 can be evaluated as follows: The te rm an 

In the right-hand side of Eq. 3.45 the differentiation with respect to 

the outward normal direction of the boundary, n, i. e. (E) and (g) , 
j j 

can be changed into differentiation with respect to the tangential 

a 
direction along the boundary, as. Therefore, according to the 

definition sketch of Fig. 3.4, Eq. 3.45 can be rewritten as: 

Referring to the definition of rij and performing the differentiation of 

ar.. ar. .  
and 2 Eq. 3.46 becomes: ax 

j ayj 

Writing the te rms  (3) and (2) in difference form Eq. 3.47 becomes: 
j j 

Therefore, the off -diagonal elements of the matrix G can bc evduatcd n 

by substituting Eqs. 3.44 and 3.48 into Eq. 3.43. 



Fig. 3 . 4  Change of derivatives f r o m  normal  to tangential direct ion 



ii) Diagonal elements of the Matrix Gn 

For matrix Gn, since the source and field points are  located 

at the mid-point of the straight-line segments which have been used 

to approximate the boundary, the diagonal elements of the matrix G, 

correspond to the condition of the coincidence of a particular field 

point and source point. Due to the singular behavior of the Hankel 

function H! "(kr ) as kr-0, special attention must be given in 

evaluating these diagonal elements. 

The function Yl (x) in Eq. 3 . 4 4  can be expressed as a series as 

(see Hildebrand (1962) p. 147): 

in which y = 0. 577216.. . i s  termed Euler's constant, and the logarithm 

i s  to the Naperian base e (= 2.7128), (all logarithms will be to this 

basc u n l c o ~  indicated othcrwisc). Thc real part of Hankel function 

(1) 
H1 (kr)  presented in Eq. 3 . 4 4  i s  Jl (kr) which i s  approximately equal 

kr to 2 when k r  becomes very small; therfore, J, (kr)-+O as kr-*O. Thus, 

from Eq. 3 . 4 9  as kr+O the function Yl (kr) can be approximated as: 

for kr+O . 
Thus, the diagonal elements of the matrix G, can be evaluated as 

the limiting value as r approaches zero (Eq. 3 . 4 3  for i=j): 

l im (1) a r  l im 
(Gdii = r 4 0 ( - k ~ ,  ( k r ) = ) ~ s ~ = . _ ~  - k [ ~ , ( k r ) + L Y , ( k r ) ] ~ A s ~  



Therefore, in evaluating the diagonal elements of the matrix Gn, the 

a r 
Ern most important step i s  to evaluate the te rm - in Eq. 3. 5 1. r-0 r 

The definition of r is: 

where (x y.) a re  the coordinates of the mid-point of the i
th segment on i' 1 

the boundary thus the t e rm can be expressed in  a form similar to 

Eq. 3.47: 

and g i n  Eq. 3. 52 The terms (x-xi), (y-yi), as, 

Taylor's ser ies  in the neighborhood of (xi, yi): 

can be expanded in  a 

ax - (AS) '  as (xs). 1 + (xSS). 1 AS + (xSSSIi 2 !  t.. . . 
where the subscript s refers to differentiation with respect to s. (The 

index i means that the values of interest  a re  evaluated at  the mid-point 

of the ith segment. ) The expansion ( y-yi) and can be done in exactly as 

the same way by changing x to y i n  Eqs. 3.53 and 3.54. 

8r - 
lim 

in Eq. 3. 5 1 can be evaluated using the definition Thus the termr30 

of r ,  Eq. 3.52, and Eqs. 3. 53 and 3. 54 to give: 

a r a r  
l i m K  l im an 
r+O T- = AS-0 r 



The numerator of Eq. 3. 55 can be arranged as: 

where o(ns3) means terms of order ns3. 

The denominator of Eg. 3.55 can be arranged as: 

this expression can be simplified farther to become ( A S )"  t  AS^) 

because in reference to Fig. 3 . 4  the t e rm < + yz i s  equal to unity. 

Thus, neglecting the higher order terms in Eq. 3. 55, this 

expression can be approximated as : 

Therefore, the diagonal elements of the matrix G can be found from n 

Eq. 3.5 1 and the approximation described in Eq. 3.56: 

In Eq. 3. 57, the first and second derivatives of x 6 p  YS* X s S *  YSS arc? 

evaluated at the mid-point of the ith segment of the boundary. 

For a boundary which i s  originally composed of straight lines 

the value of xsyss and y x in Eq. 3.57 a r e  both equal to zero 
s S S  

(because the second derivatives xss and yss are both zero); therefore 

the diagonal elements of the matrix tin are  equal to zero. P'or a 

curved boundary which has been approximated by straight-line segments 

the expression of the f i rs t  and second derivatives, x and xS S, can be s 

written i n  a d i f f e r e n c e  form as: 



where x. i s  the x coordinate at the mid-point of the ith segment of the 
1 

boundary, xi I i s  the x coordinate at the beginning of the i
th 

segment 
-z 

of the boundary, and x i s  W e  x coordinate at the end of the i th 
it* 

segment of the boundary, Asi- l, Asi, and  AS^+^ a r e  the length of the, (i- l)th 

ith, and (it l)th segments of the boundary. The derivatives ys, yss can 

be evaluated in exactly the same way by changing x to y in Eqs. 3.58. 

iii) Off-diagonal elements of the matrix G 

The elements (G).. for i#j can be evaluated directly 
1J 

following expression: 

(1) (G). . = Ho (kr. .)As = [J (kr. .) t LYo(kr. .)1asj 
1~ 13 j 0 1~ v J 

by the 

(3.59) 

For a given value of krij, in Eq. 3. 59, the function Jo(kr. .) and Yo (kr . .) 
1J 1J 

a re  known functions. 

iv) Diagonal elements of the matrix G 

The diagonal elements of the matrix correspond to the case of 

i = j  in Eq. 3.59. As before, due to the singular behavior of the function 

Y (kr), special attention must be given in evaluating the diagonal 
0 

elements of matrix G. Using the asymptotic formula of Jo(kr) and 

Y (kr ) as the argument for k r  approach zero, the following approxi- 
0 

mations a r e  obtained (see Hildebrand ( 1962) ): 



Jo (kr ) rn 1 , 

Therefore, as kr+0 the Hankel function H;)(kr) can be expressed as: 

13L1)(kr) = Jo(kr) t ,LYo(kr) FI. 1 t  log ~r Ft 
(for kr-0) 

where y is  the Eulerts constant as mentioned earlier. 

Using this asymptotic formula for the Hankel function H:)(kr). 

the diagonal elements of the matrix G can be evaluated by performing 

the following integration to determine the average of this function over 

the length of the segment of interest: 

k As. 
= [1 +A$ [log(+) -0.422781 ] nsi 

where i=l, 2,. . . . . N. 

3. 3. 2 Region 11: Method of Solution for Wave Function f-, 

In Subsection 3. 3. 1 the methods for evaluating the elements 

of the matrices G and G have been discussed; thus, the next step i s  to n 

evaluate the matrix M, as defined in Eq. 3.2 1, in order to determine the 

variation of the wave function f2 along the boundary of the harbor. As 

shown in Eq. 3.22 the wave function f, along the boundary of the harbor 

can be expressed as a function of the unknown normal derivative of the 

wave function f, at the harbor entrance, i. e. C1. C 2 , . . . . .  C Eq. 
P' 

3 .22  i s  repeated here for clarity: 



wherein M.. i s  a 
1J 

matrix equation, 

The matrix (boGn 

N x p matrix which i s  the solution of the following 

rearranged from that shown in Eq. 3.21: 

(boGn - I) M = boGUm . (3.61) 

-I) i s  a N x N matrix, i ts  elements can be determined 

as  described in  Subsection 3.3. 1 using the definitions of bo and I given 

in Subsection 3.2. 1. The right-hand- side of Eq. 3.6 1, matrix boGUm, 

is s N x p matrix, where Um is defined by Eq. 3 .  19. (It should be 

noted that the matrices G, Gn and M shown in Eq. 3.61 a re  all complex 

numbered matrices. ) 

To solve Eq. 3.6 1 for  the complex numbered matrix M, a sub- 

routine for the IBM 360175 digital computer: llCSLECD/Complex System 

of Linear Equations and Complex Determinant1' was used which i s  

available at  the Booth Computing Center of the California Institute of 

Technology. The subroutine i s  based on the Gaussian elimination 

method where rows a re  interchanged leading to the conversion of the 

left-hand side matrix in Eq. 3.61 to an upper triangular matrix. The 

sulutiou of M i s  theu obtairled b y  Lackward substilutiorl. 

3.3.3 Region I: Evaluation of Matrix H Defined in Eq. 3.33 

The matrix H defined in Eq. 3.33 can be evaluated in the 

same way as  was matrix G. The matrix H will be called the "radiation 

matrix" because it i s  the main part  of the radiated wave function f3 (G) 
described in Eq. 3.33; it i s  a p x p matrix and its  off -diagonal elements 

can be evaluated in a manner similar to that shown in Eq. 3.59: 



(1) (H). . = Ho (kr. .)As = [ ~ ~ ( k r ~ ~ )  + ,I, Yo(kr. .)]As (3.62) 
13 13 j 13 j 

(for i # j  and i, j= l ,  2 , .  . . . . p) . 
The diagonal elements can be evaluated in a manner similar to that 

shown in Eq. 3.60: 

(for i=l,  2 , . .  . . .p)  . 
3.3 .4  Harbor Entrance: Matching Procedure 

After s blving Eq. 3.6 1 for the N x p matrix M and evaluating 

the elements of the matrix H as outlined in Subsection 3.3.3, the next 

important step i s  the matching of the two solutions from Region I and 

Region II at the harbor entrance. Eq. 3. 36a i s  the result of this 

matching procedure and the object of this section is to describe how 

the vector C_ (the normal derivative of the wave function at the harbor 

entrance) i s  obtained. 

Eq. 3 ,  36a is first  rewritten as:  

(M - boH) C_ = 1 
P 

in which M i s  a p s p matrix as explained in Subsection 3.2.3.  To 
P 

solve Eq. 3.64 for the vector C - again involves the subroutine "CSLECD/ 

Complex System of Linear Equations and Complex Determinant ", but 

this time the matrix size i s  only p x p and the solution C i s  a p x 1 

vector . 
After evaluating the vector C_, the procedure for determining the 

qnantities of interest  such as  the response of the harbor, the 

amplitude distribution, etc. a re  described in Subsection 3.2.3. 
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3 . 4  CONFIRMATION O F  THE NUMERICAL ANALYSIS 

The theory for an arbi t rary shaped harbor has been pre-  

sented in Sections 3 . 2  and 3 . 3 .  However, prior to evaluating the wave 

induced oscillations of an actual harbor, i t  i s  necessary to make sure  

that the method presented in Subsection 3 . 2 .  1 and the numerical pro- 

cedure presented in  Subsections 3 . 3 .  1 and 3 . 3 . 2  a re  correct. There- 

fore, the approximate solution obtained using the method developed 

will be tested by comparing i t  with the exact solution of the Helmholtz 

equation for two different shapes. These two shapes a re  a circle and 

a square. They a re  chosen for several reasons: ( 1)  the theoretical 

solution for both shapes can be obtained easily, ( 2 )  the boundary of a 

circle represents an extreme case for which the tangent to the boundary 

is rontinuously changing direction, and ( 3 )  the boundary of a square 

(or a rectangular) represents another extreme case that i s  composed 

of four straight lines; along each line the direction of the tangent to 

the boundary remains the same. 

The procedure for this tes t  program can be outlined as  follows: 

1) A theoretical solution i s  selected for the wave function, 

f, that satisfies the Helmholtz equation, v2f + k2f = 0, 

in the domain of interest  (either a circle or a square). 

2 )  Based on this theoretical solution the value of the wave 

function, f ,  at  the boundary of the domain, the value of 

af 
i t s  normal derivative at the boundary of the domain, - any 

and the value of f at any position inside the domain a re  
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calculated. (It should be noted that the boundaries for 

these two test  examples do not necessarily represent 

solid boundariesr ) 

3 )  The boundary of the domain i s  divided into N segments; 

af the average of the theoretical values of f and an on 

each segment a re  calculated. 

4) These averaged theoretical values of the normal 

a f derivative F~ for each segment on the boundary are  

used to calculate the value of f for each corresponding 

segment by the method described in Subsection 3 . 2 .  1. 

One test  of this approximate method i s  the comparison 

of this computed value with the theoretical value of f on 

the boundary of the domain. Any difference between 

these two results which i s  found can be attributed to the 

approximations resulting from converting the integral 

equation (Eq. 3. 13) to the matrix equation (Eq. 3. 15). 

5)  The computed value of f (Step 4)  and the theoretical 

a f value of - on the boundary of the domain are used to 
an 

compute the value of f at various locations inside the 

domain using Eq. 3 .37 .  The values of f so obtained a re  

compared with the theoretical values. The difference 

i s  the e r ro r  admitted in Step 4 plus the e r ro r  due to 

using Eq. 3.37 which has been used as an approximation 

to the exact solution, Eq. 3. 11. 
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ar 
6) The theoretical values of f and - at the boundary of the an 

domain a r e  used to caluclate the value of f at some 

points inside the domain by using Eq. 3 . 3 7 ;  the values 

of f so obtained a re  compared with the theoretical 

values. The difference is solely due to the use of Eq. 

3. 37 which approximates the exact equation, Eq. 3. 11. 

It should be noted that these two examples (circle and square) a r e  

not directly connected with the actual problem of wave induced oscill- 

ations in  harbors, since the boundary conditions imposed by this tes t  

program (steps 2 and 3) do not correspond to the boundary conditions 

prescribed for the harbor oscillation problem (as described in Section 

3. 1). Rather, these examples a re  employed in a mathematical sense 

serving as an analytical check for the approximate method that will be 

used in solving the problem which i s  of major concern: wave induced 

oscillations in an arbitrary shaped harbor. 

3.4. 1 The Fi rs t  Example: A Circle 

The f i rs t  example that will be investigated i s  a circular 

domain, s definition sketch of which i s  presented in Fig. 3 .  5. The 

Helmholtz equation i s  written in polar coordinates as : 

The steps outlined previously a re  followed; the following parti - 

cular solution which satisfies the Helmholtz equation, Eq. 3.65, i s  

selected: 

f ( r ,  8 )  = J, (kr)  cos 0 



Fig. 3 .  5 Definition sketch of a circular domain 

direction of 
integration C 

Fig. 3 .6  Definition sketch of a square domain 
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thus, differentiating Eq. 3. 66 with respect to r one obtains: 

1 ~ ~ ( r , B ) ] = [ k ~ ~ ( k r )  ar - F ~ l ( k r ) ] c o s  8 . (3.67) 

Suppose a boundary of the domain is located at r=a,  then the value of f 

af and - on the boundary can be expressed as: an 

f(a,  0 )  = J, (ka) cos 0 , (3.68a) 

a f a f I - an (a, 0 )  =G (a, 8 )  = [kJ0(ka) - ; Jl(ka)] cos 0 . (3.68b) 

The boundary is then divided into 36 segments (each segment 

includes 10' of the central angle). On each segment the average 

8f 
theoretical value of the functions f(a, 8 )  and =(a, 8) can be evaluated 

as follows: 

= J, (ka) 
'it* - 'i-+ 

9 

1 
sin 8. 1 - sin 8 

1t2 i-k 
= [k.Jo(ka) - a JI &a)] it+ - ei-+ ? (3.69b) 

- 
where (fii and (g): are  the average theoretical values on the boundary 

of the domain of f A d  $ for the it
h 

segment, (apei-$ are  the coor- 

dinates of the beginning of the ith segment of the boundary, and 

(a, Ria) a r e  the coordinates of the end of the ith segment of the 

boundary. 



- 
In Step 4, the value of ($1 , presented in Eq. 3. 69 b for each 

1 

segment i s  used to calculate the value of f of each segment on the 

boundary by the approximate method of Subsection 3.2. 1. These 

computed values will be denoted as  ic. The value of rc and Tshould 

be very close i f  the approximate method i s  to be useful. Three 

different values of ka, i. e. ka=O. 30, 2.25, 3. 75 have been tested 

(where k i s  the wave number in f t - I  and a i s  the radius of the circular 

domain and chosen a s  0.75 f t  for this case) .  The approximate result 

(Fc) agreed with the theoretical values (A within 0. 1% to 3% for ka=O. 3 

and 3.75 respectively. The effect of the magnitude of ka on the 

solution will be discussed more fully in Chapter 6. 
- 

After the values of f on the boundary, i. e. f , have been 
C 

obtained, the value of f at  any interior point can be computed using 

Eq. 3.37 (Step 5). The results for  ka=O. 30, 2.25 and 3.75 a r e  

presented in Table 3. 1. For each value of ka, the value of f at  five 

interior points a re  computed. The theoretical value of f at each 

interior point i s  calculated using Eq. 3.66 and presented in Col. 3. 

The results of Step 5 ,  i. e..the computed approximate values of f at 

each interior point, a r e  presented in Col. 4. The difference between 

the value in Cols. 3 and 4 can be attributed to: (i) the e r ro r  admitted 

in the approximate solution, Eq. 3. 15, which i s  used to approximate 

the integral equation (Eq. 3. 13) in evaluating the value of f on the 

boundary (Step 4), and (ii) the e r ro r  admitted in the use of Eq. 3.37 to 

approximate the exact solution, Eq. 3. 11, in  evaluating the value of 

f for the interior points. 



Table 3.  1 Comparison of the approximate solution with ;he theoretical 
solution of the Helmholtz equation in  a circular domain 

Position of Thecretical Value 

Interior Point 1 o f f  

(r ,  0) (Step 2) 

Computed Value 
of f 

(Step 5) 
141 (2) 

Computed Value 
of f 

(step 6) 
(5) (3) 

Computed Value I Computed Value 
of f of f 

r (ft) I 8 (deg. I I Real Part I haginary 
Part 

(Ste 

Real Part Imaginary 
Part 

-0.00001 

-0.00000 

0.00001 

-0.00000 

0.00000 

0.00000 
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The results of Step 6 a re  shown in Col. 5; they a re  obtained by 

a f using the theoretical values of f and an at the boundary (Eqs. 3.69) to 

compute the value of f at the interior point by applying Eq. 3 .  3 7 .  The 

difference between the theoretical results of Col. 3 and the approximate 

results in Col. 5 is solely due to the use of Eq. 3.37 which approxi- 

mates the exact solution of Eq. 3. 11. 

It should be noted that Step 6 applied to a given domain does not 

correspond to a mathematically realistic boundary value problem, 

af simply because both the value of f and - on the boundary are  usually an 

not given in advance; usually one or the other i s  given. However, i t  

does give an indication of how good the approximation of Eq. 3.37 is ,  

a f 
if the correct boundary values f and - a re  provided. Step 5 does an 

correspond to a mathematically realistic boundary value problem and 

in fact i t  i s  basically the procedure used for solving the harbor reso- 

a f nance problem, that is: given a particular value of - at the boundary, an 

calculate the value of f at the boundary and finally calculate the value 

of f at any interior point ( r ,  8). 

It i s  expected that if the number of segments into which the 

boundary of the domain i s  divided i s  increased, the results of the 

approximate method will agree better with the theoretical results. 

0 The results for  N=45 (each segment includes 8 of the central angle) 

a re  presented in Cols. 6 and 7 of Table 3. 1. By comparing Cols. 3 ,  

4, and 6 (also comparing Cols. 3, 5, and 7 )  it i s  seen that as the 

number of boundary segment i s  increased the results of the approxi- 

mate method compared to the theoretical results a re  improved only 

slightly. 



3.4.2 The Second Example: A Square 

Suppose the square has sides of length b as shown in Fig. 

3 . 6 ,  then a simple particular solution of the function f that satisfies 

the Helmholtz equation, Eq. 3.5, can be chosen as: 

f(x, y) = cos (% x)cosh (d(')'- k2 Y) (for k < 2 2b (3.70a) 

I T  
f(x,  y )  = cos (2 x) cos (b2 - (2)" y) (for k >- 2b ) (3. 70b) 

thus, the outward normal derivative of the function f at the boundary of 

the domain can be evaluated as following: 

af af - = -i- 

an ax9 for x=-b, -b s y  5 0 

The steps outlined previously a r e  followed. The boundary of the 

square domain i s  divided equally into 40 segments. The theoretical 

value of f at any interior point (x, y) can be calculated by Eqs. 3. 70 

once the value of wave number k i s  fixed. The results  for two different 

values of kb, i. e. kb = 0.50 and 2.0 (where k i s  the wave number and 

the length of sides of the square domain i s  b = 0.50 f t )  a r e  presented in  

Table 3.2. For each value of kb the value of f at  nine interior points 

a r e  computed. The theoretical values of f at each point for kb = 0. 50 

a r e  computed using Eq. 3.70a; the theoretical values of f for kb = 2.0 

a r e  computed using Eq. 3.70b. These theoretical values a r e  presented 

in  Col. 3 of Table 3.2. The approximate results of the value of f in 
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Step 5 a re  shown in Col. 4, while the results of Step 6 a re  shown in 

Col. 5. Comparing the results in Cols. 3 and 4, it i s  seen that 

dependent upon the position of the interior point the results agree 

within 1% to 3010, and, as expected, the results in Col, 5 a r e  closer 

to the theoretical results (Col. 3) .  

The results for N=48 (each side of the boundary contains 12 

boundary segments) a r e  presented in Cols. 6 and 7. Comparing the 

results in Cols. 3, 4, and 6 (also Cols. 3, 5, and 7 )  i t  i s  seen that the 

results for N=48 agree better with the theoretical value than when the 

boundary i s  divided into 40 segments. 

From the results of these two examples, a circle and a square, 

which were used it i s  seen that this numerical method and the approxi- 

mations i t  entails can be used to solve the Helmholtz equation with 

reasonable accuracy. Thus, the real problem of determining wave 

induced oscillations in an arbitrary shaped harbor which may have 

both c n r v e d  and  /or straight lined boundaries can be approached with 

confidence. 



CHAPTER 4 

THEORETICAL ANALYSIS FOR TWO HARBORS 

WITH SPECIAL SHAPES 

Two theories which deal with the wave induced oscillations i n  

a circular and a rectangular harbor a r e  presented in this chapter. 

A circular harbor represents one extreme case for which the tangent 

to the boundary of the harbor i s  continuously changing direction; a 

rectangular harbor represents another extreme case whose boundary 

i s  composed of four straight lines and along each line the tangent to 

the boundary remains in the same direction. 'l'hus, these two 

special theoretical solutions provide a useful analytical check for 

the approximate theory developed in Chapter 3 for an arbitrary 

shaped harbor as well as being used to compare to the results  of 

experiments conducted in the laboratory. The results for these 

particular cases and their comparison with the theory developed 

for arbi t rary shapes discussed i n  Chapter 3 applied to these two 

harbors will be presented in Chapter 6. 
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4.1 THEORETICAL ANALYSIS FOR A CIRCULAR HARBOR 

The theory developed in Chapter 3 can be used for any 

arbitrary shaped harbor. However, if the harbor i s  a special shape 

such as  circular, the coordinates inside the harbor a r e  separable 

and a different method can be used to obtain a solution in  Region II. 

(For a l ist  of separable coordinate systems see Morse and Feshback 

(1953) pp. 656-666. ) The theoretical analysis for a circular'harbor 

based on this approach will be presented in this section. 

In the analysis, the wave function f2  which satisfies the Helm- 

holtz equation, Eq. 3. 5, in  Region I1 i s  found by the method of 

separation of variables. The solution for the open- sea, Region I, 

which i s  used for this devehpment i s  the same a s  that presented in 

Chapter 3. By matching the solutions in both regions a t  the harbor 

entrance, the complete solution of the wave induced oscillation in 

a circular harbor can be obtained. 

4. 1. 1 Wave Function Inside the Circular Harbor 

For the wave function f2 inside the circular harbor, 

the Helmholtz equation, Eq. 3 .  5, i s  written in  cylindrical 

coordinates: 

The boundary conditions that the function f, must satisfy are: 
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where a i s  the radius of the circular harbor, 200 is the central 

angle of the harbor opening, and C(B) i s  the initially unknown normal 

derivative of the wave function f2  at the harbor entrance. A definition 

sketch of the circular harbor showing both regions: Region I (the 

"open-sea") and Region I1 (inside the harbor), i s  presented in Fig. 4.1. 

The solution of Eq. 4. 1 will be constructed by Fourier ser ies ,  

by f i rs t  seeking the solution of f, ( r ,  8 ) in the form of: 

Substituting Eq. 4. 3 into Eq. 4. 1, i t  i s  found that the function f ( r ,  0 ) 
m 

must satisfy the following differential equation: 

This equation i s  a form of the Bessel equation; hence, its solution 

can be expressed as: 

wherein the function J (kr ) i s  the Bes sel  function of the fir s t  kind, m 

and Y (k r )  i s  the Bessel function of the second kind; am and 3 m m 

a r e  arbitrary constants to be determined. 

The function Y (kr ) possesses a singular behavior a t  r=O, but m 

since the solution of the wave function f 2  ( r ,  8 )  must  be smooth and 

finite at  r = O ,  the constant @ must  be zero. Thus, from Eq. 4.3, m 

the solution of Eq. 4. 1 can be expressed as: 



Region I (Open- s e a )  
1Y 

Fig. 4. 1 Definition ske tch  of a c i r cu l a r  h a r b o r  



Because J (kr)  i s  equivalent to (-  l ) m ~  (kr),  Eq. 4. 6 i s  equivalent - m  m 

to: 
m 

where Am and Bm are  constants with real  and imaginary parts to 

be determined. For this particular case where the incident wave 

propagates in the direction of 8=0 the wave function f2 (r, 8) i s  an 

even function of 0 ,  i. e. the wave amplitude i s  symmetrical with 

respect to the center line 8=0. Therefore, the constant B in Eq. 4.7 
m 

i s  set  equal to zero. Hence, the general solution to Eq. 4. 1 reduces 

to: 

f , ( r , 8 )  =l AmJm(kr) cos me . 
m=O 

Differentiating Eq. 4. 8 with respect to r,  and evaluating the resulting 

expression at the honndary, r = a  one obtains: 

03 

rn 
where: kJml(ka) = kJm- (ka)- - J (ka). The coefficients Am must a an 

be determined such that Eq. 4.9 will satisfy the prescribed boundary 

conditions, Eq. 4. 2. To evaluate the coefficients Am, the method 

of Fourier cosine transformation will be used, by f i r s t  multiplying 

both sides of Eq. 4. 9 by cos nR and integrating the resulting 

expression with respect to 8 f rom zero to ZIT: 



2Tr " 
-(a, 8)  cos nede = r0 1 [A cos me m k ~ m ' ( k a ) ]  cos nede m 

m =  0 

=l J kJm1(ka)Am cos me cos nede 
m= 0 

If m#n, upon integration Eq. 4. 10 i s  equal to zero, and i f  m=n=O, 

Eq. 4. 10 is  equal to: 

Therefore, the constant A. can be evaluated as:  

on the other hand, if m=n#O, Eq. 4. 10 becomes: 

Thus, the coilstant Am can be evaluated as: 

f 2 n  af2 (a, 0 )  cos medo 
J, ar 

Because the normal derivative of the wave function on the 

af 
boundary, --Z(a, €I), i s  zero everywhere except at the harbor entrance, a r 
as shown in Eq. 4.2, Eqs. 4. 12 and 4. 14 can be simplified further. 



Using the relations: 

JoJ(ka) = - Jl (ka); 

the constants A 
o7 Am in Eqs. 4. 12 and 4. 14 can be written in the 

following forms: 

where is  a dummy variable of integration and c(T) represents the 

normal derivative of the wave function evaluated at  the entrance. 

Therefore, the solution to Eq. 4. 1 and the boundary conditions, 

Eq. 4.2,can be obtained by the substitution of Eqs. 4. 15 into Eq. 4.8: 

If the harbor entrance i s  small, i t  i s  assumed that C(8) can 

be approximated by a constant C. and hence. Eq. 4.16 can be 

expressed as: 



In order to determine the coefficient C, i. e. the average of 

the normal derivative of the wave function across  the harbor entrance, 

the wave function f, evaluated at the harbor entrance has to be set  

equal to the wave function in Region I evaluated a t  the entrance. This 

means that at the entrance the average of the wave anxplitude across 

the entrance must be the same when determined either in  Region I 

o r  Region 11. For this purpose, the average of the wave function 

f 2  across the harbor entrance (designated as  y2 ) i s  determined as: 

- 
f, = - J '0 fa  (a, 8)de 

- B o  

(ka)[sin meo ] 
- - 

m 1. (4.18) ( 1  - J (ka) J 
o a m 

Eq. 4. 18 i s  written in abbreviated form defining the bracketed term 

on the right-hand-side as  M . therefore: c'  

- 
f2 = C e M  . 

C 
(4. 19) 

The ser ies  M can be calculated once the radius a, the central angle 
C 

of the entrance 200, and the wave number k a r e  fixed. It i s  noted 

that Eq. 4. 19 i s  similar to Eq. 3.35; in both of these equations the 

wave function at  the harbor entrance i s  expressed in  terms of i ts  

normal derivative at  the harbor entrance. (It should be recalled 



that the normal derivative of the wave function is  proportional to the 

horizontal velocity. ) The next step in the solution i s  to express the 

average value of f, (for Region I) at  the harbor entrance also as  a 
- 

function of the average normal derivative of the wave function, C, 

so that by equating the solutions a t  the harbor entrance in both regions 

the value of C can be determined. 

4. 1.2 Wave Function Outside the Harbor 

As mentioned in Subsection 4. 1. 1, the harbor entrance 

i s  considered small. Thus, even though the harbor entrance i s  an 

a r c  in  Region I1 and a chord in Region I, the difference between the 

length of the a r c  and that of the chord i s  assumed to be negligible. 

As developed in Subsection 3.2.2. the wave function at the harbor 

entrance obtained from the solution in Region I can be expressed as: 

fl  (x, 0)  = 1 t 11) ($1 L2 (x0, 0) HO (klx-xO 1 )dxo 

AB 

where AB i s  the chord at the harbor entrance, the function C(x 0 )  
0' 

i s  the normal derivative specified in Eq. 4.2, the negative sign i s  

specified for the adapted sign convention that the outward normal 

derivative to the domain of interest  i s  considered positive. (Eq. 4.20 

i s  an integral form of the Eq. 3.34 that was developed previously. ) 

The first terlm on the right-hand-side of Eq. 4. 20 represwlts tlie 



incident wave and reflected wave at  the harbor entrance if  the 

entrance i s  closed; the second t e rm represents the radiated wave 

from the entrance, 

In order to facilitate performing the integration in Eq. 4.20, 

the origin of the coordinate system i s  shifted to the left corner of 

the  harhnr  e n f r a n c e  (point  A i n  r e f e r e n r e  fn Fig. 4. 1 ). T n  keep 

the same approximation as  mentioned in Section 4. 1. 1, the function 

C ( x o ,  0) i s  approximated by a constant C. Thus, Eq. 4.20 can be 

simplified by taking the constant C outside the integral sign: 

The Hankel function HL1)(klx-x I ) in Eq. 4. 2 1 can be separated into 
0 

i t s  rea l  and imaginary parts: 

where r= lx -x  I i s  the distance between the field point (x, 0 )  and the 
0 

source point (x 0). Substituting Eq. 4.22 into Eq. 4.2 1 and per - 
0 ' 

forming the integration across  the harbor entrance, i t  becomes: 

L 
where the terms f .  (x ,0)  and-f (x,O) a r e  the results of theinte-  

J 0 = YO 

gration of the rea l  par t  and imaginary part  of the Hankel function 

("(kr) in Eq. 4.21. The interested reader i s  referred to Appendix 
Ho 

III for  the detailed derivationof f .  (x,O) and f (x,O), (see Eqs. A.3 .3  
J 0 YO 



and A. 3.6). In order  to determine the value of 5 by the matching 
- 

procedure, the average of the wave function, fl  , across  the harbor 

entrance can be found as: 

where As is thc lcngth of thc chord across thc harbor cntrsncc. 

Substituting Eq. 4.23 into Eq. 4.24 one obtains: 

where: 

kZl (n! )2 (Znt l )  ( n t l )  
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The development of the se r ies  for  Jc and Yc a r e  also presented in 

Appendix I11 (see Sections 111. 3 and 111. 4). 

4. 1. 3 Matching the Solution for Each Region a t  the Harbor 

Entrance 

With the average wave function f, a t  the harbor entrance 

(f,) for  Region I1 obtained f rom Eq. 4. 19 and the average wave function 

f, a t  the harbor entrance (fi) fo r  Region I obtained f rom Eq. 4.25, 

the two svlut ioi~s can now be inatched to solve for the average norinal 

- 
derivative of the wave function, C. Eq. 4.25 i s  simplified as: 

/L where Bo = -F ( J~  As, i n  which J and Yc a r e  defined by 
C C 

Eqs. 4.26a and 4.26b. 

Equating Eq. 4. 19 to Eq. 4.27, one obtains: 

thus, the average value of the normal  derivative of the wave function 

a t  the harbor entrance, C, can be  determined f rom Eq. 4.28 as: 

where Mc and Bo a r e  defined by Eqs. 4. 19 and 4.27 respectively. 

After the value of the average normal derivative of the wave 

function a t  the harbor entrance, C, has  been determined f rom 

Eq. 4.29, the wave function fi at any position (r, 6 )  inside the harbor 

can be calculated f rom Eq. 4. 17. It should be noted that the functions 

C and fz (r, 0 )  a r e  both complex numbers. 
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Once the value of the complex number C has been determined 

by Eq. 4. 29, the amplification factor,  R,  a t  any position ( r ,  8) for 

a pdrLiculdr wdve rlurriber k c d ~ i  be evducrted i n  exactly the s a n e  way 

a s  discussed in  Subsection 3.2.3 (as shown i n  Eq. 3.38): 

quantities of interest are averaged over the full entrance; however, 

i f  a better approximation i s  intended, the harbor entrance can be 

divided into p segments. Thus, there  a r e  p complex constants C 1' 

C2, .  . . . . C i. e. the average normal derivative of the wave function 
P' 

for  each segment, to be determined by the matching procedure. The 

average value of the wave function for each entrance segment i s  

expressed as  a function of C 1' C2' 
. . . . . C ; thus, a set  of equations 

P 

s imi lar  to those used i n  the approximate method and shown in Eq. 3.35 

can be developed. As for the solution i n  Region I, Eq. 3.34 developed 

i n  Chapter 3 represents  the wave function f, for  each entrance segment 

and can be used i n  the solution instead of Eq. 4.25. Therefore, 

by matching the average value of f, and f, a t  each entrance segment, 

= /q 

a se t  of p simultaneous linear equations can be obtained; the value 

of the normal derivative of wave function for each segment, i. e. C 

-likJl (ka) m= 1 n m [ k ~ ~ -  l(ka) -= J (ka)] a m 

It  should be mentioned that the analysis presented in this 

section so f a r  i s  concerned only with one complex constant C which 

i s  determined through the matching procedure. This means that the 

Jo(kr)eo " 2 Jm(kr)  sin meo cos me  +I ( 4 . 3 0 )  
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CZ," ... 
C ~ '  

can be determined by solving this set  of simultaneous 

equations similar to what was discussed in Subsection 3.2.3. After 

evaluating the value of C C2, . . . . . C the wave function f2  ( r ,  8 )  
P' 

a t  any position inside the harbor can be calculated. 

It should also be noted that even though there i s  no limitation 

on the number of segments into which the harbor entrance can be 

divided the entrance st i l l  cannot be very large. This i s  because to 

use the theoretical a n a l y s i s  presented in this section Llie a rc  arid Lhe 

chord a t  the entrance must  be approximately the same length. In 

addition if the harbor entrance i s  very large,  the harbor geometry 

can no longer be considered as  circular and the method of separation 

of variables cannot be applied.. . For such cases i t  i s  necessary to 

r e so r t  to the approximate methods described in Chapter 3. 

4.2 THEORETICAL ANALYSIS FOR A RECTANGULAR HARBOR 

Another example for which the coordinates inside the 

harbor a r e  separable i s  a harbor with a rectangular shape. Similar 

to the circular harbor,  for a rectangular harbor the solution inside 

the harbor (Region 11) can be obtained in an eigen function expansion 

with the coefficients to be deterinined by the boundary conditions. 

The solution i n  Region I1 that will be presented below i s  the same 

a s  the work of Ippen and Goda (1963), since i t  involves the standard 

separation of variable method. For the solution in  Region I, the 

method discussed in the previous section, i. e. Subsection 4. 1.2, will 

be used. This method i s  different f rom the Fourier transformation 

method that Ippen and Goda (1963) used in  their work. This theoretical 



analysis can be used a s  a check both of the theory developed by Ippen 

and Coda (1963) as  well a s  the theory developed in Chapter 3 for an 

arbi t rary  shaped harbor. 

4 .2 .  1 Wave Function Inside the Rectangular Harbor 

For  the wave function f 2  (x, y)  inside the rectangular 

harbor ,  the Helmholtz equation. Eq. 3. 5 ,  i s  written in  rectangular 

coordinates: 

the wave function f2  must  satisfy the following boundary conditions: 

a f 
(ii) 2 (x, -4 , )  = 0 av 

for O<x<b 

af2 
0 for O<x<do or  d o + d < x C b  

(iii) - (x, 0 )  = { 
8~ c(*) for  d s x s d  t d  

0 0 

A definition sketch of the rectangular harbor showing both regions: 

Region I and Region 11, i s  presented i n  Fig. 4.2. 

Using the method of separation of variables and considering 

the boundary conditions (i) and (ii), the solution of the Helmholtz 

equation, Eq. 4. 3 1, can be represented by the following infinite 

ser ies :  

- Jv , and Am i s  an arbi t rary  where Pm - y-g- 

P,(yW , (4.33) 

constant to be 



Region I (Open- sea)  

v2fi t k2f l  = 0 

af, 
(an 

Region II (Harbor )  

v2f, -t k2f2 = 0 

Fig. 4 .2  Definition ske tch  of a f ectangular  h a r b o r  
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determined. It i s  obvious that Eq. 4. 33 satisfies the Helmholtz 

equation, Eq. 4. 3 1, and also satisfies the boundary conditions (i) 

and (ii) in Eq. 4. 32. Thus, the constants A have to be determined m 

so that the solution f2 (x, y )  will satisfy the boundary condition (iii) in 

Eq. 4. 32. 

Differentiating Eq. 4. 3 3  with respect to y, one obtains: 
CO 

af2 m~ - ( x ,  y)  = 
m 

1 1 A ~ * B ~ [ C O S  x sinh 0 (Y +&), 
aY m= 0 

Evaluating Eq. 4.34 at y=O and expanding, one obtains: 

w 

8% m r  - (x, 0) =A k(-sin k&) + 
ay 0 

Am B,(sinh Dm&) cos - p c  . 
m= 1 

The coefficients A and Am can be determined by the Fourier 
0 

cosine transformation method which was used in Subsection 4. 1. 1. 

Using this method the following expressions a r e  obtained for A. and Am: 

2 at, ,+d-td, - --(x,O)dx jd G ( x ) d x  
bdOay  

A = - - - 0 

O 2k (-sin k&) bk sin k t  
9 

m r  mn J ~ ~ ' ~ ~  C(x) cos-xdx 
- 3 b 

*m - 
- . (4, 36b) 

G sinh 0 2  m bFm sinh 

If C(x) can be approximated by a constant c, as  has been done 

in Subsection 4. 1. 1, the coefficients A. and Am in Eqs. 4. 36a and 

4.36b can be evaluated as: 



c d  
bk sin k& ' 

- mr 
2C [sin -jy(d +do)  - sin- miid b o ] 

rnrBm sinh Bm& 

Substituting Eqs. 4. 37 into Eq. 4. 33, the solution of the wave function 

f2 inside the harbor can be written as: 

wherein: 

So - - d cos k ( v + & )  
bk sin k& I 

CO fn71. 2 ( s i n y ( d  +do)  -sin- b d o j  m?r 
cos x cosh p,(y + & )  . 

m= 1 mrSm sinh em& b 

The complex constant C, i. e. the average normal derivative of the 

wave function across  the harbor entrance, in  Eq. 4.38 has to be 

determined by a matching procedure similar  to that used previously. 

The matching procedure used for the rectangular harbor i s  to 

equate the average wave function f, evaluated a t  the harbor entrance 

(f,) to the average wave function fl  evaluated at the harbor entrance 

Fl 1. 

The average wave function f, a c ro s s  the harbor entrance &) 

can be evaluated as: 



where: 

4.2.2 Matching of the Solution for Each Region at  the Harbor 

Entrance 

The average wave function, f 2 ,  determined in  Region I1 

at thc harbor entrance can be obtained f rom Eq. 4.39. For the 

solution in Region I, the relation developed in Subsection 4. 1.2, 
- 

i. e. Eq. 4.27, can be used for the average wave function, fl. Thus 

by matching these two solutions at the harbor entrance, the average 

normal derivative of the wave function across  the harbor entrance, c, 
can be determined. Equating Eq. 4.39 to Eq. 4.27 one obtains: 

thus, the value of C can be determined as: 

After the value of C has been determined from Eq. 4.41, the 

wave function f, at any position (x, y)  inside the rectangular harbor 

can be determined using Eq. 4.38. The absolute value of the wave 

function f2 (x, y )  i s  equal to the amplification factor at  the position 

(x, y )  as  was shown in Eq. 3.38 and Eq. 4.30. 



- 81-  

It i s  noted that in the circular harbor theory developed in 

Section 4. 1, the harbor entrance i s  limited by the requirement 

that the a rc  i s  approximately equal to the chord at the harbor 

entrance. This type of limitation does not exist in the rectangular 

harbor theory developed in this section, since no matter how large 

the harbor entrance i s ,  the geometry in Region I1 i s  still rectangular 

and the separation of variable method can be used. For the case of 

a wide harbor entrance compared to the length of the harbor the 

entrance can be divided into a number of segments using the matching 

procedure to equate the average value of fl and the average value of f, 

at  each segment at  the entrance. Therefore, a set  of simultaneous 

equations can be obtained ; the value of the normal derivative of the 

wave function C for each segment can be determined by solving 

these simultaneous equations. after the normal derivative of the 

wave function for each entrance segment has been determined, the 

wave function fi (x, y) at  any position inside the harbor can be 

calculated. 



CHAPTER 5 

EXPERIMENTAL EQUIPMENT AND PROCEDURES 

5. 1 WAVE BASIN 

A wave basin 1 ft 9 in. deep, 15 f t  5 in wide, and 31 ft 

5 in. long shown in Figs. 5. 1 and 5. Z was used for the experiments. 

The vert ical  walls of the basin we re  constructed of 314 in. mar ine  

plywood with the floor constructed of 1 in. mar ine  plywood. The 

basin floor was located 10 in. above the laboratory floor. This can 

be seen in Figs. 5. 1 and 5.2 where a substructure supporting the 

basin floor was built to allow for proper leveling of the basin floor 

and to ra i se  the basin to a more  comfortable working level. This 

substructure consisted of wood s i l l s  and joists; seven wood si l ls  

(1-5/8 in. x 3-5/8  in. with the short  dimension vert ical)  were  

fastened to the laboratory floor, 2 ft  8 in. on center running the 

length of the basin Perpendicular  to these si l ls ,  a system of 

joists (1-518 in. x 7-518 in. with the long dimension vertical) was 

fastened on 1 ft 4 in. centers.  The upper face of the joists was  

4- leveled to within - 1/32 in. by placing shim mater ia l  between the 

s i l l  and the joist a t  each intersection. The 1 in. plywood was then 

glued and screwed to the joists to become the basin floor and the 

314 i nve r t i c a l  walls and their supporting structure were  fastened 

in place. (For  additional details of the construction of the basin, see  



Fig. 5. 1 Drawing of the wave basin and wave generator 

(modified f rom Raichlen (1965)) 

Fig. 5. 2 Over-all view of the wave basin and wave generator with 

wave filter and absorbers in place 
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Raichlen (1965). ) In order  to ensure watertightness and to provide 

a level bottom, before this study was initiated, a layer of polyester 

r e s i n  ("CYBOND 2 5 0  1 P a r t  I" manufactured by Amer ican  Cyanarnid 

Company) approximately 1 /4 in. thick was poured into the basin. 

The res in  sought i t s  own level before i t  solidified; therefore, a 

t 
bottom which was horizontal to within at leas t  -0.  02 in. was obtained 

by this treatment. All the joints were  sealed by fiber glass cloth and 

res in  and the interior  of the basin was then painted with an epoxy 

base paint. After this t reatment the wave basin remained f ree  of 

leaks throughout the course of the experiments. 

Also shown in  Figs. 5. 1 and 5.2 a r e  wave energy dissipaters: 

a wave f i l ter  located in front of the wave machine and wave absorbers 

located along two sides of the basin. The details of the constructlon 

and the characterist ics of these units will be presented in Sections 

5. 6 and 6. 1 respectively. 

5.2 WAVE GENERATOR 

The wave generator used for this study was a pendulum 

type designed to operate either as  a paddle- o r  piston-type wave 

machine; i t s  detailed description and design consideration were 

given by Raichlen (1965). A photograph of the wave generator and 

the overhead support i s  shown i n  Fig. 5. 3. It i s  seen that the plate 

of the generator i s  obscured by the wave filter; however, this shows 

the arrangement of the filter relative to the senerating surface. The 

gerleratirlg s u ~ l a c e  w a s  d r l  ~ L U I I I ~ I I U I I ~  plate 11 It 8 ill. lung, 2 It high, 



Fig. 5.3 Wave generator and overhead support with wave filter and 
wave absorber in place 

Fig. 5.4 Motor drive, eccentric, and light source and perforated 
disc for wave period measurement 
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and 1/4 in. thick attached to a structural aluminum angle frame 

which provided rigidity. As can be seen in Fig. 5.3, this assembly 

was suspended from three pairs of a rms  connected to an overhead 

structure which in turn was fastened to the reinforced concrete ceiling 

beam. Each supporting a r m  was 2 ft 9 in. long with the upper end of 

each forward a r m  able to be moved along a slot which was an a rc  of 

radius 2 f t  9 in. Hence, when the forward a r m  at each support was 

parallel to the rear  arm the wave machine operated as a piston-type 

generator; when the upper end of the forward supporting a r m  was 

moved to the furthermost forward position, the wave machine operated 

as a paddle-type wave generator with the bottom of the generating plate 

acting as an imaginary hinge point. This arrangement facilitated the 

generation of shallow water and deep water waves. The wave generator 

was driven by two arms connected to independent eccentrics which in 

turn were connected through a pulley system to a 1- 1/2 hp variable 

speed motor. This arrangement can be seen in Fig. 5.4. The 

eccentrics allowed for a maximum wave machine stroke of 12 in, , but 

careful adjustment was necessary to insure that both eccentrics had 

identical settings. This was accomplished by measuring the stroke of 

the generator at two locations using dial gages, and i t  was possible 

to adjust the eccentrics to within 0. 001 in. of each other. The motor 

was a 1- 1/2 hp U. S. Varidrive Motor with a 10:l speed range and a 

continuous variation over this range. Wave periods ranging from 0.34 

sec to 3.8 sec could be obtained with this system. 
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5 .3  MEASUREMENT O F  WAVE PERIOD 

A pulse counting technique was used for  the determination 

uf the wave period. A s  can also be seen i n  Fig.  5. 4 ,  the pulse was 

generated by interrupting a light beam, which was  directed a t  a photo- 

cel l ,  by a d isc  with 360 evenly spaced holes arranged in  a c i rc le  near  

i t s  outer edge. The d isc  was direct ly connected to one eccentr ic  of 

the wave drive mechanism. A schematic d iagram and circuit  of the 

photocell device i s  presented i n  Fig. 5. 5. The voltage pulses so  

generated by the photocell c i rcui t  were  counted over an interval  of 

10 seconds by a Beckman/Berkeley Division Industrial Counter Model 

735 1. The wave period in  seconds was  obtained simply by dividing 

the product of the number of holes t imes  the counting interval  (3600) 

by the number of counts regis tered  by the counter in  1U seconds. 

Hence, the period measured was  an  average over a 10 second interval ;  

throughout an experiment this  period varied a t  mos t  by $0. 03%. 

5 . 4  MEASUREMENT O F  WAVE AMPLITUDE 

5.4. 1 Wave Gage 

Resistance wave gages were  used in  conjunction with the 

Sanborn (150 s e r i e s )  r ecorde r  for  the measurement  of wave amplitude. 

A drawing of a typical wave gage i s  shown i n  Fig. 5.6. The wave gage 

consisted of two 0. 010 in, d iameter  s tainless s tee l  wi res  3-112 in. 

long, spaced 118 in. apart .  The wi res  were  stretched taut and 

para l le l  i n  a f r a m e  constructed of 118 in. diameter  s tainless steel.  



P E R F O R A T E D  
D I S C  

V O L T A G E  O U T  
T O  C O U P T E R  

Fig. 5. 5 Schematic diagram and circuit of photo-cell device 
( f r o m  Raichlen (1965) ) 

b----- 2.37" 

Fig. 5. 6 Drawing of a typical wave gage ( f r o m  Raichlen (1965) ) 



The wires were insulated electrically f rom each other, except that 

current could pass f rom one wire to the other through the water in  

which the gage was immersed. 

A circuit diagram for the wave gage i s  shown in  Fig. 5. 7. A 

Sanborn Carr ier  Preamplifier (Model 150 - 1100 AS) supplied the 

2400 cps - 4. 5 volt excitation for the gages and in turn received the 

output f rom the wave gages which after demodulation and amplification 

w e r e  displayed on the recording unit. The displacement of the stylus 

of the recorder  was proportional to the probe resistance, which in 

turn was proportional to the depth. of immersion of wires. 

The wave gage was calibrated before and after an experiment 

(approximately one hour apart). Three typical calibration curves 

a r e  presented in Fig. 5. 8 for a wave gage with three different 

attenuation settings of the amplifier, i. e. x50, x20, x10. The ordinate 

shows the immersion plus withdrawal in centimeters while the 

abscissa shows the stylus deflection of the recorder in millimeters. 

The calibration of wave gage was performed manually by f i rs t  

increasing i ts  immersion U. US cm, then returning to the original 

position and withdrawing i t  0.05 cm. The same procedure was then 

repeated with a larger  increment of immersion and withdrawal. A 

calibration curve representing an average over the duration of an 

experiment was used i n  the data reduction procedure. Most cali - 

bration curves were essentially linear and showed very little change 

during an experiment as  can be seen in  Fig. 5.8. 



P O R T I O N  I N T E R N A L  T O  R E C O W D E R  

Fig. 5. 7 Circu i t  d i ag ram f o r  wave gages ( f rom Raichlen (1965) ) 





5.4.2  Measurement of Standing Wave Amplitude for the Closed 

Harbor 

A s  rrlentiuned i n  Subsection 3 . 2 . 3 ,  the amplification 

factor i s  defined as  the wave amplitude at  a particular location inside 

the harbor divided by the sum of the amplitude of the incident and the 

reflected wave when the harbor entrance i s  closed; this lat ter  i s  the 

standing wave amplitude. Therefore, i n  order  to  determine the 

amplification factor experimentally, both the wave amplitude inside 

the harbor and the standing wave amplitude when the entrance i s  

closed must  be measured. 

The amplitude inside the harbor i s  measured i n  a straight-  

forward manner using the res is tance  wave gages just described. Due 

to the variation in  the standing wave amplitude along a c res t ,  caused 

by the diffraction of waves off the edges of the wave machine and by 

the wave absorbers  (see also Ippen and Goda (1963)), i t  was necessary 

to use an average amplitude of the standing wave ac ross  the entrance 

in  defining the amplification factor. 

This average standin? wave amplitude along the "coastline" was 

obtained a s  follows. With the harbor entrance clo sed, three wave 

gages were  placed 1 /4  in, f r om the false wall (which represents  the 

"coastline") with the wires  i n  a plane parallel  to the wall. One wave 

gage was located on the center line of t5e harbor entrance, and the 

other two gages were  located 2 f t  to either side. After the wave 

amplitude at  these three locations had been determined, the wave 



amplitude a t  the two l imits  of the harbor entrance were  determined 

by interpolation after fitting a second order  polynomial to the 

measured values. The subroutine "AITKEN/Polynomial Interpolation 

FunctionJ' available a t  the Booth Computing Center of the California 

Institute of Technology was used to accomplish this. The average of 

the wave amplitude measured by the center gage and those interpolated 

a s  just described was used to represent  the standing wave amplitude. 

Therefore, the amplification factor was determined by dividing the 

measured wave amplitude a t  a given location inside the harbor by the 

standing wave amplitude so determined. 

5 . 5  MEASUREMENT OF VELOCITY 

The velocity at  the harbor entrance was measured using a 

hot-film anemometer manufactured by Thermo-Systems, Inc. (Heat 

Flux System Model 1020A). The sys tem minimized the effect of the 

thermal  iner t ia  of the probe by keeping the sensitive element at  a 

constant temperature (constant res is tance)  and using the heating 

current  as  the measure  of the heat  t ransfer  and hence the velocity of 

the flow. The sensor was a glass cylinder (with a diameter of 0. 001 in. 

o r  0.006 in. ) coated with a platinum fi lm which i n  turn was covered 

with a sputtered quartz layer;  the platinum and quartz coatings were  

- 5 
each approximately 10 in. thick. The sensor was supported by two 

insulated needles, and for the experiments, the sensor was aligned 

with i t s  longitudinal axis paral lel  to the bottom of the basin and per-  

pendicular to the incoming wave ray. A photograph of one sensor i s  

shown i n  Fig. 5. 9 with the associated electronics shown in  Fig. 5. 10. 



Fig. 5 . 9  Photograph of a hot-film sensor 

(from Raichlen 11967) ) 
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Fig. 5. 10 Hot-film anemometer, l inearizer,  and recording unit 



The output of the hot-film sensor i s  not linearly proportional to 

the flow velocity; instead, it has the following general relation (see 

Hi1ue( ( l959)) ;  

where E i s  the output voltage of the anemometer, I i s  the current  a 

to the sensor, Rw is  the operating resistance,  V is the fluid v e l o c i L y  

normal to the axis of the hot-film sensor,  and cl and c, a r e  constants 

which depend upon the propert ies of the hot-film and the temperature 

difference between it and the fluid. In steady flow, the exponent c3 in 

Eq. 5. 1 i s  usually taken as  f /2 ;  such a relationship i s  referred to as  

King's law ( see  Hinze (1959)). 

Fo r  a constant temperature system, the operating resistance of 

the sensor ,  Rw' is kept constant by electronic feedback. The value 

(Rw-Ru)/R (wherein R i s  the cold res is tance  of the hot-film sensor)  
r, b0 g 

i s  usually called the "over-heat rat iof ' .  For  present  experiments, an 

over-heat rat io of 2% to 3% was used. 

Assuming King's law applies for  the present  experiments (see 

Subsection 6.2.5 for  a discussion of the shortcomings of this 

assumption), Eq. 5. 1 can be writ ten as :  
-1 

E = (c, + C , , , / V ) ~  9 

providing a simple relationship which can be linearized so that the 

output voltage i s  directly proportional to the fluid velocity. In order  

to accomplish this, a linearizing circuit  built by Townes (1965) was 

used. 
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The sequence of operation of the l inearizer  i s  a s  follows. The 

output of the anemometer was f i r s t  amplified to the best operating 

level fo r  the l inearizer  (approximately 10 volts) and used as  the input 

to the f i r s t  squaring circuit of the l inear izer ;  the output f rom the f i r s t  

squaring circuit,  S I ,  can be expressed as: 

S1 = ( c a k y  = caD (c, + c, R) , ( 5 . 3 )  

where ca i s  the amplification by the preamplifier.  

It can be seen f rom Eq. 5. 3 that the output of the f i r s t  squaring 

circuil  S1 is r io t  e q u a l  l o  zero when the fluid velocity is  zero. There- 

fore,  a mean voltage was subtracted f rom that shown in  Eq. 5. 3 ,  

when the velocity was equal to zero. Hence, the signal can then be 

expressed as: 

S b = S T - c 2 c 1 = c ~ c 2 J ~  a . ( 5 . 4 )  

This voltage was then amplified again to the bes t  operating level 

for the l inearizer,  and introduced to the second squaring circuit. The 

final output voltage f rom that stage, S,, can be expressed as: 

Thus, after the linearizing operation, the output voltage f rom 

the second squaring circuit,  S2, is linearly proportional to the fluid 

velocity, V. It should be noted that the relationship shown i n  Eq. 5, 

implies that King's law (Eq. 5.2) applies. A calibration i s  required 

if one i s  to determine the constant av in Eq. 5. 5 and thus the absolute 

velocity; for  the present  experiments no attempt was made to calibrate 
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the sensor. If the applicability of Eq. 5. 5 i s  assumed, the relative 

velocity a t  two positions can be obtained as  the ratio of the final 

output voltage S ,  a t  those two positions. For  example, for the experi- 

ments dealing with the velocity distribution across  the harbor 

entrance the output voltage a t  various positions can be normalized 

with respect to either the value at  the center or  the average value 

across  the entrance; both normalizations yield information regarding 

the shape of the velocity distribution across  the enlrance. 

5.6 WAVE ENERGY DISSIPATION SYSTEM 

Two types of wave energy dissipators were employed in 

the present experiments: a wave filter placed in  front of the wave 

generator, and wave absorbers located along the side-walls of the 

wave basin. This system was designed to simulate open-sea conditions 

in  the restricted laboratory basin, and the design criterion and 

characterist ics of the system will be discussed i n  Section 6. 1. 

An overall view of the wave energy dissipator s i s  shown in  the 

photograph, Fig. 5. 11. The wave filter, shown in  front of the wave 

generator in Fig. 5. 11, was 11 ft 9 in. long, 1 f t  4 in. high and 5 ft 

deep in  the direction of wave p r u p a g a t i o r ~  a n d  w a s  constructed of 70 

sheets of galvanized iron wire screen in three sections each 3 f t  11 in. 

long. The wire diameter of the screens was 0.0 1 1 in with 18 wires 

per inch in one direction and 14 wires  per inch in  the other. As seen 

in  Fig. 5. 12 each section of the filter had three vertical stiffening 

pleats located approximately 1 f t  apart  on each sheet; in addition, 

right angle bends each 0.8 in. long were made a t  the top and bottom 
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Fig. 5. 11 Wave energy dissipators placed in the basin 



(a)  Front view 

f b )  Side view 

Fig. 5. 12 Section of wave filter 
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Fig. 5. 13 Bracket and structural frame for supporting wave absorbers 



of each sheet to further stiffen them. Seventy identical sheets were 

then fastened together with 6 stainless steel rods of 1 /8 in. diameter. 

Spacers consisting of 1 /8 in. I. D. lucite tubing 0. 8 in. long were 

placed on each rod to maintain a uniform spacing. These lucite 

spacers can be seen from the side view of the filter in  Fig. 5. 12. The 

right angle bends a t  the top and the bottom of each screen also served 

as spacers. The 70 sheets were then tacked together by soldering to 

becv111e d reldtively st i l l  u d l  that could stdrld by i t s  o w n  rigidity in 

the wave basin, resisting the waves without fixed supports. 

While the wave filter was built to stand in  the wave basin by i ts  

own rigidity without additional support, the wave absorbers,  shown in 

Fig. 5. 11, were supported by structural  f rames  outside the wave 

basin. (One of these structural  f rames i s  shown i n  Fig. 5. 13. ) The 

wave absorbers,  placed along the side-walls of the basin, were each 

1 f t  6 in. high, 1 ft 10 in. thick, and 30 ft long and consisted of 50 

layers  of the same galvanized i ron screen as  used in  the wave filter. 

To construct these wave absorbers,  a unit of 10 screens,  each 30 f t  

long, 1 ft 6 in. wide spaced 3/8 in. apart  was held together by 

brackets at each end of the screens. The spacers were composed of 

pieces of pressed fiberboard called Benelex (3/8 in. thick, 2 in. wide, 

1 f t  6 in. long) placed between each screen. Benelex was used since 

it absorbed only a small  amount of water compared to some other 

materials.  A bracket was fastened over the screens and spacers 

clamping the 10 screens together firmly as a unit. The screens in a 

unit of 10 layers  were then stretched taut by 3/8 in. diameter stainless 
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steel  rods which connected f r o m  the brackets a t  the ends of the units 

to the s t ructura l  f rames  located outside the basin. Holes were  drilled 

into the wall of the basin for the rods;  fittings with "0"-ring seals  were  

mounted in  the wall to prevent the leakage around the rods, Therefore, 

the rods transmitted a l l  the tension required to hold the screens  taut 

to the structural  f rames  a t  each end: hence no significant forces were  

applied to the basin walls. Five identical units (a total of 50 layers  of 

screens)  were  built i n  this manner along each side of the basin as  

shown i n  Fig. 5. 11. 

The wave energy dissipating system provided a large  a r e a  of 

galvanized i ron  i n  the wave basin, 9. 0 ft2 of wi re  sc reen  per ft3 of 

basin water. Because of the chemical reaction between the wire  

screens  and the water  when the screens  were  initially installed the 

zinc i n  the galvanized screens  deposited in  the basin.  This not only 

decreased the amount of zinc that protected the wi res  of the screens  

but the reaction also produced a coating of undissolved zinc on the 

water  surface. The la t ter  effect led to undesirable operating charac-  

ter is t ics  of the wave gages. For  this reason,  it was necessary to 

introduce additives to the water  to reduce and even prevent this 

reaction. A se r ies  of experiments were  conducted in o rder  to find 

a proper additive. It w a s  found that a technical grade of sodium 

dichromate (Na, Cr,Clr)added to the water  in  a concentration of 500 ppm 

(by weight) could accomplish this. The concentration of the sodium 

dichromate was  checked periodically by a light absorption technique 

and if the concentration was found to be l e s s  than desired,  more  was 
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added. In order that this additive could function properly a s  a 

corrosion inhibitor, i t  was necessary  to keep the pH of the water l e s s  

than 6. 5; usually the pH was maintained in  the range of 6.2 to 6. 5 by 

periodically adding hydrochloric acid (HC1). This treatment of the 

basin water  proved to be successful in  both preserving the wire 

screens  and eliminating the precipitate on the water surface, and it 

had no observable effect on the wave gages. 

5 .7  HARBOR MODELS 

Four different harbors with constant depth were investi- 

gated experimentally: a rectangular harbor,  a circular  harbor with 

0 0 a 10 opening, a circular  harbor with a 60 opening, and a model of 

the Eas t  and West Basins of the Long Beach Harbor (Long Beach, 

California). The harbor models were  designed so  that each would 

f i t  into a false-wall simulating a perfectly reflecting "coastline" and 

it was installed 27 f t  6 in. f r om and paral lel  to the wave paddle, i. e. 

2 ft. 6 in. f rom the back-wall of the basin. The false-wall was made 

of lucite 318 in. thick and 1 f t  3 in. high mounted to a f rame  composed 

of galvanized i ron  angles constructed in  two identical pieces: the 

east-wing and the west-wing. Each wing extended 4 ft 9 i z f r o m  I f t  

off the center of the wave basin to the inner most  screen of the wave 

absorbers.  Aphotographof thesuppor t ingf ramesandthewal l s i s  

presented i n  Fig. 5 .  14- The walls were weighted to hold them in 

place without d i rect  connections to the basin floor, In line with the 

false-wall, lucite spacers 318 in. thick, 1 in. wide and 1 ft 6 in. high 

were  placed between each screen of the absorbers.  These spacers 
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Fig. 5. 14 False -walls and supporting frames representing ''coastline'' 

Fig. 5. 15 Rectangular harbor in place in  the basin 



which can be seen in  upper left-hand-portion of Fig. 5. 13 were placed 

to prevent waves penetrating through the absorbers to the still  water 

region behind the false wall thereby creating undesirable oscillations 

i n  the basin. 

In the following, a brief description of the harbor models is 

presented: 

(i) Rectangular harbor: The rectangular harbor was 12-1/4 in. 

long, 2-3/8 in. wide with a fully open entrance and it was constructed 

of 1/4 in. thick lucite. Fig. 5. 15 shows how the rectangular harbor 

was placed in  relation to the false-wall inside the wave basin. It 

should be mentioned that the false-wall, "coastline", shown i n  Fig. 

5. 15 was different f rom the false-wall described in the previous para-  

graph. This wall was constructed f rom plywood ( 3 /4  in. thick) and 

painted with an epoxy based paint. However, it was found that this 

wall expanded due to water  absorption; therefore, after the experi-  

ments with the rectangular harbor were finished this false-wall was 

replaced by the one constructed of lucite just described which was 

used for  al l  subsequent experiments. 

0 (ii) Circular harbors :  The two circular  harbors (a 10 opening 

and a 60° opening), shown in  Figs. 5. 16 and 5. 17, were  each 1 f t  6 in. 

diarnetcr and 1 ft 3 in. high, and thcy wcrc constructcd of 1 /4  in. 

lucite plate which was heated and bent to shape. The cylinders were  

each connected on the top and the bottom to two 1/2 in. lucite rein-  

forcing plates with holes cut to an inside diameter of 1 f t  6 -  1/2 in. ; 

this i s  clearly shown in  Figs. 5. 16 and 5. 17.  These two reinforcing 



0 
9323  

Fig. 5, 16 Circular harbor with a 10 opening 

0 
9325 

Fig. 5. 17 Circular harbor with a 60 opening 
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plates were necessary to keep the planform of the harbors circular. 

The two vertical plates shown near the harbor entrance in both Figs. 

5. 16 and 5. 17 connected to the harbor fitted into the two foot space 

which had been left in the false-walls just described; thereby resulting 

in  a smooth "coastline" extending from the wave absorbers to the 

limits of the harbor entrance. 

(iii) Model of Long Beach Harbor: The model of Long Beach 

Harbor shown in Fig. 5. 18 was also constructed from 1 f 4  in. thick 

lucite plate. The shape of the planform of the harbor was cut f rom 

two lucite sheets using dimensions such that when the vertical 

boundary walls were cemented in place the inside dimension of the 

harbor would be as  desired. These supporting plates can be seen a t  

the top and bottom of the harbor model in  Fig. 5. 18. This model was 

composed of 15 pieces of lucite cemented to the supporting plates 

and rubber cement was used a s  filets in the corners. The planform 

o f  the model was simplified f r o m  the existing harbor and can be 

compared to the prototype in the map (Fig. 5. 19) which was extracted 

from the U. S. C. & G. S. map No. 5 147. 

5 .8  INSTRUMENT CARRIAGE AND TRAVERSING BEAM 

A photograph of the instrument carriage and traversing 

beam i s  presented in  Fig. 5.20; also seen in  this photograph i s  the 

frame which was placed outside the model of the harbor to support 

the instrument carriage. This f rame,  constructed of galvanized 

steel angles, was bolted to four pads that were cemented to the basin 

floor. An aluminum plate 3 /8  in. thick, 2 ft 4 in. square with a 



Fig. 5. 18 Model of the Eas t  and West Basins of Long Beach Harbor 
(Long Beach, California) 

Fig. 5. 19 Map showing the position of the Eas t  and West Basins of 
Long Beach Harbor and the model planform. (The harbor 
model i s  shown with dashed lines. ) 



circular  hole of 2 f t  inside diameter was mounted to the top of the 

s t ructura l  f rame.  The carriage which was supported at  three points 

with ball bearings was f r ee  to rotate with the hole in  the plate as  i t s  

guide and coupled with the t ravers ing beam the wave gage could 

therefore be moved to any position inside the harbor.  The complete 

f rame  could be moved toward o r  away f rom the false-wall so that the 

center of the circular  hole on the aluminum plate coincided with the 

center of the circular  harbor. In addition, the f rame  could be leveled 

by adjusting the bolts on the supporting pads s o  that the wave gages 

remained a t  the same immers ion if moved to other positions within 

the harbor. 

The traversing beam shown in  Fig. 5 .20 consisted of an alum- 

inum channel to which two lead screws (16 threads per inch) were  

mounted. These screws were  connected to a gear arrangement at  

one end so that they could be rotated either alone o r  simultaneously. 

T h e  s c r e w s  pasqed thrnugh twn threaded hlockq t o  which t h e  w a v e  

gages were  attached. As the lead screws were  rotated these blocks 

moved in  slots cut in the channel thus positioning the wave gages. 



Fig. 5.20 Instrument carriage and traversing beam shown mounted 

above lo0 opening circular harbor 



CHAPTER 6 

PRESENTATION AND DISCUSSION OF RESULTS 

Experimental and theoretical results a r e  presented in this chapter 

which deal with the wave induced oscillations of three harbors with 

6 specific shapes: circular harbors with 10 and 6u0 openings, a 

rectangular harbor,  and a model of the East  and West Basins of Long 

Beach Harbor located in  Long Beach, California. All the harbors 

investigated were of constant depth and were connected to the open-sea; 

thus, an effective wave energy dissipating system was necessary to 

simulate these open- sea conditions in  the laboratory. The character - 

ist ics of the wave energy dissipators chosen for this system will be 

discussed fir st, followed by the presentation and discussion of the 

results for the three harbors mentioned. All numerical computations 

were accomplished using an IBM 360175 high speed digital computer. 

6. 1 CHARACTERISTICS O F  THE WAVE ENERGY DISSIPATION 

SYSTEM 

The theories developed in  Chapter 3 and 4 t reat  the case of 

a harbor connected to the open-sea which lead to the existence of the 

"radiation condition1', i. e .  the radiated waves which emanate from the 

harbor entrance decay to zero at  an infinite distance f rom the harbor. 

However, in the laboratory, experiments must be conducted in a wave 

basin of finite size; thus, the radiated waves f rom the harbor will be 



reflected from the wave paddle and the sidewalls of the basin unless 

effective energy dissipators a r e  provided. Indeed in the absence of 

dissipators Ippen and Raichlen (1962) (also Raichlen and Ippen (1965) ) 

have shown that the response curve of a rectangular harbor connected 

to a highly reflective basin i s  characterized by numerous closely 

spaced resonant spikes. This result  i s  strikingly different f rom the 

response curve for a rectangular harbor connected to the open-sea 

which was subsequently studied by Ippen and Goda (1963) where fewer 

modes of resonant oscillation were observed over similar ranges of 

wave period. In this section the design considerations and character- 

ist ics of the wave energy dissipating system (described in Section 5.6) 

which was used in these experiments to alleviate this problem will be 

presented and discussed. 

A theoretical and experimental investigation of wave energy 

dissipators composed of wire mesh screens aligned normal to the 

direction of wave propagation was conducted by Goda and Ippen ( 1963). 

In their analysis each screen was considered to be composed of 

numerous equally spaced circular cylinders aligned vertically and 

horizontally; i t  was assumed that there was no wave reflection from the 

energy dissipator, and the energy dissipated by each cylinder was 

assumed to be independent of i t s  proximity to the other cylinders. 

Therefore, the total energy dissipation was taken to be equal to the 

sum of that f rom each of the cylinders in the unit. Based on these 

assumptions, Goda and Ippen ( 1963) developed the following semi- 

empirical equation for the transmission coefficient of such a 

dissipalor: 



where: K = transmission coefficient, defined as  the ratio of the 
1rans.crlitled wave height to the incident wave height, 
Ht /Hi, 

m = number of layers of screens,  

D = diameter of the screen wire, 

S = center to center distance between wires,  

cr = circular wave frequency (2n/T), 

v = kinematic viscosity of the fluid, 

L = wave length, and 

cp(h/L) = depth effect factor which i s  a function of the ratio of 
depth to wave length. (The interested reader i s  referred 
to Coda and Ippen (1963) Eq. 2 .29 for this expression; 
for deep water waves i t  is  equal to 1.8 1. ) 

Based on the experimentally determined values of the transmission 

coefficient, Kt, and the reflection coefficient, Kr, for various dissi- 

pator s ,  an empirical relation was obtained to correlate these 

quantities : 

wherein K i s  defined as the ratio of the reflected wave height to the r 

incident wave height, Hr /Hi. 

To confirm the validity of Eqs. 6. 1 and 6.2 so that they could 

be used with confidence in  designing the wave energy dissipators for 

this study (described in Section 5.6) a se r ies  of experiments using 

model dis sipators was conducted. These experiments were carried 

out in a wave tank 1 f t  6 in. wide, 1 ft 9 in. deep, and 3 1 ft long using 

a paddle type wave generator and using the procedures employed by 



Goda and Ippen (1963). Two model dissipators were tested, denoted 

here  as  Dissipator A and Dissipator B; their characteristics a r e  

presented in Table 6. 1. 

Table 6. 1 Model wave energy dissipators 

Dis sipator 

.L. .I. 

For this study the horizontal and vertical spacing of the wires were 
not equal and the value denoted as S i s  the average spacing (see 
Section 5. 6). 

Mesh (S)+ 
Averaged Center 
to Center Spacing 

of Wires 
(in. ) 

A dissipator i s  called a wave filter if it i s  placed between the 

wave generator and the back-wall of the wave tank; i t  i s  called wave 

absorber if placed against a reflecting surface of the tank. In order 

to dctcrminc thc transmission and rcflcction cocfficicnts of thc wavc 

filter, two wave gages were used to measure the wave envelope in the 

region ahead and behind the wave filter. To determine the reflection 

coefficient of the wave absorber one wave gage was used to measure 

the wave envelope in the region in front of the wave absorber. It can 

be shown that the incident and reflected waves can be  determined 

simply from such wave envelopes ( see  Ippen, 1966, pp. 46-49). 

The experimental and theoretical variation of the reflection 

coefficient, Kr,  with the incident wave steepness , Hi/L, for Dis s i -  

pators A and B a re  presented in Figs. 6. 1 and 6. 2 respectively. In 

both Figs. 6. 1 and 6.2, the experimentally determined reflection 

Screen Wire 
Diameter 

(D) 

(in. ) 

Distance 
Between 

Layers of 
Screens 

(in. ) 

Number 
of Layers 
of Screens 

(m) 



Fig. 6. 1 Reflection ~ i e f , ,  E(, , as a function of the 

Fig. 6. 2 Reflection coef ., K*, as a function of the 

incident wave steepness, Hi/L, for 
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coefficients a re  presented for  each dissipator used both as  an absorber 

and as a filter. The former refers  to the case where the dis sipator 

was placed against the back-wall of the wave tank, while the latter 

refers  to the case where the dissipator was located between the wave 

machine and the back-wall. The theoretical curves presented in Figs. 

6. 1 and 6.2 a r e  computed in the following way: f i rs t ,  the transmission 

coefficient, K i s  computed from Eq. 6. 1, and the reflection coeffi- t ' 
cient, IIr, is then determined from the empirical relation, Eq. 6. 2. 

The experimental data presented in Fig. 6. 1 show considerable scatter; 

however, the data follow the trend predicted by Eqs. 6. 1 and 6.2, i. e. 

for a constant wave period the reflection coefficient, Kr, decreases 

as  the wave steepness, H increases, and for a constant wave 

steepness, the reflection coefficient, Kr, increases as the wave 

period, T, increases. 

Similar data a re  presented in  Fig. 6.2 for Dissipator B where 

the number of screens has been increased from 38 to 50 and the 

spacing of the screens reduced from 0 . 5  in. to 0 .  375 in. By comparing 

Figs. 6. 1 and 6.2, as expected, it i s  seen that Dissipator B i s  more 

efficient than Dis sipator A. 

In Fig. 6.3 the experimentally determined reflection and trans- 

mission coefficients for these two dissipators a re  shown. The experi- 

mental data obtained by Goda and Ippen (1963) which were the basis 

for their empirical relation, Eq. 6.2, a r e  also included in Fig. 6.3. 

Three relations: Kr = K ~ ' ,  Kr = and Kr = K ~ ~ ,  a r e  shown in 

Fig. 6.3 for reference. It i s  seen that the experimental data show 

considerable scatter; nevertheless, the results for Dissipator A agree 



Fig.  6. 3 The variation of the measured reflection coef. 

Kr, with the measured transmission coef. Kt, 

f o r  various wave dis sipators. 
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best with the expression: K = K ~ ~ '  6 ,  and the results for Dissipator B r 

with: Kr = K~"". This difference for the two dissipators suggests 

that the wave energy dissipation characteristics might be affected by 

the spacing between the screens which was neglected in the analysis 

by Goda and Ippen (1963). The results  also show that for a constant 

reflection coefficient. K the transmission coefficients, r' Kt, obtained 

from the present experiments a r e  somewhat larger than those obtained 

by Goda and Ippen (1963). 

The most important characteristic of the wave energy dissipators 

in simulating the unbounded open-sea is the reflection coefficient, * Kr 

It was suggested by Ippen and Goda (1963) that the reflection coefficient, 

Kr, of wave fi l ters and absorbers should be l e s s  than 2070 for proper 

simulation of open-sea conditions in a restricted wave basin. The wave 

absorbers finally chosen for this investigation consisted of 50 layers of 

screens with a spacing of 0.375 in. between screens (as described in 

Section 5 .  6). Therefore, the wave energy dissipation characteristics 

of the wave absorbers used a r e  identical to those of Dissipator B used 

in these preliminary experiments and shown in  Fig. 6.2. With 

reference to Fig. 6.2, except for very small incident wave steepnesses 

the reflection coefficient of the absorbers i s  estimated to be less than 

20% for the majority of thc harbor rcsonsncc cxpcrirncnts which wcre 

conducted. 

The wave filter used, which has been described in Section 5.6,  

consisted of 70 layers of screens with a spacing of 0.8 in. between 

layers of screens. The reflection coefficient of the wave filter is 

expected to be less  than that of the wave absorbers for comparable 



-118- 

incident wave steepnesses due to the smaller number of screens and 

spacing in the latter. Therefore, it i s  expected that except again for 

the case of an extremely small wave steepnes ses,  the reflection 

coefficient of the wave filter used i s  less than 20%. 

In order to ensure that the open-sea condition was properly 

modeled in the wave basin using the wave energy dis sipators described, 

in initial phases of this study the response to periodic incident waves 

of a fully open rectangular harbor (2-3/8 in. wide and 1 ft  1/4 in. long 

and identical to that studied by Ippen and Goda (1963) ) was studied 

experimentally. The results obtained agreed well with both the 

theoretical "open- s ea solution" and the experimental results obtained 

by Ippen and Goda (1963). Thus, the open-sea condition for the 

radiated wave was considered to have been simulated properly in these 

experiments. The results of these experiments will be presented and 

discussed in detail later in Section 6.3. 

6.2 CIRCULAR HARBOR WITH A 10' OPENING AND A 60' OPENING 

6.2. 1 Introduction 

As discussed previously, the wave induced oscillations in 

a circular harbor connected to the open-sea can be evaluated by using 

either the special theory developed in Section 4. 1 (if the chord which 

represents the harbor entrance can be approximated by an arc  of the 

circle) or  using the general theory developed in Chapter 3 for an 

arbritrary shaped harbor. In this section, the theoretical results 

obtained from these two theories a re  compared to the experimental 
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0 results for harbors with a l o 0  and a 60 opening. In order to verify 

the theory the following results will be presented and discussed: 

the variation of the amplification factor at  a fixed position 

inside the harbor as a function of incident wave number (or 

wave period), 

the variation of the wave amplitude inside the harbor for 

various resonant modes, 

the variation of the total velocity at  the harbor entrance as 

a function of incident wave number, and 

the distribution of velocity across the harbor entrance for 

various wave numbers. 

6.2.2 Response of Harbor to Incident Waves 

The response of a harbor i s  defined, for this study, as the 

variation of the amplification factor, R, with the wave number para- 

meter ka (wherein k is the wave number and a i s  a characteristic 

plsnform dimension of the harbor, the radius for the circular harbor). 

The function ka i s  of course dependent upon wave period and depth 

whereas the amplification factor R i s  also a function of position. The 

amplification factor R i s  defined as  the wave amplitude a t  the position 

(r, 8 )  divided by the standing wave amplitude which exists in the wave 

basin with the harbor entrance closed for  the wave number (or period) 

of interest. Over some range of wave number the wave amplitude 

inside the harbor may be amplified while over another range it may 

be attenuated. Physically, for such a harbor this resonance results 

f rom the trapping of incident wave energy inside the harbor a t  
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particular wave numbers (or wave periods) which depend on the 

geometry of the harbor as well as the depth. 

Two response curves for a circular harbor with a l o0  opening 

a r e  presented in Figs. 6.4 and 6. 5, where the two theories described 

in Chapters 3 and 4 a re  compared to experiments. The experiments 

w e r e  conducted i n  a circrdar harhor of 1. 5 ft diameter with the depth 

of water constant and equal to I f t  i n  both the harbor and the "open-sea". 

In both figures, the solid line represents the theoretical curve 

computed from the theory for an arbi t rary shaped harbor (Chapter 3 ) ;  

the theory for the circular harbor (Section 4. 1) i s  shown with dashed 

lines. The theoretical amplification factor was calculated using Eq. 

Eq. 3 . 3 8  and Eq. 4.30 for the arbitrary shaped harbor theory and 

the circular harbor theory respectively. The experimental ampli - 

fication factor was obtained by dividing the wave amplitude at  the 

point investigated inside the harbor (center of the harbor or  the 

0 
position: r=O. 7 f t ,  0=45 ) by the average wave amplitude of the 

standing wave system at  the harbor entrance. The standing wave 

system was measured at  the "coastline" when the entrance was closed; 

the procedure for obtaining the average wave amplitude of the standing 

wave system was described in  Section 5.4. 

Fig. 6. 4 shows the response at  the center of the harbor while 

0 
Fig. 6. 5 shows the response at  the postion r = O .  7 ft, 8=45 . The center 

of the harbor i s  a unique position to investigate because i t  i s  the 

location having an equal distance to any point on the boundary. The 

0 position: r = O .  7 ft,  e=45  i s  near the harbor entrance and was chosen 

because i t  was of interest  to know whether the harbor entrance had any 







special influence on the response that might not be predicted by the two 

theories. In the experiments the wave amplitude at these two positions 

was measured simultaneously; however, the gages were separated by 

a3out one radius, thus any disturbance caused by one of the wave gages 

would not be expected to seriously affect the other. 

For the case of a circular harbor with a lo0 opening the a r c  and 

the chord at  the harbor entrance a re  almost the same length, there- 

fore the theory for  the circular shaped harbor developed in Section 4. 1 

can be considered to be applicable. In using the theory for an arbi- 

t ra ry  shaped harbor, the boundary of the circular harbor was divided 

into 36 segments with each segment containing lo0 of the central angle. 

Since the harbor entrance was represented by one of these segments, 

only one unknown complex constant of the normal derivative of the 

wave function (e) needs to be evaluated by the matching procedure. 

In Figs. 6.4 and 6.5 reasonably good agreement i s  seen between 

the experimental data and the theoretical rc sults. Bccauoc the cncrgy 

dissipation due to viscous effects i s  not considered in the theoretical 

analysis, the theoretical values near resonance are,  as  expected, 

higher than the experimental values; more discussion of this will be 

presented later in this subsection. Four maxima in  the range of ka 

that were investigstcd can bc sccn in thc curvcs in Figs. 6 . 4  and 6 . 5 ;  

the values of ka for these four are:  0.35, 1. 988, 3. 18, and 3.87. 

These correspond to four distinct modes of resonant oscillation; the 

shape of the water surface for these modes of oscillation will be 
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discussed in detail in Subsection 6.2.4.  It can also be seen in Figs. 

6 .4  and 6.5 that the response in region of ka w 3.87 i s  very peaked, 

i. c. s la rgc  amplification fac tor  and a narrow wave number band- 

width (range of ka);  the theoretical amplification factor at the center 

of the harbor i s  nearly 10. 

As the width of the harbor entrance increases, the difference 

between the length of the chord and the a r c  at the entrance increases 

and the theory for  the circular harbor developed in Section 4. 1 may 

no longer be satisfactory. In order to examine the effect of the small 

entrance approximation of the circular harbor theory on the harbor 

response when the entrance to the open-sea i s  relatively large,  a 

0 circular harbor with a 60 opening was investigated. In this case the 

Icngth of the chord and the a r c  at  the entrance differ by d i m o s t  570, 

0 Two response curves for the circular harbor with a 60 opening 

a r e  presented in Figs. 6.6 and 6.7. Fig. 6.6 shows the response 

curve for the center of the harbor; this position corresponds to that 

shown in  Fig. 6.4 and experimental data f rom two circular harbors 

(1. 5 and 0. 5 ft diameter) a re  included. This smaller harbor was 

used to obtain data at  smaller values of ka than could be obtained 

with the 1.5 f t  diameter harbor. Fig. 6.7 shows the response curve 

0 
for  the position: r = O .  7 f t ,  0=45 corresponding in  location to the 

curve shown in  Fig. 6. 5; experimental data for only the circular 

harbor of 1. 5 f t  diameter a r e  included for that location. As before, 

at both locations theoretical curves obtained from each of the theories 

a r e  shown. 
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In using the theory for an arbitrary shaped harbor, the boundary 

of the harbor (including the harbor entrance) was divided into 36 

segments, and for this case the harbor entrance was represented by 

six of these boundary segments. Therefore, six complex constants 

of the normal derivative of the wave function (2) at the harbor 

entrance were determined by the matching procedure. However, 

when applying the circular harbor theory, only one constant was used 

at the entrance, i. e. the average normal derivative of the wave function 

across the harbor entrance (c) obtained by the matching procedure 

discussed in Section 4. 1. 

The theoretical results presented in Figs. 6.6 and 6.7 show good 

agreement with the experimental data. Note that in Fig. 6.6,  data 

obtained from experiments conducted in a circular harbor of 0.5 ft 

diameter a re  denoted by solid circles. These data combined with the 

data obtained in the harbor of larger diameter (1. 5 f t )  show that the 

response curve of the harbor at a particular location i s  only a function 

of ka. 

From the theoretical results presented in Figs. 6.6 and 6.7, 

i t  appears that for the two theories there i s  a small difference in the 

value of the wave number parameter, ka, which i s  predicted at reso- 

nance. This difference i s  probably caused by the different treatment 

at the harbor entrance for the two theories: for the circular harbor 

theory one segment was used whereas for the arbitrary shaped 

harbor theory the entrance was divided into six segments. In fact, 
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it i s  seen f rom Figs. 6.6 and 6. 7 that in  the location of the peaks 

the experiment agrees  better with the arbi t rary  shaped harbor theory. 

The values of ka  fo r  the four modes of oscillation shown in these 

figures can be denoted by ka  = 0.46, 2. 15, 3 . 3 8 ,  3.96 which a r e  the 

average values f r om the two theories. 

It should be noted that these four maxima a r e  well defined in  

Fig. 6. 7 whereas the third maximum i s  not obviously shown i n  the 

response curve for the center of the harbor (Fig. 6. 6). This problem 

of defining the resonant mode of oscillation solely by a response curve 

such a s  this will be discussed m o r e  fully in Subsection 6.2. 5.4. The 

amplitude distribution corresponding to these resonant modes will be 

discussed in Subsections 6.2.3 and 6.2.4. 

By comparing E'ig. 6 .4  with k'ig. 6. 6 and P'ig. 6. 5 with P'ig. 6. 7 

one i s  able to observe the effect of the s ize  of the harbor opening on 

the amplification of waves inside the. harbor.  It i s  obvious f rom these 

figures that the maxima which appeared in Figs. 6 .4  and 6. 5 for the 

0 harbor with a 10 opening a r e  replaced by peaks of smaller  ampli- 

fication factors and l a rger  bandwidth for the harbor with a 60° 

opening (see  Figs. 6.6 and 6.7). This effect was called the "harbor 

paradox" by Miles and Munk ( 1962). In addition, in  comparing these 

0 figures it is seen that fo r  the  60 opening, the values of ka of the 

modes of resonant oscillation a r e  larger  than the values of ka for 

0 the corresponding modes for the harbor  with a f O  opening. 
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Another characterist ic  that can be observed f rom a comparison 

of Fig. 6 .4  with Fig. 6.6 and Fig. 6. 5 with Fig. 6. 7 i s  that the 

theoretical resul ts  agree with the experimental resul ts  better for  the 

harbor with the l a rge r  opening. In order  to explain this, some con- 

sideration must  be given to the effect of energy dissipation at  r eso-  

nance.  In the theore t i ca l  analysis it w a s  shown that the radiation 

of energy f rom the harbor to the open-sea, l imits  the amplification 

a t  resonance. In nature in addition to the radiation effect, viscous 

dissipation of energy l imits  the maximum amplification even more.  

Since the theory only treated the effect of radiation, one expects the 

theoretical values of the amplification factor i n  the region of reso-  

nance to be l a rger  than the experimental values. Moreover, for  the 

same incident wave characterist ics the energy dissipation a t  the 

entrance due to viscous effects a r e  relatively more  important for the 

harbor with a smaller  entrance. Thus a better agreement between 

the experimental and theoretical results i s  apparent for the harbor 

with a 60° opening. On the other -hand the resul ts  i n  Figs. 6.4 to 6. 7 

demonstrate that the wave numbers (o r  periods) at  resonance a r e  

correct ly  predicted by the two theories. These effects for  the harbor 

a r e  s imi lar  to those for a single -degree-of-freedom oscillator where 

viscous dissipation, &fects resonant amplification much more than it 

affects the natural periods of oscillation. 

The agreement between the theories and the experiment i s  eyen 

more  encouraging since the experiments conducted for the response 

curves presented in  Figs. 6 .4  to 6. 7 covered the range of waves 



f rom shallow water waves to deep water waves. The conventional 

method of classifying waves is: shallow water waves for h / L  .: 1/20, 

intermediate waves for l/ZO < h/L < 1 / Z ,  and deep water waves for 

h / L  > 112 (wherein L i s  the wave length, h i s  the depth); thus, the 

experiments conducted for ka < 0. 236 (a=O. 75 ft ) a r e  shallow water 

waves, whereas those for 0.236 < ka < 2.36 a re  intermediate waves 

and for ka > 2.36 the waves a r e  deep water waves. It should also be 

mentioned that the experiments were accomplished using a wide- 

range of stroke settings of the wave machine (see Appendix IV). 

Since this range of stroke settings results in a wide range of incident 

wave steepnesses the good agreement between the theories and the 

experiments also emphasize the applicability of these linear theories 

even quite close to resonance. 

It was mentioned in Chapter 3 that in using the theory for an 

arbitrary shaped harbor, the boundary of the harbor must be divided 

into a sufficiently large number of segments. The word "sufficient" 

implies that the results obtained using the approximate theory must 

agree with the exact solution within an allowable limit. Obviously, 

as  the number of segments increases,  the accuracy of the approximate 

theory compared to an exact theory will improve; however, with this 

increase both the reqvired computer storage and computation time may 

increase significantly. Therefore, these factors may place a practi- 

cal lower limit on the  length of the segments into which the boundary 

i s  divided, and therefore, consideration must be given to the relative 

size of each segment. 
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The following consider ations a r e  necessary in determining the 

segment length: when the boundary i s  divided and replaced by 

straight- l inc scgmcnts thcoc mus t  be a good approximation to  the 

actual boundary, and the length of each straight-line segment, As, 

must be small compared with the wave length, L. To understand this 

second criterion, i t  i s  recalled that in the approximate theory the 

wave function along each boundary-segment i s  represented by a 

constant value located at the mid-point of the segment; thus, the 

length, As, must be small compared to the wave length, L. Therefore, 

within the distance of one wave length there a r e  a number of these 

segments along which the wave function i s  evaluated, thereby assuring 

the proper representation of the wave form. This criterion can be 

represented best by Lhe parwneter kAs. It was s h w r ~  i r l  Subsectiuu 

3 . 4 .  1 (Table 3. 1) that by using the same number of segments the 

approximate solution agreed better with the exact solution for a 

smaller wave number k than for larger  wave numbers. Thus, in 

considering the size of As, the case of larger  values of k (smaller 

wave lengths) i s  more  cri t ical  than the case of small k. For the 

circular harbors studied experimentally and simulated theoretically, 

the length of the segments, As, used was 0. 13 ft (for N=36) and the 

largest  value of ka for which the experiments were performed was 

approximately 4.  0 (which corresponds to k=5. 3 f t  -I). Therefore, 

the critical value of kAs in the present case i s  0. 69. Judging by the 

good agreement realized between the approximate theory and the 



experimental results ,  i t  is concluded that the boundary of the harbor 

was divided into segments which were sufficiently small; this criterion 

corresponds to the ratio: AS /L% l / 9 .  Therefore, a conservative 

statement of the criterion for segment length can be stated as: the 

harbor perimeter should be divided into a number, N, straight-line 

segments such that the ratio of the length of the largest  segment to 

the smallestwave length to be considered i s  less  than about one-tenth. 

6 . 2 . 3  Variation of Wave Amplitude Inside the Harbor: 

Comparison of Experiments and Theory 

The results  presented in Subsection 6.2.2 on the response 

of the two circular harbors to incident waves demonstrate that the 

theoretical results obtained from the arbitrary shaped harbor theory 

and the circular harbor theory agree well with the experimental data. 

Both theories will be tested further in this section by comparing the 

theoretical results with the experimental results  for the wave arnpli- 

fmde distribution inside the harhnr fnr  v a r i o ~ ~ s  values of the wave 

number parameter ka. 

The wave amplitude distribution within the circular harbor with 

0 a 10 opening i s  presented in  Fig. 6.8 for a value of ka=  0. 502. In 

Fig. 6.8 the variation of wave amplitude with angular location i s  

shown along two circular paths: the upper portion of the figure for 

r = 0. 7 ft ( r / a  = . 935) and the lower portion for r = 0.2 f t  ( r / a  = -267). 

The abscissa in  Fig. 6.8 i s  the angular position, e ,  in degrees and 

the ordinate i s  the wave amplitude normalized with respect to the 
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 kc^ = 0.582 h = 1.0 f i. 

Arbitrary Shaped Harbor Theory 
---- Circular Harbor Theory 

0 Experiment ( 0 ' 4 C  180~) 
@ Experiment (180>@~ 3360~) 

8 (Degrees) 

Fig.  6. 8 W a v c  amplitude distribution inside the circular 

harbor with a lo0  opening f o r  ka=O. 502 
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wave amplitude at the position of r = 0. 7 ft,  8 = 180'. (The wave 

amplitude at r = 0.7 f t ,  8 = 180° i s  chosen for normalization as  i t  

i s  the maximum value which was measured along the two circular 

paths, i. e. r = 0.7 ft  and 0.2 f t .  ) In Fig. 6. 8 and in other figures 

throughout this section, the solid line represents the theoretical 

amplitude distribution obtained from the theory for an arbitrary 

shaped harbor (Chapter 3) applied to  this special shape; the amplitude 

distribution obtained from the theory described in Section 4. 1 for a 

circular harbor is shown by a dashed line. Since the theoretical wave 

function, thus wave amplitude, inside the harbor i s  symmetrical about 

a diameter which bisects the entrance ( 8  = oO), the theoretical results 

presented only cover the range of 0 from 0' to 180°. 

Experiments were conducted to measure the wave amplitude for 

0' < 0 < 360' along certain radii: in Fig. 6.8 the experimental data 

0 for o0 2 0 5 180 a re  denoted by an open circle while the data for  

180' < 0 5 360° a re  denoted by a solid circle. Reasonably good agree- 

ment i s  seen between the theories and the experimental results; how- 

ever, for r = 0.2 ft, the theoretical results calculated from the theory 

for the arbitrary shaped harbor differ by about 1070 from the results 

of circular harbor theory, the experimental results agreeing better 

0 
with the latter. The experimental data for o0 < 0 I 180 agree we11 

with those for 180' < 0 Ir 360' thus demonstrating the symmetry of the 

wave amplitude inside the harbor with respect to the diameter at 

0 e = o .  
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Fig. 6 .  9 shows the WRVP amplitnde distribntion along rirclilar 

paths with r = 0.7 f t  and r = 0.2 ft for  ka  = 1.988 for the harbor with 

a lo0 opening. As in  Fig. 6.8 the wave amplitude at  various locations 

i s  normalized with respect  to the wave amplitude at the position of 

0 r = 0.7 ft, 0 = 180 which i s  again the maximum of points measured. 

This value of ka  corresponds to the second maximum in  the response 

curves shown in  Figs. 6.4 and 6.5. It i s  seen that the theoretical 

resul ts  agree well with the experimental data at  the locations where 

the measurements were  made. At this value of ka, the wave 

oscillation inside the harbor is termed the 'lsloshing mode"; this 

mode of oscillation will be discussed more  fully in Subsection 6.2.4. 

Fig. 6. 9 shows, for  r = 0.7 f t  a region of negative water  surface 

displacements(negative wave amplitudes) in  the region 0' < 8 < 97O 

0 
with positive displacements in  the region 97 < 8 < 180°. Similarly, 

fo r  r = 0.2 f t  two regions a r e  seen with opposite phase, i. e. the 

0 
region 0 < @ < l03O with negative displacements and the r e g h n  

103' < 8 < 180° with positive displacements. 

Similar results  for  a value of k a  = 3. 188 a r e  presented in  

Fig. 6 .  10; this value of ka corresponds to that of the third maximum 

i n  the response curves shown in  Figs. 6.4 and 6.5. The ordinate 

in  Fig. 6 .  10 i s  the relative wave amplitude normalized with respect 

to the wave amplitude a t  the position r = 0. 7 f t ,  6 = 95O, where this 

amplitude i s  the maximum which was measured along both circular  

paths ( r  = 0. 7 f t  and r = 0.2 ft). For  this mode of oscillation two 
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Fig. 6 .  9 W a v e  amplitude distribution in  s i d e  t h e  ri rclilar 

harbor with a lo0  opening fo r  ka=l. 988 
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Fig.  6. 10 Wave amplitude distribution inside the circular 

harbor with a lo0 opening for  ka=3. 188 
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nodal lines exist in the harbor (see Subsection 6.2.4 for a more 

complete discussion); thus, the nodal lines cross  the two circular 

paths at two locations along each path: 8 = 50° and 138O for r = 0.7 ft 

and 0 = 73O and 123O for r = 0.2 ft. Therefore, in the upper portion 

of Fig. 6. 10 (r = 0. 7 f t )  negative water surface displacements a r e  

evident in the regions o0 < 0 < 50' and 138O < R < 180° while positive 

displacements a re  shown in the region 50° < 0 < 138'. Positive and 

negative water surface displacements can also be seen fur r = 0. 2 ft. 

To investigate whether the shape of the water surface i s  des- 

cribed well by a linear theory experiments were conducted where the 

wave amplitude distribution inside the harbor at r = 0.7 f t  was 

measured for various incident wave amplitudes. These results a re  

presented in Fig. 6. 11 for three different incident wave amplitudes: 

Ai = 0.0023 f t ,  0.0066 ft, and 0. 0105 ft. The value of ka for these 

experiments was 3. 188 which corresponds to the third resonant mode 

of oscillation (see Figs. 6.4, 6. 5, and 6. 10). The theoretical curves 

which a r e  shown in Fig. 6. 11 a r e  the same as those presented in the 

upper portion of Fig. 6. 10. The agreement of the experimental data 

among themselves and with the two linear theories additionally 

support the linearity assumption made in the theory (for these 

experiments the incident wave steepnesses are: 0. 003 < Hi/ l ,  < 0 .  0 14). 

The major deviation from other data appears to be for the results 

corresponding to the smallest incident wave amplitude where experi- 

mental problems of accurate measurement may arise. 
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The variation of the wave amplitude radially at  s ix ,  fixed, 

angular positions: 0 = oO, 30°, 45O, 90°, 135O, 180' i s  shown in 

Fig. 6. 12 for ka = 3.891. The abscissa in Fig. 6. 12 i s  the relative 

radial position, r/a,and the ordinate i s  the relative wave amplitude 

normalized with respect to the wave amplitude at  the center of the 

harbor where a maximum occurs. Experimental results a re  also 

shown for 8 = 270° and a re  included along with the data and theory 

0 0 
for 8 = 90 a s  the oscillation is  symmetric about 8 = 0 . It i s  seen 

that the theoretical results agree well with the experimental data 

for all of the values of 8 which were investigated. In Fig. 6. 13 these 

results have been replotted in  a manner similar to Figs. 6.8 through 

6. 11 again showing the amplitude variation along the two circular 

paths: r = 0.2 f t  and r = 0. 7 ft.  

The previous discussions have shown the applicability of the 

theories developed in predicting the wave amplitude distribution in a 

0 
circular harbor with a small opening (10 ). In a similar manner 

0 
experiments were conducted using a harbor with a 60 opening. The 

theoretical distribution of wave amplitude within the harbor i s  com- 

pared to the results of these experiments in Figs. 6. 14 through 6. 17. 

Fig. 6. 14 shows the wave amplitude distribution along r = 0. 7 f t  

0 and r = 0.2  f t  at ka = 0. 540 for thc harbor with a 60 ' opening. This 

value of ka i s  approximately the same as that which corresponds to the 

f i rs t  maximum in the response curves presented in  Figs. 6 .6  and 6.7.  



ka = 3.891 h= 1.0 ft. - Arbitrary Shaped Harbor Theory 
---- Circular Harbor Thaory 
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Fig. 6. 12 Wave amplitude distribution along six fixed angular 

positionsinside the circular harbor with a lo0 

opening for ka=3.89 1 
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Fig.  5. 13 Wave amplitude distribution inside the circular 

ha rbor  with a l o 0  opening f o r  ka=3.89 1 
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Fig. 6. 14 Wave amplitude distribution inside the circular 

harbor  with a 60' opening fo r  ka=O. 540 



The wave amplitude i s  normalized with respect to the wave amplitude 

a t  the position: r = 0. 7 ft, 8 = 1 8 0 ~ .  Note that the theoretical curve 

a t  r = 0 .7  ft computed using the arbi t rary shaped harbor theory covers 

0 
only the region 30° 5 8 5 180 . The experimental data obtained along 

the circular path r = 0. 7 ft for the region 8 < 30° a r e  in fact outside 

Region I1 as defined in the arbitrary shaped harbor theory (see Fig. 

3. 1). Therefore, it i s  unrealistic to compare these experiments to 

this theory for 9 < 30° and r = 0.7 ft. However, in the theory for the 

circular harbor i t  was assumed that the a r c  was approximately equal 

to the chord a t  the harbor entrance, implying that the region along 

r = 0. 7 f t  for 8 < 30' i s  also contained in Region 11. Therefore, only 

the theoretical curve computed using the circular harbor theory i s  

presented for comparison with the experiments in  this region. It 

can be seen that the wave amplitude i s  relatively constant along these 

circular paths except in the region near the harbor entrance and that 

+he theoretiral r e s d t s  agreewellwith the experimentaldata. As 

expected, there i s  some disagreement between the experimental data 

and the circular harbor theory in the region near entrance ( 0  < 30° and 

r = 0. 7 ft). 

Similar results a r e  presented in Fig. 6. 15 for a value of ka 

equal to 2.  153. This value of ka i s  the same as for the second maximum 

in  the response curves presented in Figs. 6 .6  and 6.7. It can be seen 

that the general shape of the water surface (wave amplitude distribution) 

i s  similar to the one shown in Fig. 6 .9  for the case of a 10' opening. 



43 (Degrees 1 
Fig. 6 .  15 Wave  amplitude distribution inside the circular  

harbor with a 60' opening for ka=2. 153 



For this case the intersections of the nodal line with the chosen 

circular paths occur at a larger  value of 8 : 10.5~  for r = 0.7 ft and 

116' for r = 0.2 ft. This indicates that the nodal line for this mode 

of oscillation i s  located closer to the back wall region than for the 

0 
case of a 10 opening. 

Theoretical and experimental results  a r e  presented in Fig. 6. 16 

for kaZ3.38, which corresponds to the value of ka  at the third 

maximum in  the response curve of Fig. 6.7. The wave amplitude has 

been normalized with respect to the wave amplitude at the position of 

r = O .  7 ft, 8 = loo0, where the amplitude at that location was the maxi- 

mum of those measured. The shape of the water surface for the 

harbor with a lo0  opening which corresponds to this mode of oscillation 

has been shown in  Fig. 6. 10. By comparing Fig. 6. 16 with Fig. 6. 10 

certain similarities and differences between the shape of water surface 

for the two different openings readily can be seen: the general shape 

of the wave amplitude distribution i s  similar. However, the inter- 

sections of nodal lines with the circular path r = 0. 7 ft occur at a 

larger value of 8 (8 = 54' and 145O) for the harbor with a 60° opening 

and for this case the nodal line does not intersect the circular path 

for r = 0.2 ft. It i s  seen that the theories agree well with the experi- 

~ n e r & i . l  d a t a  throughout. 

Fig. 6. 17 shows the results at a value of ka = 3.953; this 

corresponds to the value of ka for the fourth maximum in the response 

curves shown in Fig. 6.7. The wave amplitude shown in 
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---- Circular Harbor Theory 

o Experiment (oO< @:180°) 
o=0,75ft, a Exp@rimenf(180~~8c360)  

6' (Degrees) 

Fig. 6. 16 Wave amplitude distribution inside the circular 

harbor with a 60' opening for ka=3.38 
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Fig. 6. 17 Wave amplitude distribution inside the circular 
0 harbor with a 60 opening for ka=3.953 
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Fig. 6. 17 has been normalized with respect to the wave amplitude 

at the center of the harbor, Ac. It i s  seen that the agreement i s  

somewhat poorer between the two theories. To understand this, 

recall  that in the fourth peak of the response curve shown in Fig. 6.7, 

some disagreement i s  evident between the theories, and the value 

of ka at resonance predicted by the two theories also differs slightly. 

Hence one would expect that for the same value of ka the two theories 

could predict slightly different shapes for the amplitude distribution. 

By comparing Fig. 6. 17 with Fig. 6. 13 an obvious difference between 

the two can be seen: a t  r = 0.7 f t  in Fig. 6. 17 there i s  a limited 

region, i. e. loo0 < e < 130° in  which a different wave phase is  seen. 

In Subsections 6.2.2 and 6. 2 . 3  the agreement between the theo- 

retical results and the experimental data has been shown. The most 

questionable element in the circular harbor theory (see Section 4. 1) 

i s  the small entrance approximation where the a r c  and chord at  the 

harbor cntrancc arc considcrcd to bc identical. It i s  not surpriaing 

that this approximation should apply well for the case of a 10' 

opening; however, the results have shown that this approximation 

still  applies well for the case of a 60° opening. Thus, i t  appears 

that the small entrance approximation can be applied at least up to 

0 a 60 opening. The good agreement between the two theories as well 

as  between the experimental data and these theories shown in these 

two subsections confirms the applicability of the arbitrary shaped 

harbor theory to the f i r s t  extreme case: a curved boundary with a 
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continuously varying tangent. The application of the arbi t rary  shaped 

harbor theory fo r  the second extreme case,  a harbor composed of 

straight -lined boundaries will be presented and discussed in  

Section 6.3. 

6.2.4 Variation of Wave Amplitude Inside the Harbor for the 

Modes of Resonant Oscillation 

As mentioned in  Subsection 6.2.2, there a r e  four distinct 

modes of oscillation shown in  the response curves for the circular  

harbor with a lo0  opening as  well a s  60' opening within the range of 

ka that has been investigated. In Subsection 6.2.3 wave amplitude 

distributions along two circular  paths inside the harbor for various 

modes of oscillation have been described in  order  to compare the 

theories to the experimental data. However, the complete shape of 

the water surface inside the harbor for  various resonant modes has 

not been presented yet. In order  to understand more  fully the shape 

of the modes of resonant oscillation for circular basins and how they 

change with changes in  the width of the entrance, for each resonant 

mode described by the response curves of Figs. 6 .4  through 6.7, a 

figure will be presented showing the contour lines of the f ree  surface 

(lines of constant water surface elevation) along with photographs fo r  

thcsc modes.  

It i s  of interest  to compare the shape of water surface for each 

mode of oscillation for the closed circular  basin with the cor res  - 

ponding modes for a circular  harbor with a lo0 opening and with a 
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60' opening. This comparison will indicate the effect of the size of 

the harbor opening on the variation of the wave amplitude inside the 

harbor. 

The wave oscillation in a closed basin i s  usually referred to as  

the f ree  oscillation in a basin. Suppose the wave function in a closed 

circular basin of constant depth i s  f (r ,  8), which satisfies the Helm- 

holtz equation, Eq. 4. 1, and also satisfies the condition that fluid does 

a not penetrate the boundary of the harbor, i. e. -f (a, 8) = 0, where a r  

a i s  the radius of the harbor. As was discussed in Chapter 4, a 

solution of the wave function f ( r ,  8 )  can be expressed as: 

f (r ,  0 )  = Jm(kr)  cos m8 , 

where m i s  zero or a positive integer. 

The boundary condition and Eq. 6. 3 indicate that the following condition 

must be satisfied: 

This condition requires that in order to get a nontrivial solution for the 

wave function f ( r ,  9), the values of ka must be restricted to those which 

satisfy Eq. 6 .  4; these roots are often referred to as the eigenval~ies. 

The values of ka which satisfy Eq. 6.4 have been tabulated, e. g. see 

Morse and Feshback (1953), and several of these eigenvalues are: 

m=O, ka = 3.83, 7.02, . . . . 
m = l ,  ka  = 1.84, 5.33, . . . . 
m=2, ks = 3.05, 6 . 7 0 ,  . . . . 
m=3, ka = 4.20, 8.02,  . . . . 



The value of ka for the free modes of oscillation that will be 

used to compare with the wave induced oscillations in the circular 

harbors are: ka = 1.84, 3.  05, 3 . 8 3 .  Thus, the wave functions which 

correspond to these values of ka a re  as follows: 

f ( r ,  8 )  = Jo (5. 1 l r )  (for m=O, ka = 3 . 8 3 )  

f ( r , 8 ) =  J1(2.45r)cos 0 ( f o r m = l ,  k a =  1.84) (6 .6 )  

f ( r ,  8 )  = J, (4.065r) cos 20 (for m=2, ka = 3. 05) 

In deriving these, the value of "a" is  taken as 0. 75 ft, the radius of 

the circular harbor (lo0 opening and 60° opening) that was investigated 

experimentally. As shown in Eq. 3.6, the value of the wave function, 

f ,  i s  proportional to the wave amplitude; thus, for the closed basin 

A the relative water surface elevation, - , can be obtained by eval- 

uating f from Eq. 6. 6 and normalizing with respect to i ts  maximum 

value. 

Contour lines for these three modes of oscillation at  the time of 

maximum water surface displacement are shown in Figs. 6. 18 a, b, c. 

The contour lines result from the intersection of a horizontal plane 

with the disturbed free surface; the value of each line i s  the ratio of 

the water surface displacement at  that location normalized with respect 

to the maximum displacement in the basin. The positive water surface 

elevations are represented by solid lines, while the negative water 

surface elevations a re  described by shown dashed lines. 
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The contour drawing of Fig. 6. 18 a shows a nodal circle located 

at  the position of r /a = 0. 628; i n  this mode of oscillation the contour 

lines a r e  a ser ies  of concentric circles, so that the wave amplitude 

(or water surface elevation) does not vary with respect to 8. Fig. 

6. 18 b shows a nodal diameter at the position 9 = 90° which divides 

the basin into two regions of opposite wave phases; this i s  usually 

referred to as the "sloshing mode". The contour drawing of Fig. 

6. 18 c shows two nodal diameters at the positions 0 = 45O and 1 3 5 ~ ;  

the basin i s  divided into four regions with each quarter 180° out of 

phase with i ts  neighbor. 

It should be noted that if  the basin i s  no longer completely 

closed, however small  the opening may be, the solution of the wave 

function i(r, 8) i s  no longer limited to the eigenvalues described 

by Eqs. 6.5. As discussed in  Chapter 4, the solution of the wave 

function f ( r ,  8 )  inside the harbor i s  continuously dependent upon the 

wave number k (or the incident wave period). The response curves 

presented in Subsection 6.2. 2 show that resonant oscillations may 

occur for particular wave numbers producing a large amplification 

of the wave amplitude inside the harbor. Modes of resonant oscill- 

ation will be described in the following discussions with corresponding 

0 0 
modes fnr the case of  the 10 opening and the 60 opening discussed 

together. Therefore, the similarities and differences between the 

shape of the f ree  surface for the two harbors readily can be seen. 
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A contour drawing and two photographs showing the water surface 

for the circular harbor with a lo0 opening a re  presented in Fig. 6. 19 

for a value of ka = 0.35. This value of ka corresponds to the fir  s t  

maximum in  the response curves presented in Figs. 6.4 and 6.5. The 

value of the wave amplitude within the harbor presented in this contour 

drawing (or in any other contour drawing that will be presented in this 

subsection) i s  calculated from the circular harbor theory developed in 

Section 4. 1. As mentioned earlier ,  the value of each contour line 

represents the water surface elevation normalized with respect to the 

maximum elevation within the harbor; for this mode of oscillation 

this maximum wave amplitude i s  located at the boundary of the harbor 

(r = 0. 75 ft) at  0 = 180°. It should be noted that all the contour lines 

a r e  perpendicular to the solid boundary corresponding to the boundary 

condition that no fluid penetrates a solid boundary. By observing this 

contour drawing it i s  obvious that the wave amplitude i s  fairly uniform 

throughout the harbor, and that either positive or negative water dis - 

placements occur simultaneously within the harbor. Thus, this mode 

of oscillation can be called the "pumping mode"; there i s  no "pumping 

mode" in the case of the f ree  oscillation in a closed circular basin 

because i t  i s  impossible to satisfy conservation of mass. The two 

~hotographs provided in Fig. 6.  19 show thc case of a positive water 

surface displacement, i. e. above the still  water surface. Photographs 

generally show only displacement along the boundary of the harbor, 

not the variation of the water surface in the interior of the harbor. 
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In the photographs , positive water surface displacement appears as 

dark stripes along the boundary of the harbor. Some indication of the 

interior oscillation i s  provided by shadows on the bottom seen in 

subsequent photographs; for this mode of oscillation the water surface 

elevation i s  evidently so smooth that no such shadow appears in the 

bottom. 

For reasons of convenience, the pumping mode will be named 

Mode No. 1 ,  and other resonant modes which occur at larger values 

of ka will then be named Modes No. 2,  No. 3,  etc. These modes of 

oscillation will be discussed later in this section. 

A similar figure for Mode No. 1 (the "pumping mode") for the 

0 
harbor with a 60 opening i s  presented in Fig. 6. 20. This mode of 

oscillation occurs at ka = 0.46, which i s  the value of ka at the f i r s t  

maximum in  the response curves presented in Figs. 6.6 and 6.7. As 

can be seen from the contour drawing the water surface elevation i s  

fairly constant throughout the harbor and in the phase throughout. The 

shapes of the water surface shown in Figs. 6. 19 and 6.20 a re  similar; 

0 
however, for the case of a 60 opening the variation i s  larger than for 

0 
the harbor with a 10 opening 

The shape of Mode No. 2 ("sloshing mode") for the case of a 

0 10 opening i s  presented in  Fig. 6.21. This mode of oscillation, 

which corresponds to the second maximum in the response curves 

of Figs. 6.4 and 6.5 occurs at a value of ka = 1. 99. The contour 

drawing shows a nodal line located near z diameter of the harbor at 



Fig. 6.20 Contour drawing and photographs showing the  water  su r f  ace for tke circular harbor  with 
0 

a 60 opening, Mode No. 1, ka=0.46 
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0 
6 = 90 . As before, the lines of constant positive water surface 

elevation a r e  represented by solid lines, while the surf ace contours 

below the still  water level a r e  shown dashed. The 4x0 photographs 

provided a r e  for  opposite phase: when the water surface displacement 

i s  near a maximum or  a minimum. The upper photograph in Fig. 6.2 1 

shows a positive water surf ace displacement approximately in the 

0 
region 90 < 6 < 180°. The lower photograph shows a negative water 

surf ace displacement in this same region. In the photographs positive 

water surface displacements appear as  a dark str ipe along the boundary 

of the harbor; however, negative water surface displacements a r e  not 

easily seen. The shadows which appear on the bottom of the harbor 

a r e  caused by a ser ies  of short wave length ripples on the water 

surface; however, because their amplitude i s  small compared with 

the main water surface displacement, they a r e  not easily detected by 

measurement except near the nodes. For different modes of 

oscillation, the pattern of the shadows change; this will be more 

evident when other modes of oscillation a re  discussed. 

A similar mode of oscillation i s  presented in Fig. 6. 22 for the 

0 circular harbor with a 60 opening. For this opening, this mode of 

oscillation occurs at a value of k a  = 2. 15 which corresponds to the 

second peak in the response curve of Figs. 6.6 and 6.7. For the l o 0  

opening this mode occurs at  ka = 1. 99, and for the completely closed 

basin i t  occurs at  ka = 1. 84. Therefore, the trend i s  for t he  wave 

number at  resonance to decrease as  the entrance width decreases, 
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approaching the value of k for that mode for the closed basin. The 

upper photograph in Fig. 6.22 shows a positive water surface dis- 

placement in the region opposite the harbor entrance (approximately 

100' < 0 < 180°) and the lower photograph, shows a negative water 

surface in this region. 

It i s  of interest  to compare the contour drawings of Figs. 6.2 1 

and 6.22 with the one shown in  Fig. 6. 18 b for the case of a closed 

circular basin where the three figures represent the same mode of 

oscillation: the "sloshing mode". A direct comparison of Figs. 6. 18 b 

6.2 1, and 6.22 reveals changes in the water surface shape as  the width 

of the harbor opening increases. In the case of a closed basin (Fig. 
0 6. 18 b)  the nodal line i s  a diameter at 0 = 90°, for a 10 opening 

(Fig. 6.21) the nodal line occurs at  a position slightly off the center 

and closer to the region of the back wall; for the case of 60° opening 

(Fig. 6.22) the nodal line occurs at a position further off the center 

towards the back wall. Specifically, the relative wave amplitude at 

the center of the harbor is:  A/Ama 0 = -0.08 for 10 opening, 

= -0. 18 for 60° opening. The wave amplitude at  the harbor 

entrance changes significantly for the three cases: for the closed 

basin, (Fig. 6. 18 b) a maximum amplitude (antinode) occurs at the 

boundary at  8 = oO; however, this antinode does not exist for the 

0 0 case of a 10 opening or  a 60 opening. This disappearance of the 

antinode at  the entrance when the harbor i s  no longer completely 

closed contradicts the assumption made by McNown ( 1952) in his 



- 163- 

solution of oscillations in circular  harbors.  (His as  sumption i s  that 

an antinode exists  at  the harbor  entrance fo r  smal l  openings. ) 

In Fig.  6.23, a contour drawing and two photographs for  Mode 

0 No. 3 a r e  presented for  the case  of a 10 opening. This mode of 

oscillation, which corresponds to the third peak in the response 

curves shown in Figs. 6.4 and 6.5, occurs at k a  = 3.  18. In the 

contour drawing, there  a r e  two nodal lines; maximum wave amplitude 

0 occurs a t  the boundary at  0 = 95 and i t s  symmetrical  counterpart i s  

0 
at  8 = 265O. (The wave pattern i s  symmetr ic  with respect  to 8 = 0 . ) 
The two photographs shown differ 180° in phase. The upper photo- 

graph of Fig. 6.23 shows an  oscillation with the same phase a s  the 

contour drawing; thus, a positive water  surface displacement i s  shown 

i n  the photograph approximately in the -region 50° < 8 < 140°. The 

lower photograph of Fig. 6.23 shows a negative water  surface dis-  

placement in the same region. It i s  seen that the shadows on the 

bottom for  this mode of oscillation are quite different  from t h o s e  shown 

in  Figs. 6.2 1 and 6.22, and hence they must  be related to the mode of 

oscillation. 

A similar mode of oscillation for  the case  of a 60° opening is  

presented i n  Fig. 6.24. This made occurs at k a  = 3.38 and co r r e s -  

ponds to the t h i r d  peak in  t h e  response curve of Fig.  6.  7. Two nodal 

lines a r e  seen in  the contour drawing; the maximum wave amplitude 

occurs a t  the boundary a t  8 = 100O (and 2 6 0 ~ ) .  The upper photograph 

in Fig. 6.24 shows a wave motion i n  phase with that shown in  the 







- 166- 

contour drawing; thus the positive water surface displacement along 

the boundary i s  seen in the dark stripe in the region 55' < 8 < 145'. 

The lower photograph shows the moti.ion about 180° out of phase with 

that on the upper photograph. The shadows on the bottom as  seen in 

the photographs a r e  similar to those shown in Fig. 6.23; however, 

they a r e  certainly different f rom those shown in Figs. 6.2 1 and 6.22 

for Mode No. 2. 

For the case of a closed basin (Fig. 6. 18 c) ,  the position of the 

maximum amplitude occurs at four points on the boundary of the basin 

8 = oO, 90°, 180°, and 270°, and the two nodal diameters ( 8  = 45O 

and 135") a re  perpendicular to each other. For the case of a 10' 

opening (Fig. 6.23) the two nodal lines a re  shifted slightly and no 

longer intersect, whereas for the harbor with a 60O opening (Fig. 

6.24) the two nodal lines a re  shifted even further apart. The wave 

arnplitudes at the center have also changed considerably a s  the 

cntrancc width incressesr zero for the case of s closed basin, 

0 

A'Amax = -0. 125 for  the case of a 10 opening, and A/Amax = -0.44 

for the harbor with a 60° opening. As mentioned earlier ,  the wave 

amplitudes at the harbor entrance also change with changes in the size 

of the opening: for the case of a closed basin (Fig. 6. 18 c)  a maximum 

wave amplitude (antinode) exists at the boundary at 9 = oO; however, 

0 
for the case of a 10 opening or  a 60' opening an antinode does not 

exist at the entrance. It should be noted that as  the wave parameter 

ka  increases, the ratio of the harbor radius to the wave length a /L  



also increases; thus, i t  i s  expected that the effect of the size of the 

entrance on the resonant mode of oscillation becomes more significant 

with increasing ka. 

A contour drawing and two photographs a r e  presented in Fig. 

6.25 for  the harbor with a 10' opening. This mode of oscillation 

(ka = 3.87) i s  termed Mode No. 4 and corresponds to the fourth maxi- 

mum i n  the response curves shown in Figs. 6.4 and 6.5. From the 

contour drawing i t  i s  seen that the maximum wave amplitude i s  at the 

center of the harbor and the nodal line is a closed curve. The water 

surface displacement shown by the upper photograph of Fig. 6.25 i s  

in opposite phase to what i s  shown in the contour drawing, however 

the photograph at  the bottom of Fig. 6.25 i s  approximately in the same 

phase as the drawing. Although from the photographs i t  i s  difiicult 

to see  the variation of wave amplitude at the interior of the harbor, 

the variation around the boundary of the harbor can be seen from the 

dark stripe in the upper photograph. The variation in the thickness 

of the dark stripe appears to correspond to the amplitude variation 

shown in the contour drawing. The shadows on the bottom a re  nearly 

circular in the region near the center of the harbor, quite different 

f rom the shadows shown for Mode No. 2 (Figs. 6.21 and 6.22)  and 

Mnde Nn. 3 (Figs. 6.23 and 6.24). 

A contour drawing with two photographs for a similar mode of 

0 
oscillation for the case of 60 opening i s  presented in Fig. 6.26. This 

mode of oscillation occurs at  a value of ka = 3.96 which i s  corres  - 







pollding to the fourth peak i r r  the r espunse curves shown in Fig.  6. 7. 

It i s  seen from the contour drawing that the maximum wave amplitude 

i s  again located at the center of the harbor. The nodal line i s  no 

longer a closed curve as for the case of a 10' opening but in this case 

it interesects the boundary of the harbor. As in Fig. 6.25, the upper 

and lower photographs in Fig. 6.26 a re  approximately 180° out of 

phase. The variation of the water surface elevation around the 

boundary again can be seen from the dark stripe in the upper photo- 

graph; i t  shows a variation along the boundary similar to that shown 

in the contour drawing, but with opposite phase. 

It i s  interesting to compare the contour drawings of Figs. 6.25 

and 6.26 and 6. 18 a: for the case of closed basin the contour lines a re  

a series of concentric circles and the nodal line i s  represented by a 

0 nodal circle (Fig. 6. 18 a); however, for the case of a 10 opening 

(Fig. 6.25) the contour lines a re  no longer represented by a series 

of circles, although in the region near the center of the harbor they 

are  in fact close to circular. As the harbor opening increases to 

60° (Fig. 6.26) a significant change in the contour lines can be 

observed: the nodal line i s  no longer a continuous closed line as in 

0 
the case of a 10 opening, or a circle as in Fig. 6. 18 a; instead i t  

intersects the boundary of the harbor, and even contours near the 

center of the harbor a re  no longer circular in form. However, the 

center of the harbor still remains the position of the maximum wave 

amplitude. 
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The results presented in this subsection showed the wave 

amplitude distribution for four modes of resonant oscillation in the 

0 0 
range of ka investigated for both the cases of a 10 and a 60 opening. 

Except for Mode No. 1 (the "pumping mode") which does not exist in 

a completely closed circular basin, each mode corresponds to a free 

mode of oscillation in the closed basin. The results in this subsection 

can be summarized as: 

(1) The corresponding modes uf oscillation for the c a s e  of a 

lo0 opening and a 60° opening are  basically similar, 

however, the detailed shape of the free surface is different. 

(2) The value of ka at which a particular mode of oscillation 

0 
occurs in the harbor with a 60 opening i s  larger than the 

value of ka for the corresponding mode .hr the case of a 10" 

opening which itself i s  larger than the value of ka for the ' 

corresponding mode in a closed basin. Hence the tendency 

i s  for the wave number parameter (ka) at resonance to 

approach the value for a closed basin as the entrance width 

decreases. 

( 3 )  No antinode exists at the harbor entrance although an anti- 

node might occur at that position in a closed circular basin. 

(4) The e f f e c t  nf the  width  of harhnr entrance  nn the shape o f  

water surface elevation inside the harbor i s  more pronounced 

for those modes of oscillation at higher frequencies, 

i. e. larger values of ka. 
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6.2. 5 Total Velocity at the Entrance of the Circular Harbor 

6.2.5. 1 Introduction 

In Subsection 3.2.4 the method for analytically evaluating 

the velocity at the harbor entrance was discussed. The velocity at the 

harbor entrance i s  of interest because i t  i s  directly related to the 

kinetic energy transmitted into the harbor. For the present study, the 

value of the wave function, f,, i ts  normal derivative, E2 as well as 
ay ' 

the derivative e, evaluated at the harbor entrance are  determined 

during the process of computing the response curves for various values 

of the wave number parameter, ka. Hence, the theoretical value of 

the total velocity at the harbor entrance can be obtained readily from 

Eq. 3.41. 

As mentioned in Section 5.5, the velocity was measured at the 

entrance of the circular harbors fivith a lo0 opening and a 60° opening) 

using a hot-film anemometer with a linearizing circuit. In steady flow, 

either in air or in water, the output from a hot-film anemometer gener- 

ally has been found to follow King's Law (Eq. 5.2). Thus, after em- 

ploying the linearization procedure described in  Section 5.5 the voltage 

i s  directly proportional to the velocity as reported by Townes ( 1965), 

Raichlen (1967) and Lee (1967). However, at the time of the present 

experiments the use of hot-film anemometers in oscillatory flows had 

not been reported in the literature. Considering the relation of these 

velocity measurements to the major objectives of the experimental 

program, a basic assumption was made in reducing these experimental 
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data: King's Law was assumed to apply equally well for oscillatory 

flows; thus, after using the l inearizer the output signal was assumed 

to be linearly proportional to the fluid velocity. Therefore, the ratio 

of two output voltages f rom the l inearizer was considered to be equal 

to the ratio of the two corresponding velocities. 

Recently, Das (1968) used a single hot-film sensor in water to 

measure  turbulence in  an oscillatory flow. The results  showed that 

with one of the hot-film sensors which was used ,  the relation between 

the voltage output and the fluid velocity was: E~ v ~ ' ~ ~  (wherein E 

i s  the hot-film anemometer output voltage and V i s  the resultant fluid 

velocity in  a direction perpendicular to the axis of the hot-film sensor) ,  

while another sensor behaved as: E~ v O *  45 . The lat ter  relation 

i s  close to King's Law ( E ~  - V* ' ) whereas the former i s  quite 

different. 

A typical output f rom the linearizing circuits as recorded on the 

Sanborn recordcr (dcocribcd i n  Scction 5. 4 )  i~ p r c ~ c n t c d  i n  Fig. 6 .27 

(Column C). This velocity measurement was made at the center of the 

entrance of the harbor with a 10" opening with a wave period of 0. 684 

sec. The record corresponds to the velocity at three depthwise 

locations: z = -0. 10 ft, -0. 15 ft, and -0.25 ft. As expected, the 

velocity decreases as the distance between the hot-film sensor and 

the water surface increases. In Fig. 6.27 also the wave amplitude 

0 
i s  shown at two positions inside the harbor, i. e. r = 0.2 ft, R = 35 , 

and r = 0. 7 ft,  0 = 215'. It i s  seen that the waves in these two 



Fig. 6.27 Typical record of thewave amplitude and of the 

velocity after using the linearizing circuit 



0 positions a r e  180 out of phase (this was also shown in the contour 

drawing of Fig. 6.2 1 evaluated for the same wave number). F rom Fig. 

6. 27, it i s  seen that within one wave period, the velocity reaches i t s  

maximum value twice, since in a periodically oscillating flow the 

hot-film sensor cannot differentiate the direction of the velocity. 

In determing the velocity f rom such records  the peak value of the 

output signal f rom the linearizing circuit a s  recorded was averaged. 

This average value, using the notation of Section 5. 5, i s  denoted as  S,. 

If this value, S, , is truly linearly proportional to the fluid velocity, 

then f r o m  Eq. 5 . 5  it i s  equal to avV. Therefore, assuming this 

proportionality to be true,  the relative velocity at  any two positions 

can be obtained f rom the ratio of the corresponding values of S, with- 

out prior  evaluation of a f rom calibration. (This assumption was v 

used to determine the relative velocities that will be presented in  the 

following subsections even though there i s  some conflict with the 

results of Das,  1968. ) 

6. 2. 5.2 Velocity distribution in  a depthwise direction 

The vertical distribution of the velocity a t  the entrance 

of the harbor with a lo0  opening, averaged ac ross  the entrance, i s  p re-  

sented in Fig. 6.28 for  three different values of the wave number 

parameter,  ka, ( three wave periods): ka  = 0.482, 1.988, 3.922. 'l'he 

ordinate of Fig. 6.28 is the relative depthwise position, z/h, (where 

z /h  = 0 re fe r s  to the st i l l  water surface) and the abscissa i s  the 

relative velocity normalized with respect  to the velocity measured 
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nearest  the water surface (z ld  = -0.03). The theoretical velocity 

distribution was calculated using Eq. 3.42 (since the hot-film sensor 

i s  primarily sensitive to the v and w velocity components); the value 

of f, and i?f at the entrance were obtained from the arbitrary shaped 
ay 

harbor theory. In these experiments, measurements of velocity were 

made at  five lateral  locations across the harbor entrance for each 

vertical position ( z  Ih) and each experimental point shown in Fig. 6.28 

is thcrcforc the average of the results at these lateral  locations. 

(The locations will be described fully in Subsection 6.2.5.3. ) 

According to the conventional method of clas sifying water waves, 

the distribution curve for ka = 0.482 in Fig. 6.28 i s  similar to the 

typical vertical distribution of fluid particle velocities for shallow 

water waves. (For the present experiments, as mentioned in Sub- 

section 6.2.2, shallow water waves occur in the region 0 < ka < 0.236, 

intermediate waves in the region 0.236 < ka  < 2.36, and deep water 

waves in the region ka > 2. 36. ) The distribution curve for ka = 1. 988 

belongs to intermediate wave category and the curve for ka  = 3.922 

corresponds to deep water waves in  which the velocity decreases 

rapidly as the distance from the water surface increases. It i s  seen 

that the experimental data for ka = 0.482 (wave period T = 1. 838 sec) 

and ka = 1.988 ( T  = 0.685 sec) agree well with the theoretical curves; 

however, the experimental data for ka = 3.922 (T  = 0.485 sec) differ 

considerably from theory. This may indicate that the assumption of 

linearity between the fluid velocity and the output voltage from the 
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linearizer i s  reasonable for ka = 0.482 and 1.988 but not for ka = 3. 922, 

where the wave frequency i s  larger. In the following, some of the 

weakness in the experimental procedure and the method of data 

reduction will be discussed. 

From Eq. 3.42, it i s  seen that the total velocity at the harbor 

entrance i s  proportional to the incident wave amplitude A;, and 

inversely proportional to the wave frequency u. In the experiments, 

for the same stroke of the wave machine, the standing wave amplitude 

at the harbor entrance (with the entrance closed) for ka = 3.922 was 

approximately one-half of that for ka = 1. 988 because the wave filter 

i s  more efficient at higher frequencies ; without the filter wavemaker 

theory implies the reverse. Therefore, experimentally the velocity 

at the entrance for ka = 3. 922 was small compared to the velocity for 

ka = 1.988. Specifically for the hot-film sensor placed at the center 

of the entrance at  the position z/h = -0.03, for k a =  1.988 ( T =  0.685 

sec) the output voltage from the linearizer was 28.5 volts; however, 

for ka = 3.922 (T  = 0.485 sec),  the output voltage was only 2.66 volts, 

at  this location. As the sensor was moved to the position z/h = -0.25 

the recorded output voltage was less  than 0.3 volts for k a =  3.922. It 

i s  felt that the disagreement between the experimental and theoretical 

results for ka = 3.922 as shown in Fig. 6.28 could be due to experi - 

mental e r ro r  in measuring the small varltage or  velocity. 



6 . 2 . 5 . 3  Velocity distribution across the harbor 

entrance 

The velocity distribution across the entrance of the 

0 
circular harbor with a 10 opening i s  presented in Fig. 6.29 for 

k a =  0.482, 1.988, and 3. 922. The abscissa i s  the relative lateral  

d d 
position, x / ~  (where d is the width of the harbor entrance; x / ~  = 0 

refers  to the center of the entrance, and x/$ = f 1 refers  to the 

la teral  limits of the entrance). The upper portion of Fig. 6.29 shows 

the velocity distribution normalized with respect to the average 

velocity across the entrance while in lower portion of the figure the 

velocities a re  normalized with respect to the velocity at the center. 

The theoretical curves shown a re  obtained from the arbitrary shaped 

harbor theory (Eq. 3.42), where the entrance was divided into five 

0 
equal segments with each segment having a central angle of 2 and 

the boundary was divided into 35 equal segments. The wave function 

af, f2 and i ts  normal derivative - at the mid-point of each segment at 
ay 

the entrance were obtained by the matching procedure (Subsection 

ar2 3 . 2 . 3 ) .  With these values of f2 and - , the velocity V at  the mid- 
ay 0 

point of each entrance segment was calculated from Eq. 3.42 for a 

particular vertical position z. The average velocity across the 

entrance, denoted as (Vo)ave, was obtained by computing the arilh- 

metic average of the velocities Vo at a particular elevation for the 

five segments. In Fig. 6.29 the normalized theoretical velocities so 

computed a re  denoted by "plus signs" and a solid line fitted through 



a=O.75 f l .  h=l.Ofi .  
- +- Arbitrary Shaped Harbor Theory 

0 Experiment W h = - 0 . 0 3 1  Experiment (z/hS-0.10) 
a Experiment ( z / h = - 0 . 0 7 )  '81 Experiment (z/h= -0.15) 

Fig. 6.29 Velocity distribution across the entrance of the  circular harbor with a lo0 

opening 



these values i s  drawn for reference. For a specific value of ka, the 

velocity Vo i s  a function of vertical position z (see Eq. 3.42); however, 

in the range 0 > z / h  > -0. 15 corresponding to the experimental data 

shown, the relative velocity Vo/(V ) at the entrance i s  essentially o ave 

independent of z. Therefore, in Fig. 6.29 only one theoretical curve 

i s  presented for each value of ka. 

Experimental measurements were conducted by placing the hot- 

film sensor parallel to "the coastline" and the bottom at five lateral 

d positions: x / ~  = 0, -0. 32, -0.64, 0.32, 0.64. In the upper portion 

of Fig. 6 .29 ,  these experimental data a re  shown in terms of 

v0/(V ) for each lateral position at : z/h = -0.03, -0. 07, -0. 10, 
o ave 

and -0. 15. Comparing the theoretical and experimental results, the 

experimental data a re  generally larger than the theoretical values, 

although they qualitatively follow the trend predicted by the theory, 

i. e. the velocity increases toward the two limits of the entrance. It 

i s  felt that in part the reason for the disagreement could be caused by 

underestimating the experimental value of (V ) o ave* Due to the 

relatively large value of the ratio of the length of the hot-film sensor 

to the width of the harbor entrance, measurements could not be made 

close to the edges of the entrance where the velocities were large. 

Thus, the average value of the data at the five locations i s  probably 

smaller than the true average velocity. In order to reduce the influ- 

ence of the experimentally determined average velocity and to more 

positively confirm the theoretical velocity distribution across the 



entrance, the same data were normalized with respect to the velocity 

at the center of the harbor entrance, (Volt. These results a r e  pre-  

sented i n  Lhe lower portion of Fig. 6 .29  with the theoretical curves 

shown fo r  comparison. It i s  seen that the experimental data quali- 

tatively agree with the theory; the major disagreement again i s  for the 

case of ka = 3. 922 (T  = 0.485 sec)  where one possible reason for this 

has been discussed in Subsection 6.2.5.2. From Fig. 6.29 i t  i s  seen 

that for the case of a lo0 opening the velocity distributions for these 

three values of ka a r e  similar in that the velocity increases toward 

the entrance limits. 

0 Similar results  for the harbor with a 60 opening a re  presented 

in  Fig. 6.30 for  four values of ka, i. e. k a =  0.64, 2.22, 3. 30, and 

4. 0 1. In obtaining the theoretical curves the arbitrary shaped harbor 

theory and Eq. 3.42 were used again with the harbor entrance divided 

0 into six equal segments (each segment having a 10 central angle) and 

the h n l ~ n d a r ~  divided into 31) eqwal segments.  As before,  in Fig. 6 .  3 0  

for each value of ka presented, a curve i s  drawn through the theoreti- 

cally computed values of v ~ / ( v ~ ) ~ ~ ~  which have been plotted at the 

mid-point of each segment. The theoretical curve for ka = 0 .64  can 

be considered as representing the velocity distribution corresponding 

to M o d e  No. 1 (fhe m o d e " ) .  (For a d e s c r i p t i o n  o f  the shape 

of this resonant mode of oscillation the reader i s  referred to Sub- 

section 6. 2.4. ). The velocity distribution for Mode No. 2 ( the 

"sloshing mode") i s  represented by the curve for ka=2. 22, while 



0 Exper~men: (z/h=-0.05) 
e Experiment (z/h = -0.15) 

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 81.0-1.0-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 
d 

x / ~  d x / p  

Fig .  6. 30 Velocity distribution across the entrance of the 

circular harbor with a 60' o2ening 
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Modes No. 3 and No. 4 correspond to ka = 3.30 and 4.0 1 respectively. 

It i s  interesting to note that the velocity distribution for the third mode 

(ka= 3.30) i s  strikingly different in appearance than those of the other 

three. 

For the harbor with a 60° opening, the length of the hot-film 

sensor i s  much smaller compared with the width of the entrance than 

0 for the 10 case just discussed; hence, measurements could be made 

relatively closer to the entrance limits. Therefore, i t  is  felt that the 

experimentally determined average across the entrance, (Vo lave' 

i s  reasonably good, and the results a r e  only normalized with 

respect to the average velocity in comparing experiments to theory. 

Experimental data at two vertical positions: z/h = -0.05 and -0. 15 

a re  shown in Fig. 6.30. Considering the assumptions made in the 

data reduction procedure i t  i s  somewhat surprizing that the experi- 

mental data agree as well with the theory as they do. The major 

diaagrecment betwcen experiments and theory again i s  at the largest 

value of ka, i. e. ka = 4.0 1. 

6 .  2. 5.4 Velocity at the harbor entrance as a function 

of wave number parameter, ka 

It i s  possible in determining the response curve for a 

particular harbor that because of the location chosen the anlplificaliun 

factor at that position is  small for all incident wave numbers whereas 

a nearby location has associated with i t  large amplification factors for 

particular wave numbers. Therefore, one response curve alone may 



not always clearly indicate all resonant conditions. A parameter 

which may be used as an indicator of resonance, which i s  independent 

of location, i s  the total velocity at  the harbor entrance. Since this 

velocity i s  associated with the energy input into the harbor, a larger 

velocity at the entrance at one wave number compared to another would 

mean a larger kinetic energy input and resultant larger potential 

energies and hence water surface amplitudes inside the harbor for 

that wave number. Therefore, a curve showing the variation of the 

entrance velocity with the incident wave number parameter, ka, may 

prove to be a useful tool to indicate resonance, In this subsection 

such curves for the case of a circular harbor with a lo0 opening and 

a 60' opening will be presented and discussed. 

As mentioned earlier ,  Eq. 3.41 can be used to calculate the 
4. 

total velocity at the entrance, v:, and if  both sides of Eq. 3.41 a re  

normalized with respect to the maximum horizontal water particle 

velocity for a shallow water wave, one obtains: 

wherein Al , Az , A3 , al , as,  and as a re  defined in Eq. 3 . 4  1. In using 

Eq. 6.7 the value of A, and A3 a t  the harbor entrance are easily 

a f obtained since fz and for each entrance segment a r e  determined 
ay 

f rom the matching procedure. The value of 2 in A, i s  approximated 
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by e, wherein Af, represents the difference in the value of wave 

function f2  of two neighboring entrance segments and Ax represents the 

distance between them. 

Fig. 6. 3 1 shows the variation of the total velocity at the entrance 

of the circular harbor with a l o 0  opening as a function of the wave 

number parameter ka. This curve is  calculated from Eq. 6. 7 for 

z=0 (the water surface) and as before, the water depth,h, i s  1 ft. The 

*i .*. ordinate in Fig. 6. 3 1 i s  (wherein ( ~ i ) ~ ~ ~  represents 
.L 

the average total velocity, v:, across the harbor entrance); the 

abscissa i s  the wave number parameter ka. There a re  four maxima 

in the curve shown in Fig. 6.3 1, the value of ka associated with each 

maximum is :  k a =  0.35, 1.98, 3. 18, and 3.87 and these values 

correspond to those associated with the four modes of resonant 

oscillation predicted by the arbitrary shaped harbor theory and shown 

in the response curves, Figs. 6.4 and 6.5. 

In an attempt to compare the theory with the velocity measure- 

ments using the hot-film anemometer, Eq. 3.42 i s  used for the theo- 

retical calculations. (Since the hot-film sensor in these experiments 

was primarily sensitive to the v and w velocity components, it i s  

unrealistic to compare the experiments with Eq. 6. 7. ) Fig. 6.32 
- - 

shows the variation of Wu),ve/L~~,),v,] as  a function of 
ka = 1.988 

ka; the curve shown as a solid line was evaluated from Eq. 3.42 using 

values of f, and ilfa at the entrance determined by the method discussed 
ay 

in Chapter 3 (arbitrary shaped harbor theory). The velocity ratio 



- Arbitrary Sha~ed Harbor Theory 
(z=O.Off., h=l.Oft.,a=0.75ft.,) 

ko 
Fig. 6. 3 1 Total velocity at the harbor entrance as  a 

function of ka for the ci rcular  harbor with 
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a f computed from Eq. 3.42 using the values of f, and -3 determined 
ay 

by the method of Section 4. 1 (circular harbor theory) i s  shown in 

Fig. 6.32 a s  a dashed curve. In using Eq. 3.42, the value of the 

incident wave amplitude Ai i s  taken as a constant for all values of 

ka. 

Experiments were conducted by placing the hot-film sensor at  

z= -0.03 ft; for each value of ka, measurements were made at five 

d lateral  locations across the entrance ( x / ~ =  0. 0, 0.32, 0.64, -0. 32, 

-0.64). The average of the output voltage from the linearizer at  these 

five locations i s  denoted as  S,. As just mentioned in the theory the 

incident wave amplitude was considered constant for all wave numbers. 

However, in  the experiment i t  i s  impossible to maintain this condition, 

in  fact for the range of ka investigated the wave amplitude varied 

more than a factor of three. Therefore, to compare the experimental 

data to the theory, this effect of the varying incident wave amplitude 

mu st be eliminated. This was accomplished by dividing the voltage, 

S, , by the incident wave amplitude at  that wave number. This ratio 

was then normalized with respect to that at  ka=l. 988 and the resulting 

data a r e  shown in Fig. 6.32. 

In Fig. 6.32 i t  i s  seen that the two theoretical curves agree well 

and the experimental data agree reasonably wcll with thcsc thcories. 

However, at  large values of ka, again, the data and theories show 

poorer agreement. 
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The variation of the velocity at the harbor entrance with ka i s  

presented in Fig. 6.33 for the harbor with a 60° opening. The curve 

i s  again obtained from Eq. 6. 7 evaluated at  the water surface for a 

total depth of 1. 0 ft. It i s  seen that the values of ka for the four 

maxima in Fig. 6 . 3 3  are: ka=O. 50, 2. 18, 3 .38 ,  3. 97. Again, these 

values correspond to those predicted by the arbitrary shaped harbor 

theory. (See the response curves in Figs. 6.6 and 6.7. ) It should be 

noted that the third maximum was not clearly defined in the response 

curve shown in Fig. 6.6 because of the location chosen (it did appear 

at the other location,see Fig. 6. 7); this clearly emphasizes the import- 

ance of the entrance velocity as an indicator of resonance. Comparing 

Fig. 6. 33  with Fig. 6. 3  1, i t  appears that the average velocity across 

the entrance at resonance i s  significantly less  for the case of a 60° 

opening; however, the wave number band-width associated with the 

maxima i s  larger for the 60° case compared to the harbor with a lo0 

opening. This phenomenon is similar to that shown by the response 

curve presented in  Subsection 6 . 2 . 2 .  

For the 60° opening, the velocity at the center of the harbor 

entrance also was measured using the hot-film anemometer. The 

sensor was located at a vertical position z= -0.05 f t  at the center of 

thc cntrance (thc watcr dcpth again was 1. 0 ft). Thc voltages from thc 

linearizer at various values of ka were then normalized with respect 

to that at ka=2.25 using the same correction procedure as was just 

described for the harbor with a 10' opening. These data a re  presented 

in Fig. 6.34; in contrast to Fig. 6.32 where average velocities 
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across the entrance were used, here the normalized velocity i s  that 

obtained at the center of the entrance. 

For this case o d y  Llle LlleureLicdl curve ublained f rv rn  the 

arbitrary shaped harbor theory is  shown, since the circular harbor 

theory had not been used to determine the values of f a  and 2 at the 

center of the entrance (it was used only to determine the average 

values of f, and af2 across the entrance). 
an 

Although the experimental data show consider able scatter, they 

agree qualitatively with the theory, The results from experiments 

performed at four different times a re  shown in Fig. 6.34 providing 

additional confidence in the experimental procedure. The value of ka 

associated with the maxima in Fig. 6.  34 are  different from that of 

Fig. 6. 33 especially the third and fourth peaks. 'I'his i s  because far  

different values of ka, the shape of the velocity distribution across the 

harbor entrance i s  not the same (see Fig. 6 . 3 0 ) .  Thus, the relative 

velocity at the center of the entrance. ( v ~ ) ~ / L ( v ~ ) ~ ]  , i s  not 
ka=2.25 

necessarily equal to the relative average velocity across the entrance, 

r 1 (Vo)ave/~(Vo)ave~ka=2.  25 shown in Fig. 6.33 .  

The results presented in this  subsection have demonstrated that 

a maximum average total velocity at the harbor entrance corresponds 

to a resonant mode of oscillation inside the harbor. It i s  obvious that 

such velocity considerations will be even more useful for a harbor 

with a complicated shape; more discussion of this will be given in 

Subsection 6.4.4. 
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6.3 RECTANGULAR HARBOR 

6.3. 1 Introduction 

In the initial phases of this investigation a ser ies  of 

experiments was conducted to study the response of a narrow, fully 

open rectangular harbor to incident waves. As mentioned in Section 

6. 1, the primary purpose of these experiments was to ensure that the 

"open-sea" condition was simulated properly in the laboratory basin 

when using the dissipators described in Section 5.6. This was done 

by comparing the experimental results  to the experiments and the 

theoretical analysis for  a rectangular harbor presented by fppen and 

Goda (1963). Their theoretical solution had been confirmed reason- 

ably well by experiments conducted by them using a fully open rectan- 

gular harbor ( 2 - 3  /8 ill. wide, 1 f l  1/4 ill. l u r ~ g )  irmlalled ill a basin 

l l f t l o n g a n d 9 f t w i d e w i t h  "satisfactoryHwave energydissipators 

placed for the simulation of the "open- sea". In this study the harbor 

dimensions were identical to theirs and the only difference was the 

basin was larger and the dis sipators were more efficient than theirs 

(see Sections 5. 1 and 6. 1). 

In addition these early experiments also served to provide data 

to compare to the theory for an arbitrary shaped harbor presented in 

Chapter 3 as well as  the rectangular harbor theory presented in 

Section 4. 2. In the following subsection these theoretical results will 

be compared to the experimental data of this study a s  well as to the 

theory and experimental results  obtained by Ippen and Goda (1963). 
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6.3.2 Response of Harbor to Incident Waves 

The response of a fully open rectangular harbor to 

periodic incident waves i s  presented in  Fig. 6.35. The abscissa i s  

the wave number parameter k4 (where i s  a characteristic dimension 

of the harbor, in this case the length of the harbor). The ordinate 

i s  the amplification factor, R, defined as  the wave amplitude at the 

center of the backwall of the harbor divided by the average standing 

wave amplitude at the harbor entrance when the entrance i s  closed 

(see Section 5.4 for a more complete discussion of the latter). 

Experimentally it i s  not possible to measure the wave amplitude 

exactly at the backwall; in fact the measurements were made at a 

point 114 in. f rom the backwall and about 3 /4 in. off-center. Since 

the slope of the water surface so near the backwall i s  essentially zero 

and the motion of this narrow harbor over the range of k4 considered 

i s  practically two-dimensional, this difference between the location 

of the experiments and the point of definition of the theoretical value 

of R i s  considered unimportant in the comparison of theoretical and 

experimental results. 'l'he depth of the water was constant and equal 

to 0.844 f t  in both the harbor and "open- sea", and the range of the 

stroke of the wave machine for these experiments i s  presented in 

the table in Appendix IV. 

In Fig. 6. 35, the solid line represents the curve computed from 

the theory for an arbitrary shaped harbor (Chapter 3); the theory for 

the rectangular harbor (Section 4.2 ) i s  shown with long dashed lines, 





while the theory developed by Ippen and Goda ( 1963) i s  represented by 

a line composed of short dashes. The experimental data obtained 

f rom the present studies a re  denoted by open circles while the experi- 

mental data of Ippen and Goda (1963) a re  shown as  solid circles. 

In using the arbitrary shaped harbor theory the boundary of the 

harbor is divided into 47 segments  (N=47) of 11neq11al length including 

three segments at the harbor entrance. Since the boundary of the 

rectangular harbor i s  composed of straight lines, as discussed in 

Subsection 3. 3. 1, the diagonal elements of the matrix G are  equal n 

to zero, i. e. in Eq. 3. 57, (G ).. = 0 for i=l, 2. . . . .47. After following n 1.1 

the procedures described in Chapter 3 the response curve shown i s  

obtained. 

In using the rectangular harbor theory the method described in 

Section 4.2 i s  used. For a fully open rectangular harbor, Eq. 4.38, 

which describes the wave function f, in the region inside the harbor, 

can bc simplified, since the entrance and the width of the harbor a re  

equal Therefore, the te rm S (x, y) defined in Eq. 4. 38 i s  equal m 

to zero and can be simplified to: 

f , ( x , ~ ) = C ~ s ~ ( x , ~ )  (6.8)  

Thus, the average normal derivative of the wave function at the 

harbor entrapce shown in Eq. 4.41 can be simplified also as: 
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1 A 2 where S = -G cot kt and Bo = --(J + A-Y ) As as defined in Eq. 4.27. 
0 2 c  l r c  

The Fourier transformation method used by Ippen and Goda (1963) 

for  the evaluation of the radiation wave function f3 in the region outside 

the harbor i s  different from the present rectangular harbor theory in 

which Green's identity formula and the Hankel function a re  used. 

However, the method used for Region 11, i. e. inside the harbor, i s  the 

same. Therefore, the difference between the results of the theory of 

Ippen and Goda (1963) and this theory can be attributed to the difference 

between the methods used to evaluate the radiation function f, ; from 

Fig. 6.35 any differences appear to be quite small. 

From Fig. 6.35 i t  is  seen that the three theoretical curves agree 

fairly well with the experimental results, although the theoretical 

curve obtained from the arbitrary shaped harbor theory agrees better 

with the experiments near resonance than the other two theoretical 

curves. This may be because in using the arbitrary shaped harbor 

theory, the entrance was divided into three segments and the solution 

was matched at each segment as  compared to the other two theories 

where only the average solution across the entrance was matched. 

Another feature of Fig. 6 .  3 5  i s  that the present experimental data 

agree better with the theoretical curves than do the experimental data 

of Ippen and Goda (1963), especially in the vicinity of resonance. This 

i s  probably because the wave basin for the present experiments i s  both 

wider and longer than the wave basin used by Ippen and Goda, hence 

the incident wave i s  more ncarly two dimcnaional; ~ E O  thc prcscnt 
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'energy dissipators a r e  more efficient than those used by Ippen and 

Goda (1963) and therefore the "open- sea" condition i s  simulated more 

satisfactorily. This i s  supported by the fact that the data of Ippen and 

Goda ( 1963) show fluctuations in the region 1. 10 < k4 < 1. 70 indicating 

that the "open-sea" condition is not properly simulated in this frequency 

range where the incident wave length i s  large resulting in small wave 

steepness. Such fluctuations do not appear in the data corresponding 

to the present experiments. 

As mentioned before, these experimental results led to the 

conclusion that the open- sea  condition was being properly simulated 

in  the laboratory and no additional modification of the wave energy 

dissipators was necessary. Moreover, the agreement between the 

theoretical and experimental results as shown in Fig. 6 .35 has demon- 

strated that the arbitrary shaped harbor theory can also be applied 

successfully to a harbor with straight sides and sharp interior corners. 

6,4 A HARBOR WITH COMPLICATED SHAPE: A MODEL OF THE 

EAST AND WEST BASINS OF LONG BEACH HARBOR 

6.4. 1 Introduction 

As discussed in Sections 6.2 and 6.3, the theoretical 

solution of the wave induced oscillations in the two specially shaped 

harbors: circular and rectangular, can be obtained by using the 

general theory for an arbitrary shaped harbor developed in  Chapter 3. 

The theoretical results for these special harbors obtained from the 

arbitrary shaped harbor theory have been shown to agree well with 
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the more exact theories developed in  Chapter 4, and with the 

experimental results. 

These two special shaped harbors a r e  of importance because, as 

mentioned ear l ier ,  the circular harbor represents an extreme shape in 

which the boundary of the harbor i s  curved and the tangent to the 

boundary i s  continuously changing direction whereas the rectangular 

harbor represents the other extreme where the boundary i s  composed 

of straight lines, along each side the tangent to the boundary does not 

change direction. The boundary of any arbitrary shaped harbor i s  in 

fact usually a combination of these two cases. 

In order to test  the arbitrary shaped harbor theory further, a 

harbor of complicated shape was studied both theoretically and experi- 

mentally. In planform this harbor model i s  slightly modified from the 

existing harbor of the East and West Basins of the Long Beach Harbor 

located in Long Beach, California; the horizontal scale i s  1 to 4700. 

Also it d i f f e r s  only slightly f rom the hydraulic model s t u d i e d  by 

Knapp and Vanoni (1945) wherein a distorted hydraulic model was used 

with attention given to the bathymetry. 

A sketch of the model of the East  and West Basins of Long Beach 

Harbor which was used in  this investigation i s  presented in Fig. 6.36 

which shows the width of the harbor entrance as 0.2 ft and the 

characteristic dimension of the harbor, a,  equal to 1.44 ft. The depth 

of the water in  the experiments was constant in both the harbor and 

the "open-sea" and equal to 1 f t .  





The theory for an arbitrary shaped harbor developed in Chapter 

3 i s  used to calculate the response curves, the wave amplitude 

distribution inside the harbor, and the total velocity at the harbor 

entrance. In applying the theory, the boundary of the harbor is  

divided into 75 unequal straight-line segments including two segments 

for the harbor entrance. The segments a re  numbered counter-clock- 

wise starting from the right-hand limit of the harbor entrance and this 

numbering system i s  shown in Fig. 6. 36. 

6.4.2 Response of Harbor to Incident Waves 

Response curves at four different locations inside the 

harbor are presented in Figs. 6 - 3 7  to 6.40. The fnnr points are 

designated as point A, B, C, D and, for convenience, they a r e  shown 

in Fig. 6. 36 along with their coordinates in the model: A(0.30 ft, 

-0. 525 ft), B(0. 30 ft,-0. 96 f t ) ,  C(l. 32 ft, -0. 96 f t )  and D(-0.45 ft, 

- 1.245 f t ) ,  where the f i rs t  number inside the bracket i s  the x-coord- 

inate and the second number i s  the y -coordinate. For all of the 

response curves, the abscissa is the wave number parameter, ka 

(where again k i s  the wave number, and "a" i s  a characteristic length 

equal to 1.44 f t  and shown in Fig. 6.36); the ordinate i s  the ampli- 

fication factor R, as  defined earlier. 

It is  seen that the theoretical results agree well with the experi- 

mental data at all four locations and show that the response of this 

harbor to periodic waves i s  much more complicated than the response 

curves for either a circular or a rectangular harbor. As discussed 
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in Section 6.2,  the shape of the modes of resonant oscillation inside 

a harbor is simpler for an incident wave of smaller wave frequency, 

i. e. a smaller value of ka. As the incident wave frequency increases, 

the shape of mode of oscillation inside the harbor becomes more 

complex. The results shown in Figs. 6. 37 to 6. 40 also confirm this. 

For example, at  the fir  s t  resonant mode (ka = 0.6 1) the amplification 

factors at the four different positions (Points A, B, C, and D) differ 

only slightly. However, for the mode corresponding to ka = 7.62, the 

amplification factors at  the four locations differ considerably; the 

amplification factors at the points B and D are  much smaller than those 

at the points C and A. 

One common feature of the four response curves is that while 

the theory has predicted the frequency of every resonant mode of 

oscillation correctly, the theoretical amplification factor at resonance 

i s  slightly larger than the experimental data especially for the 

resonant modes at larger values of ka. This can be attributed to the 

observation made in Subsection 6.2 .2  that in using the same number 

of segments for the boundary of the harbor at all wave periods, the 

theoretical results for a smaller value of ka a re  more accurate than 

the results which correspond to large ka; therefore, better agreement 

between the theory and experiments i s  expected and observed for small 

values of ka. (This means that the value of kAs i s  smaller for the 

former case than the latter case. ) In addition the energy dissipation i s  

larger at resonance for large values of ka, thus also tending to 

decrease the experimental amplification factors compared to those 

determined theoretically. 



It can also be seen f rom the response curves that the agreement 

between the theoretical solution and the experimental data is reason- 

ably good at each of the locations; there i s  no location where better 

agreement i s  seen compared to another. This uniformity of the agree- 

ment between the theory and experiments suggests that the theory has 

also accurately predicted the wave amplitude distribution inside the 

harbor for each mode of resonant oscillation. 

In the application of the arbi t rary shaped harbor theory 

(Chapter 3 )  the singularities a re  always assumed to be located at the 

mid-point of each boundary segment. Therefore if  an interior point 

(x, y )  i s  too close to the mid-point of a particular boundary segment, 

the wave function f, (x, y) calculated from Eq. 3 . 3 7  might be in e r ro r  

because of the excessive influence of that particular singularity 

(possibly as large as  10 or  20%). To avoid this i t  was found that the 

interior point investigated should be more than one-half of the length 

of the segment ( $ A S )  away f rom the harbor boundary. If the wave 

function desired i s  at a location very close to the boundary i t  can be 

obtained either by: interpolating between the value at the boundary 

(Eq. 3 .22 )  and the value of f,(x, y) at  a point which i s  at  a distance 

of approximately &AS f rom the boundary or  by reducing the length of 

the segment L o  alluw the interior point ol  interest Lo be closer to the 

boundary. 
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As mentioned before, a response curve at a particular location 

inside the harbor does not necessarily show the maximum amplification 

within the harbor. The variation of the maximum amplification within 

the entire basin plotted as a function of the wave number parameter, 

ka, is presented in the response curve of Fig. 6.41. The ordinate 

is the ratio of the maximum wave amplitude within the harbor, regard - 

less  of location, to the standing wave amplitude with the entrance 

closed. This curve shows every possible mode of resonant oscillation 

for the range of ka that has been investigated, as well as the maximum 

amplification for each mode. It i s  obvious that the maximum arnpli- 

fication does not always occur at  the same location within the harbor 

for different values of ka. This can be seen by comparing Fig. 6.4 1 

with Figs. 6.37 through 6.40. 

The experimental data from a model study conducted by Knapp 

and Vanoni (1945) a re  included in Fig. 6.4 1 for comparison. Data 

corresponding to the harbor with a 600 ft harbor opening are repre- 

sented by open circles while the data for a 2000 ft opening are repre- 

sented by solid circles. The prototype gate opening corresponding 

to the present model i s  940 ft. It should be mentioned that the 

original data (see Knapp and Vanoni, '1945, p. 89) were plotted as the 

maximum amplification factor as a function of prototype wave period. 

In order to compare these data with the present theory the wave period 

has been converted to the wave parameter, ka. For this conversion, 

the prototype water depth was taken as an average of 40 ft, and the 





prototype characteristic dimension of the harbor a = 6768 ft was used. 

(The experimental data shown in Fig. 6.4 1 corresponds to prototype 

wave periods which range from 2Q min. to 15 min. ) 

The experimental data from Knapp and Vanoni (1945) show 

decreasing amplification factors with decreasing harbor opening 

contradicting one conclusion made in the study of circular harbors 

(Subsection 6.2.2): decreasing the harbor opening increases the 

wave amplification in the harbor at resonance. However, if  one 

considers the other conclusion made in Subsection 6.2.2 that the 

viscous dissipation of energy i s  more important for a harbor with a 

smaller opening this contradiction may be resolved. Since i t  i s  

entirely possible in Long Beach Harbor that energy dissipation for the 

harbor with a 600 ft  opening i s  so large compared to that for the 

harbor with a 2000 ft opening that the increase in the resonant ampli- 

fication due to closing the entrance i s  more than compensated by 

energy dissipation. It i s  possible that if  the harbor entrance were 

much larger  than 2000 ft, the amplification factor at  resonance would 

be less,thus, in agreement with the "harbor paradox". This has not 

been investigated in this study. 

Both the data and the theoretical curve presented in Fig. 6.41 

more emphatically sfiuw an in~portant requirement of harbor rcsonance 

studies. That is, in  order to insure that certain modes of oscillation 

a r e  not missed in hydraulic model studies, a sufficient small interval 

between wave periods must be used in  evaluating the response. 
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6 . 4 .  3 Variation of Wave Amplitude Inside the Harbor for One 

Mode of Resonant 0 s  cillation 

Experiments were not conducted specifically to measure 

the distribution of wave amplitude inside the Long Beach Harbor model 

at  resonance as  was done in the investigation of circular harbors. 

However as  mentioned previously. the theoretical amplitude distribution 

inside the harbor had been reasonably confirmed by the experiments 

shown in the response curves of Figs. 6.37 through 6.40. The 

distribution of wave amplitude inside the harbor for one particular 

mode of resonant oscillation determined from the arbitrary shaped 

harbor theory is presented in  Fig. 6 .42 for a value of k a =  3.38. The 

magnitude of this resonant peak can be seen in any of the response 

curves (Figs. 6. 37 through 6.41); attention i s  directed to the fact 

that this i s  the second largest  maximum amplification among the nine 

resonant modes presented in Fig. 6.41. In the prototype, for this 

value of ka, using the average depth of 40 ft the wave period i s  6. 1 

minutes. 

In Fig. 6.42 the wave amplitude has been normalized with 

respect to the wave amplitude at  point C; the coordinates of this 

position have been presented in Fig. 6.36. Positive water surface 

displacements are shown by solid lines and negative displacements 

by long dash lines. Two nodal lines a r e  seen, one in  the East Basin 

and one in the West Basin with maxima occurring at the ends of each 

basin and the minimum occurring near the confluence of the two. For 



Fig. 6.43 Wave amplitude distribution inside the harbor model of 

Knapp and Vanoni (1945) for six minute waves (ka=3.30) 

(see  Knapp and Vanoni (1945), p. 133) 



this mode of oscillation i t  can be seen that neither a node nor an 

antinode exists at the entrance. 

Irl the r~lvriel sludy cvnducled by Knapp and Vanoni (1945)  meas  - 

urements were  made of the wave amplitude distribution inside the 

harbor  for various modes of resonant oscillation, and contour drawings 

s imi lar  to Fig. 6.42 were  constructed. One such wave amplitude 

distribution i s  shown in  Fig. 6.43. It i s  apparent f rom comparing 

Figs. 6.42 to 6.43 that in this  investigation the boundary of the model 

has  been simplified, especially the Eas t  Basin. The contours of 

constant water  surface elevation a r e  shown a s  all  solid lines in Fig. 

6.43 since the positive and negative displacements were  not different- 

iated in that study. It is seen that two nodal lines exist, one in each 

basin, and the maxima exist  at the end of each basin as  well as near 

the entrance. 

By comparing Figs. 6.43 to 6.42 the similari t ies in the ampli- 

tude distribution a r e  striking. Except for  the region near  the entrance 

the location of the two nodes and the maxima a r e  similar  for the two 

models even though the boundary of the model used for present  study 

has been simplified. Difference between the amplitude distribution 

near the entrance can probably be attributed to the difference of the 

" c n a s t 1 i n e s " f n r  the  two cases. Another difference between the two 

models which may contribute to the differences between the amplitude 

distribution shown in Figs. 6.42 and 6.43 i s  that all  boundaries were 

vert ical  and the depth was constant in  the model of this investigation 

compared to the more  realist ic  treatment of the boundaries and 

bathymetry in the distorted hydraulic model of Knapp and Vanoni (1945). 



6.4.4 Velocity at  the Harbor Entrance as  a Function of Wave 

Number Parameter ,  ka 

The theoretical curves and the experimental data 

presented in Subsection 6. 2. 5.4 established the proposition that the 

fluid velocity at  the harbor entrance reaches a maximum when a 

resonant oscillation develops inside the harbor. For  the model of the 

East  and West Basins of the Long Beach Harbor, no velocity 

measurements were  made at  the harbor entrance; however, theoreti-  

cally this variation was investigated using the arbi t rary  shaped harbor 

theory. 

The variation of the average velocity a t  the harbor entrance 

*i (normalized with respect to ,,@ T )  as  a function of the wave number 

parameter,  ka, i s  presented in Fig. 6.44. Recall that the harbor 

entrance of the Long Beach Harbor model was divided into two 

segments (see  Fig. 6.36); thus, the ordinate in Fig. 6.44 represents 

Ai the average value of V: /& at the water  surface for the two 

entrance segments. (As before, the velocity i s  computed using 

Eq. 6.7. ) 

It i s  seen that there are 9 maxima in the range of ka presented 

in  Fig. 6.44; the values of ka  associated with these are: 0.6 1, 1. 50, 

3 .38 ,  4.96, 5.30, 5.70, 6.60, 7. 10, and 7.64. These values of ka  

a r e  exactly the same as  those associated with the maxima in the 

response curve of maximum amplification presented in Fig. 6.41. 
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This clearly demonstrates that each maximum of the total entrance 

velocity i s  associated with a mode of resonant oscillation inside the 

harbor,  no matter  how small  the value of the peak. 

A curve like Fig. 6.41 i s  not easy to obtain, because in order to 

obtain a value of the maximum amplification anywhere inside the harbor 

for a particular wave number the amplification factor a t  many points 

inside the harbor must  be determined. However, the curve shown in 

Fig. 6.44 i s  relatively easy to obtain since one needs only the values 

of the wave function f,, the normal derivative ata and the derivative 2 
ay ' 

at  the harbor entrance when evaluating the total velocity f rom Eq. 6. 7. 

For  a harbor with a complicated shape, i t  i s  possible that an 

interaction of wave motion between interconnected basins inside the 

harbor may develop and produce a resonant oscillation with only a 

small  velocity at the harbor entrance. For  example, the peak 

associated with ka  = 1. 50 in Fig. 6.44 i s  indeed very small; however, 

at this value of ka, a resonant oscillation does exist inside the harbor 

a s  can be seen f r o m  the response curves in Figs. 6.40 and 6.41. The 

same i s  true for ka  = 5. 30 and 5. 70 a t  which the peaks in the velocity 

curve (Fig. 6.44) a r e  also small,  but considerable resonant oscillation 

does develop in  the harbor as  shown in  the response curves in Figs. 

6.38, 6. 39, and 6.41 (for ka=5.30)  and Figs. 6.40 and 6.41 (for k a =  

5. 70). Therefore, i n  using this method of determining the periods of 

the resonant modes ca re  must  be taken that a small  interval in wave 

period i s  used i n  the computations. 
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Fig. 6.44 shows that the velocity at the entrance for the pumping 

mode (ka = 0.6 1) i s  nearly four times that which exist for any other 

mode of oscillation. Using the prototype dimensions described 

previously the period of this mode of oscillation i s  approximately 33 

minutes and could possibly be excited by tsunami. If the amplitude 

of an incident wave were 0. 5 ft (using the average depth of 40 ft)  Fig. 

6.44 indicates that the maximum average entrance velocity for tMs 

mode would be about 10 fps and for modes of smaller wave period the 

velocities a r e  in  the order of 2 fps. Such velocities could cause 

significant damage to structures located near the entrance. 

The results presented in Section 6.4 have shown good agreement 

between the theoretical analysis and the laboratory experiments demon- 

strating again the applicability of the arbitrary shaped harbor theory 

to harbors with complicated planforms and constant depth. The 

variation of the velocity at the harbor entrance as  a function of the wave 

number parameter ka proves to be a good indicator for resonance 

inside the harbor. It has also been shown that the present theoretical 

results  agree qualitatively with the experimental data obtained from a 

model study conducted by Knapp and Vanoni (1945), although the plan- 

form of the model investigated by them was more complicated and 

also included depthwise variations. 



The major objective of the present study has been to investigate, 

both theoretically and experimentally, the response of an arbitrary 

shaped harbor (with constant depth) to periodic incident waves. In 

order to ensure that the general theory which was developed (termed 

the arbitrary shaped harbor theory) could be applied to a harbor with 

a complicated shape this theory was f i r s t  applied to two special shaped 

harbors: a circular harbor and a rectangular harbor. For these two 

cases different theories termed the circular harbor theory and the 

rectangular harbor theory were developed and compared to the general 

theory. Experiments were then conducted for the circular and rectangu 

la r  harbors to verify the theoretical solutions. The general theory (the 

arbitrary shaped harbor theory) was also applied to a harbor of more 

complicated shape: a simplified, constant depth, model of the East 

and West Basins of the Long Beach Harbor. Experiments were also 

conducted to confirm the theoretical predictions. 

From this study the following major conclusions, applying to  the 

circular harbors, the rectangular harbor, and the Long Beach Harbor 

model, can be drawn: 
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1. The present linear -inviscid-theory termed the arbitrary 

shaped harbor theory predicts the response of an arbitrary 

shaped harbor (with constant depth) to periodic incident 

waves quite well even near resonance. 

2. The theoretical prediction of the resonant frequencies (or 

the wave number parameter, ka, at resonance) agree well 

with the experimental data. The theoretical amplification 

factor at resonance i s  generally somewhat larger than the 

experimental data especially for the resonant modes at 

larger values of ka. 

3. The open-sea condition has been simulated properly in the 

wave basin used for the experiments; the reflection 

coefficient for the wave energy dissipators which were used 

i s  estimated to be less  than 20% for most of the experiments 

which were conducted. 

4. Because of the wave radiation from the harbor entrance to 

the open-sea region which has been considered in this 

inviscid theory, the amplification of the wave amplitude 

inside the harbor at resonance i s  finite. The effect of 

viscous dissipation, which has not been considered in this 

theory, i s  to  decrease the amplification near rcsonancc 

even more. 

5. The average total velocity across the harbor entrance 

reaches a maximum when a resonant oscillation develops 

inside the harbor; thus, the variation of the velocity at the 
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harbor entrance with wave number has been found to be a 

good indicator for resonance. 

Since a relatively more detailed study has been made for circular 

harbors some of the important conclusions concerning this shape can be 

stated as  follows: 

6. The theoretical solution for a circular harbor with a lo0 

opening obtained using the arbitrary shaped harbor theory 

agrees well with those obtained from the circular harbor 

theory and the experiments. These results included the 

resonant wave numbers, the amplification factors, the 

shape of water surface inside the harbor for various modes 

of oscillations, and certain velocities at the harbor 

entrance. 

7. For the circular harbor with a 60' opening both theories 

only differ slightly in the prediction of the value of the wave 

number parameter (ka) at resonance: the arbitrary shaped 

harbor theory agrees better with the experimental results 

in this respect. The shapes of the modes of oscillation 

also have been predicted correctly by both theories; thus, 

the small entrance approximation for the circular harbor 

theory can bc applicd at lcast up to s harbor opening with s 

60" central angle. 

8. As the width of the harbor entrance increases, the ampli- 

fication at resonance decreases, but the wave number band- 



width at  resonance increases: thus, the '!harbor paradox1' 

was confirmed both theoretically and experimentally for 

this shape. 

Experiments show that the effect of viscous dissipation of 

energy which i s  neglected in the present theories i s  more 

important for harbors with a smaller opening. 

There a r e  four modes of resonant oscillations in the range 

of ka  investigated for the harbors with a l o 0  and a 60° 

opening. Except for the "pumping modef', which does not 

exist in a completely closed circular basin, each mode 

corresponds to a free mode of oscillation in the closed 

basin. The corresponding modes of oscillation for  the two 

harbors and the closed basin a re  basically similar; how- 

ever, the detailed shape of the f ree  surface differs among 

the three. 

I I. The wave number paravlletcr (ka) st resonance approaches 

the value for a closed basin as  the entrance width decreases. 

12. No antinode, or  node, exists at the harbor entrance 

although an antinode might occur at that position for a 

closed circular basin. 

13. For a larger edrauce widlll Lhe distrilmtiull ul the valucity 

across the harbor entrance varies significantly for different 

modes of oscillation. 



-221- 

14. The experimental data regarding the variation of entrance 

velocity with the wave number parameter agree reasonably 

well with the theoretical results . 
In addition to the general conclusions the following conclusions 

can be added for the rectangular harbor: 

15. The theoretical results obtained from the present 

rectangular harbor theory a re  almost identical to those 

obtained by the theory of Ippen and Goda (1963) ;  thus, any 

difference in  the two methods for evaluating the radiated 

waves appear to be quite small. 

16. The theoretical results obtained from the arbitrary shaped 

harbor theory applied to the rectangular harbor agree 

better with the experiments near resonance than the 

rectangular harbor theory developed in this study or the 

theory of Ippen and Goda (1963). Perhaps this i s  due to the 

r'act that when using the arbitrary shaped harbor theory 

three segments were used in the matching procedure while 

in the other two lleuries u u l y  Llle dverage solution across 

the entrance was matched. 

17. The present experimental data agree better with the theo- 

retical results than do the experimental data of Ippen and 

Goda (1963) especially in the vicinity of resonance, pro- 

bably because the wave basin used for present experiments 

i s  both wider and longer and the present wave energy 

dissipators a r e  more efficient than in that study; thus the 
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incident wave i s  more nearly two-dimensional and the 

"open- sea" condition i s  simulated more satisfactorily. 

The following conclusions may be drawn for the model of the East 

and West Basins of the Long Beach Harbor in addition to the conclusions 

stated earl ier .  

18. The theoretical results agree w e l l  with the experiinental 

data fox the response at four different positions within the 

harbor. The uniformity of agreement at  the four locations 

suggests that the theory has also predicted correctly the 

shape of the various modes of oscillations. 

19. The present theoretical results also agree qualitatively with 

the experimental data obtained from a model study 

conducted by Knapp and Vanoni (1945) although the planform 

of the model investigated by Knapp and Vanoni was more 

complicated and their study included depthwise variations. 

LO. The results  show that the present theory can be applied 

with confidence to prototype harbors with relatively uniform 

depth and reflective interior boundaries. 
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LIST OF SYMBOLS 

A Wave amplitude. 

Ai 
Incident wave amplitude. 

Amax Maximum wave amplitude within the harbor. 

A1 , A2, A3 Functions representing the magnitude of the velocity 
cornporlants (defined in  Eq. 3. 41). 

Characteristic dimension of a harbor, the radius of a 
circular harbor. 

Bo 
A function representing the average radiation effect at 
the harbor entrance (defined in Eq. 4.27). 

L 
bo 

A constant equal to --. 2 

b Width of a rectangular harbor. 

Normal derivative of the wave function at the harbor 
entrance. 

Average of the normal derivative of the wave function 
across the harbor entrance. 

c_ A vector representing the normal derivative of the wave 
function at the mid-point of each entrance segment. 

c, , c, , c3, Constants associated with the hot-film sensor and the 

'a7 % linearization procedure. 

D Diameter of the screen wires of the wave energy 
dis sipator. 

D, D l ,  D2 Used in Appendix I and Appendix 11 representing various 
domains of interest. 

d Width of the harbor entrance. 

Distance from left-hand boundary of the rectangular 
harbor to the left-hand limit of the harbor entrance. 

E Output voltage of the hot-film anemometer, 

e Base of the Naperian logarithm. 
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g 

H.. 
1J 

Wave  fnnr t ion which describes t h e  variation of the velocity 
potential i n  the x and y directions. 

Wave function in Region I (in the open-sea). 

Wave function in  Region I1 (inside the harbor). 

Radiat ed wave function. 

Incident wave function. 

Reflected wave function. 

An infinite se r ies  defined in Eq. 4.23 and Eq. A. 3.3 .  

An infinite se r ies  defined in  Eq. 4.23 and Eq. A. 3.6. 

An N x N matrix defined in Eq. 3. 17d (elements of the 
matrix a r e  defined in  Eqs. 3. 59 and 3.60). 

An N x N matr ix  defined in Eq. 3. 17b (elements of the 
matr ix  a r e  defined in Eqs. 3.43 and 3. 57). 

Green's function. 

Acceleration due to gravity. 

Radiation matr ix  (a  p x p matrix,  see  Eq. 3. 3 3 ) ,  the 
elements of the matr ix  a r e  defined in Eqs. 3.62 and 3.63. 

Wave height. 

Incident wave height. 

Reflected wave height. 

Transmitted wave height. 

Zero and f i r s t  o rders  of the Hankel function of f i r s t  kind. 

Watcr  depth. 

Indentity matrix. 

Electrical currents to the hot -film sensor. 
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Unit vectors in the directions x, y, x respectively. 

Bessel function of the f i rs t  kind and order m. 

An infinite ser ies  defined in Eq. 4.26a and Eq. A. 3. 7. 

Reflection coefficient. 

Transmission coefficient. 

Wave number. 

Wave length. 

Length of a rectangular harbor. 

Logarithm to the Naperian base (e=2. 7 128). 

A N x p matrix defined in  Eq. 3 . 2  1. 

An infinite ser ies  defined in Eqs. 4. 18 and 4. 19. 

A p x p matrix defined in Eq. 3. 35, (a  matrix formed by 
the p rows and p columns of the matrix M). 

Number of layers of screens. 

Total number of segments into which the boundary of the 
harbor (including entrance) i s  divided. 

Outward normal to the boundary of the domain. 

Order of magnitude. 

A N-dimensional vector representing the normal derivative 
of the wave function at  the mid-point of the straight-line 
segments of the harbor boundary. 

Total number of segments into which the harbor entrance 
i s  divided. 

A function used in Appendix I1 representing the contri- 
bution to the value of wave function as the field point 
approaching a boundary point. 

Source strength along the reflecting boundary (see Eq. 2.3). 
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Amplification factor. 

Radius of a large circle. 

Operating resistance of the hot-film sensor. 

Distance between points or  radial position in a polar 
coordinates. 

Center to center distance between the screen wires. 

Output voltage of the f i r s t  squaring circuit of the linear- 
izer  of the hot-film anemometer. 

Output voltage of the linearizer of the hot-film anemometer. 

Output voltage of the bias control, after using the f i rs t  
squaring circuit of the linearizer of the hot-film 
anemometer. 

Special functions defined in Eq. 4.38. 

Average of S Sm across the harbor entrance (defined in 
Eq. 4.39). 0' 

Tangent to the boundary of the domain i n  a counter- 
clockwise direction. 

Length of the boundary segments . 
Wave period. 

Time. 

A N x p matrix with the diagonal of the f i r s t  p rows equal 
to unity, all other elements equal to zero (Eq. 3. 19). 

Velocity components in x ,  y, z directions. 

Velocity vector with components u, v, w, 

Resultant fluid velocity in the direction perpendicular to 
the longitudinal axis of the hot-film sensor, 

1 

Total velocity defined as  (u2 + v2 + w2)%. 
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a, , a,, a3 

av 

Maximum total velocity with respect  to time at a location. 
4, 

Average of V: ac ross  the harbor entrance. 

Maximum resultant velocity of the components v and w 
with respect  to time at a location. 

Average of V across the h a r b n r  e n t r a n c e .  
0 

Value of V at the center of the harbor entrance. 
0 

A N-dimensional vector defined in  Eq. 3. 17a representing 
the wave function at the boundary of the harbor. 

Coordinate axis in horizontal direction parallel to the 
coastline. 

Position vector for the point (x, y). 

Bessel function of the second kind of o rder  rn. 

An infinite se r ies  defined in  Eq. 4.26b and Eq. A. 3, 9 ,  

Coordinate axis in  horizontal direction perpendicular to 
the coastline. 

Function which describes the variation of the velocity 
potcntial in dcpthwio e direction z. 

Coordinate axis in vert ical  direction. 

Quantities a t  the jth segment of the boundary. 

Firsttsecond part ial  derivatives with respect  to the tangent 
of the boundary. 

Spatial average value, 

A p-dimensional vector with each element equal to unity. 

Interior angle of a boundary point ( see  Fig. A. 2. 2). 

Phase angles defined in  Eq. 3.4 1. 

Calibration constant of the hot-film sensor. 
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A constant defined in Eq. 4. 33.  

A large circle. 

Euler's constant ( y o .  5772 16. . . . . ). 
Difference operator. 

Kronecker delta, 

Radius of a circle. 

Displacement of water surface elevation from the mean 
water level. 

Angular position. 

Kinematic viscosity of the fluid. 

1 Sum of an infinite ser ies ,  p(n) = 1 - . 
n 

n= 1 
A small circle or a half circle with a radius c. 

Circular wave frequency ( 2 ~ /  T). 

Velocity potential. 

Depth affect factur (Eq. 6 .  1). 

Potential function for standing wave system (Eq. 2.3). 

Total potential function (defined in Eq. 2. 3) .  

Gradient operator. 

Laplacian operator. 

Boundary of a domain. 

Absolute value. 



APPENDIX I 

WEBER'S SOLUTION OF THE HELMHOLTZ EQUATION 

The derivation of Weber's solution of the two dimensional 

Helmholtz equation i n  a bounded domain (as  used in  Eq. 3. 11) and an 

unbounded domain (as used i n  Eq. 3.29) will be presented in this 

appendix. This subject has been discussed by Baker and Copson (1950) ; 

the interested reader i s  referred to that book for other related topics 

as  well. 

I. 1 Weber's Solution in  a Bounded Domain 

Let 8D be a closed curve boundi~g a domain D in the x-y 

plane, i f  f and g a r e  two functions whose f i r s t -  and second-order partial 

derivatives a r e  continuous within the domain D and on the boundary aD, 

then Green's identity formula gives (see  Kellog (1953)): 

(A. 1. 1) 

where a /an means differentiation along the outward normal to the 

boundary of the domain. 

If the functions f and g a r e  both solutions of the two-dimensional 

Helmholtz equation, 



then the right.-hand-side of Eq. A. 1. 1 equals to zero, thus, Eq, A. 1. 1 

reduces to: 

(A. 1. 3 )  

In particular, if g = ~ b ' ) ( k r ) ,  where r denotes the distance f rom a point 

;(X, y)  and if the point ;(x, y) l ies outside the domain D, one obtains 

(A. 1.4) 

3 

However, i f  x(x, y)  l ies inside the domain D, Eq. A. 1.4 no longer 

holds since ~ ( " ( k r )  has a logarithmic singularity at  the point ;(x, y) 
0 

2 
(H( "(kr) --*-log k r  , as r + 0 ) . To avoid this singularity, Green's 

0 'Tr / 

identity formula will be applied to the region Dl, bounded externally by 
-3 

a D  and internally by a circle p with i ts  center at  x and with radius c 
0 

(see Fig. A. 1, 1). Thus, Green's identity formula, Eq. A. 1. 1, 

becomes: 

Since the singularity i s  now outside the domain D, , by taking g=~L1) (k r ) ,  

the right-hand-side of Eq. A. 1. 5 i s  equal to zero. Thus, one obtains: 

BD 

Note that the direction of n on the 

hand-side of Eq. A. 1.6 i s  inward 

Po 
(A. 1.6) 

boundary p as  shown in  the right- 
0 

...r 
toward the center x(x, y),  i. e. out- 



ward from the boundary of the domain Dl (see Fig. A. I, 1); for 

convenience this differentiation i s  changed to the r direction (negative 

n direction). Thus, one obtains: 

Po 
(A. 1.7) 

Since the integral around the boundary 8D does not depend upon the 

radius c of the circle po, the right-hand-side of Eq. A. 1. 7 can be 

evaluated at  a radius c as  small as  desired. Thus the right-hand-side 

of Eq. A. 1. 7 can be written as: 

l im 
€4 0 J[f (HA1)(kr)) - ~ i ' ) ( k r )  $$ ] ds . 

Po 

(A. 1.8) 

By using the asymptotic behavior of the Hankel function for r-0: 

(1) 2 Ho (kr) -- 1 + A; log (kr)  , 

a f the limit of Eq. A. 1. S can be evaluated. Since the functions f and - a r  
+ 

a r e  continuous at x(x, y), the second t e rm and the f i rs t  t e rm of Eq. 

A. 1.8 can be evaluated as  follows: 

277 'af -+ limJ €40  ~b" (k r )% ds =lirnS s-+O ( l + ~ $ l o ~ ( k e ) ) c d 8 ( ~ ( x ) + o ( ~ ) )  = 0 (A. 1. 9a) 

Po 

(A. 1. 9b) 

Substituting Eqs. A. 1.9 a and b into Eq. A. 1.7, one obtains: 



a (1) 
f )  = - [fz ( H ~  (kr)) - ~ y ) ( k r ) f - ]  ds (A. lo 10) 

This completes the proof of the following theorem due to Weber: 

Let f be a solution of the Helmholtz equation 

in a closed domain D, whose f i rs t-  and second-order partial 

derivatives a r e  continuous within and on the closed boundary aD. 
--t 

Then the function of f at any interior point x can be expressed as: 

-+ 
where r i s  the distance from the interior point x to the boundary, 

and a/an means differentiation along the outward normal to the 

boundary aD. 

I. 2 Weber's Solution in an Unbounded Domain 

Suppose the function f i s  a solution of the Helmholtz 

equation, v2f t k2f = 0, outside the domain D, i. e. in the unbounded 

domain, whose f i r  s t-  and second-order partial derivatives a re  con- 

tinuoue on/and outside the closed curve aD. Then the Green's identity 

formula can be applied to a region D, bounded internally by the closed 

curve aD and externally by a circle r with radius Ro which i s  so chosen 

that the circle I' encloses the closed curve 8D (see Fig. A. 1.2). 

Thus, from the theorem presented in SectionI. 1 one obtains: 



4 

i f  x i s  in the domain D,, wherein n denotes the outward normal to the 

bounding curves, aD and i? (see Fig. A. 1.2). 

The outward normal to the circle T i s  in  r direction, thus Eq. 

A. 1. 1 1 can be rewritten as : 

- 4 .  /[f & (H: l)(kr))- J3L1)(kr) $ ] ds (A. 1.12) 

r 

For simplicity, the second integral in the right-hand-side of Eq. A. 1. 12 
3 

i s  denoted as J(x). The radius of the circle r, Ro, can be made as 

large as  desired to cover the entire unbounded domain, i. e .  Ro+mr 

Thus the function ~(2) can be rewritten as: 

- Hqkrpg rde . 
n 

(A. 1. 13)  

The asymptotic behavior of ~ ( " ( k r )  and s(H:)(kr)) for r-rn are:  
0 

IT n (A. 1. 14) 
2 *(kr ----) 

e 4 2  . 

Substituting Eq- A. 1. 14 into Eq. A. 1. 13,  one obtains: 

. (A. 1. 15) 
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Thus the function ~ ( 2 )  tends to zero, if the function: 

(A. 1. 16) 

uniformly with respect  to 4 a s  r -+ w. This condition, Eq. A. 1. 16 , i s  

referred to a s  the "Sommerfeld radiation condition". A sufficient 

condition for this i s  that the function f should behave like ~ ( " ( k r )  for 
0 

a f la rge  values of r . Since for f = ~ ( " ( k r ) ,  and - =  -k~ ! l ) (k r ) ,  the 
o ar  

Sommerfeld radiation condition i s  satisfied as  r + 03: 

This completes the proof for  the following Weber's theorem in an 

unbounded domain: 

Let f be a solution of - + - a2f + k2f = 0 ,  whose f i r s t -  and second- ax2 a p  
order  part ial  derivatives a r e  continuous outside and on a closed 

curve aD and le t  

J;(E- kkf) 3 0 

uniformly with respect  to 8, as  r + a, then the function f(;) at a 

fixed point 2 located outside the domain bounded by aD, i. e. 

inside the unbounded domain,can be expressed as: 



where r i s  the distance between the fixed point and the boundary 

and n denotes the outward normal to the boundary 8D (in the 

direction out of the unbounded domain]. 



Fig. A. 1. 1 Definition ske tch  fo r  a bounded domain 

Fig.  A. 1.2 Definition slrctch for an unbounded domain 



APPENDIX 11 

DERIVATION OF EQ. 3. 12 

The Weber's solution of the two-dimensional Helmholtz equation 

expressed the wave function f at an interior point as  a function of the 

wave function and its normal derivative at the boundary as follows 

(see also Eq, 3. 11): 

+ 
In order to determine the wave function f(xo) along the boundary, the 

field point i s  allowed to approach the boundary at  a point Zi: the path 

of integration i s  deformed around a small half circle, p with radius 
0' 

s (see Fig. A. 2. 1). Then Eq. A. 2. 1 can be written as: 

The radius of the half circle po, E, can be made to approach zero, 

i. e. E -+ 0; using the definition of Cauchy principal value Eq. A. 2.2 can 

thus be rewritten as: 



where the f i r s t  integral represents the Cauchy principal value and the 

-# 

second te rm , Q(xi), represents the limit of the integration along the 

+ 
small half circle po as s -r 0. This limit value, Q(xi), can be evaluated 

by the procedures which will be discussed in the following. 

Since along the small half circle po, the direction of n i s  in the 
--t 

direction of r,  the function Q(x:) can be rewritten as: 
1 

4 ,i lim 
.(xi)=-- 4 s-0 ~[f(<)&(~6"(kr))-~b~)(kr)~(f(2~))]ds(2~) . ( ~ 2 . 4 )  

The asymptotic formulas of the Hankel functions for very small 

argument (r + 0) are: 

2 
~ ( " ( k r )  o - l + i;log (kr )  ; 

(A. 2.5) 

Substituting Eq. A. 2.5 into Eq. A. 2 .4  one obtains: 

+ ,i, l im 
Q(x,) = - - ' L 1  

A l im + o(c)) 

-?\ 

= &f (xi) 7 (A. 2.6) 

since as  €40 the limit of the second integral in Eq. A. 2.6 i s  zero. 



Substituting Eq. A. 2.6 into Eq. A. 2.3, i t  becomes: 

4 + 
where r = Ixo - xil * 

-+ 
If the point x. i s  a corner point on the boundary (see  Fig. A. 2. 2) ,  

1 
4 

the result  of Eq. A. 2. 1 a s  approaching xi can be expressed as: 

S 

(A. 2.8) 

where the interior angle a i s  defined in Fig. A. 2.2. For  a smooth 

curvc  a i~ c q u d  to  n, thus Eq. A. 2. 8 is identical to Eq. A. 2 .  7. 

(The approach used for  these derivations can also be found in a 

number of books; for example, s ee  Muskhelishvili (1946) and Dettrnan 



integration 1 

Fig. A. 2. 1 Definition sketch for an interior point approaching a 
boundary point on a smooth curve. 

Fig. A. 2 . 2  Definition sketch for an interior point approaching a 
corner point at the boundary 



APPENDIX III 

EVALUATION O F  THE FUNCTIONS fjo, fyo, Jc, AND Yc 

111. 1 The Evaluation of the Function fjo 

The function f i n  Eq. 4. 23 i s  defined as:  
j 0 

x AS-x 
f jo(x ,o)  = [J f J  ] ~ ~ ( l i r ) d r  , (A. 3. 1) 

0 0 

where As i s  the width of the harbor entrance. The Bes se l  function 

J (kr)  in  Eq. A. 3. 1- can b e  represented i n  an infinite se r ies  as: 
0 

Jo (kr ) = 1 (A. 3 . 2 )  
n! n! n= 0 

Substituting Eq. A. 3.2 into Eq. A. 3. 1 and interchanging the order 

of integration and summation one obtains: 

111.2 The Evaluation of the Function f 
YO 

The ftmction f in  Eq. 4.23 i s  defined as: 
YO 

(A. 3.4) 
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The Bessel function Y (k r )  can be represented in  an infinite se r ies  as:  
0 

m 
2 [1 kr 

Y (k r )  = --; (log - t y )  ~ ~ ( k r ) t  7 (-l)nt' p(n)  (n! )a 2 
I ,  (A. 3.5) 

0 7T L. A .d 

n= 1 

where: y = 0. 5772157.. . . . . i s  the Euler ' s  constant, 

1 p ( n )  = l - t & + * + . .  . . . .+E , 

and J (k r )  i s  defined i n  Eq. A. 3. 2 
0 

Thus, substituting Eq. A. 3. 5 into Eq. A. 3.  4 and interchanging the 

order  of integration and summation one obtains; 

(A. 3 ,  6 )  



111. 3 The Evaluation of the Function Jc 

According to Eqs. 4.24 and 4.25, the function JcAs i s  

equal to the averagt: 01 f  (x, 0 )  acrvss Llle Ildrbvr eiilrdnce. Thus, 
Y 0 

the function J can be evaluated a s  follows: 
C 

Jc = - f .  (x, 0)dx 

(A. 3.  7)  

111. 4 The Evaluation of the Function YG 

The function Y As i s  equal to the average of f (x, 0 )  
C YO 

across  the harbor entrance; therefore,  the function Y can be 
C 

evaluated as follows : 

1 AS 
y = -  f (x,O)dx (A. 3 .  8 )  

Substituting Eq. A. 3 .6  into Eq. A. 3. 8 and interchanging the order  of 

integration and summation, after performing the integration the 

f u n ~ t i o n  Y canbe  expressed a s :  
C 



25920  [log (F)ty-g] t... . . (A. 3 ,  9 )  



APPENDIX IV 

.SUMMARY O F  THE STROKES O F  THE WAVE GENERATOR 

USED IN EXPERIMENTAL STUDIES 

Harbor  Model 

Ci rcu lar  Harbor  

( l o 0  Opening) 

Ci rcu lar  Harbor  

(60° Opening) 

Rectangular  

Harbor  

Long Beach 

Harbor  

Stroke of Wave 

Generator  

( inches)  

Range of ka  

Covered i n  

Exper iments  



APPENDIX V 

COMPUTER PROGRAM 

The computer program for calculating the response of an arbit- 

r a ry  shaped harbor to the periodic incident waves which are  normal to 

the coastline and that used for calculating the total velocity a t  the harbor 

entrance a re  contained in this appendix. 

In order  to i l lustrate the application of these computer programs 

the specific example of the model of the East  and West Basins of the 

Long Beach Harbor will be used. Certain input data corresponding to 

this harbor model will be listedand the output using these programs will 

be shown; these results  correspond to the theoretical results discussed 

in  the text. 

V. 1. Computer Program for the Response of an Arbitrary Shaped Harbor 

The computer program and a subroutine (CSLECD) for calculating 

the response of an arbitrary shaped harbor to the periodic incident waves 

which a re  normal to the coastline a r e  contained in  pp. 258 to 260- 

The input data that a r e  needed in  using this program are:  

(i) the number of boundary segments including the harbor 

entrance (N) and the number of entrance segments (NP) ,  

(ii) the coordinates of the beginning and the end of each 

boundary segment (PX(I ) ,  P Y  (I) ), 

(iii) the value of the characteristic dimension (A),  water depth 

(DEPTH), and the width of the harbor opening (HAOP), (The 



width of the harbor opening will not be used for calculation 

rather i t  i s  used for identification only. ) 

(iv) the number of interior points to be calculated (M) and the 

coordinates of these interior points (PX(I ) ,  P Y  (I) ), and 

(v) the incident wave number (K). 

These input data for the Long Beach Harbor model for one parti- 

cular wave number (k=2.35 ft-I) a re  listed in p. 261. The coordinates 

of 7 5  boundary segments and 90 interior points a re  arranged according 

to the coordinates used in Fig. 6 .  3 6 .  Thus, pn in t  A of Fig. 6, 36 

corresponds to MESS (26), point B corresponds to MESS (88), point C 

corresponds to MESS (81), and point D corresponds to MESS (68). 

The output data for the Long Beach Harbor model a re  presented 

on pp. 262 to 263 . They contain the complex value and the absolute 

value of the normal derivative of the wave function (DFDC) a t  the center 

of the two entrance segments, the complex value and the absolute value 

of the wave function for the 75 boundary se,ments, (Q(1, I ) ) ,  and the 

complex value and the absolute value of the wave function (F2) for the 

90 interior points. The results of the absolute value of F2 at the mesh 

point Nu. 26, 88, 8 1, and 68 correspol~l  to the theoretical results shown 

in Figs. 6.37 to 6.40 for ka=3.384. The output value of F2MAX corres-  

ponds to the theoretical result shown in Fig. 6. 41 for the same value of 

ka. The output values of FRA for the 90 mesh points correspond to the 

wave amplitude distribution curve shown in Fig. 6.42 (except the sign 

has been reversed). 
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It should be noted that the programs a r e  written so that calculations 

for other wave numbers can be made after the calculations for the f i r s t  

wave number a r e  completed. The computer program i s  written in  

FORTRAN I V  compatible to IBM 360/75 digital computer. 

Some of the symbols used in the computer program a r e  defined in 

the following: 

Total no. of segments into which the boundary i s  divided. 

Total no. of seglnents into which the harbor entrance is  
divided. 

Total no. nf interior pnints  to he r a l r d a t e d .  

Number which defines the boundary segments (including 
the harbor entrance). 

The x-coordinate a t  the beginning of the ith segment of 
the boundary (also used as  the x-coordinate of the interior 
points). 

The y-coordinate a t  the beginning of the ith segment of 
the boundary (also used as  the y-coordinate of the interior 
points ). 

The x-coordinate of the mid-point of the ith segment of 
the boundary. 

The y-coordinate of the mid-point of the ith segment of 
the boundary. 

Number which defines a particular interior point. 

Characteristic dimension of the harbor (a). 

Harbor opening in ft. 

Water depth in ft. 

Wave number. 

Wave number parameter (ka). 

Distance between field and source points. 

Changes in x - coordinate s between the beginning and the 
end of the i th boundary segment 



Changes in coordinates between the beginning and the K- end of the i t  boundary segment. 

Length of the ith boundary segment. 

Wave period. 

An Nxp matrix, equivalent to the matrix U defined in 
m Eq. 3. 19. 

A 
A matrix defined as (- Z ~ n - ~ ) ,  where G i s  a NxN matrix, n 
defined in Eqs. 3. 15, 3.  43, and 3.  57. 

x (see Eq. 3. 58b). 
S s 

Y,, (see Eq. 3.58b). 

As - 
n ( X s ~ s s  - x y ) (see Eq. 3. 57). 

S S  s 

An NxN matrix defined in Eqs. 3. 15, 3.59 and 3.60. 

An Nxp matrix, equal to the matrix b Gum, defined in Eq.3. 20. 
0 

A subroutine for solving complex systems of linear equations. 

An Nxp matrix equal to the matrix M defined in Eq. 3. 2 1 
(after the statement CALL CSLECD). 

Complex numbers representing the value of f, a t  the 
boundary of the harbor (after statement 235). 

Absolute value of f, at the boundary. 

Normal derivatives of the wave function at the harbor entrance 
(af, /an at  the entrance). 

Absolute value of DFDC (I, 1). 

A pxp matrix, defined in Eqs. 3.33, 3.62, and 3. 63. 

The complex value of f for the interior points. 

Absolute value of f ,  with the sign equal to that of the real  
part  of f (for the interior points). 

The ratio of F2(I) normalized with respect to the maximum 
value F2MAX. 

Subroutine to firid maximum and minimum elements of an array. 
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W T E  R w  
P E ~ I I I D I C  I N C I D E N T  WAVES - 

INTEGER P 
REAL K 
COMPLEX AN1 7 5 1 7 5  j.41 7 5 ~ 2 0 l o O E T ~ C 1 G l  7 5 1 7 5  I . F l ( 1 0 0 )  
COMPLEX H l 7 5 ~ 2 0 l r O F D C (  ~ ~ . Z ) , D I O G Q N ~ F  
D IMENSION ADFDC( 7 5 r l ) p X O l l ) r X I  7 6 I t Y 0 ( 1 ) . Y 1  7 b l r D S O l l ) r D S l  7 6 1 7  

1 DX(  7 5 l r O Y (  7 5 ) r R (  7 5 1 7 5  I r D F O N I  7 5 9 2 0 ) . A B B F (  7 5 1 1 1 r  
2 F 2 l 1 0 0 l r F R ( 1 0 0 l ~ P X ~ 1 0 0 l t P Y ~ 1 O O ~ t M E S S l l O O l ~ N S E G ~ 7 5 ~  

DATA P I / 3 . 1 4 1 5 9 2 6 /  

READ INPIJT DATA 
READ ( 5 t l l  NINP 

1 FORMAT ( 3 1 5 )  
READ(5.21 INSEG(II,PX(II,PVII)~I=l~N) 

2 FORMAT 11512F15,OI  
P X l N c l l = P X l 1 )  
P Y I N e l l = P Y ( l )  
P X ( N + Z l = P X l Z I  
P Y ( N + Z I = P Y I Z )  
CALCIJLATE M I D P O I N T  OF EACH SEGMENT 
0 0  5 I = l t N  
XII)=0,5*lPXlI~cPX~I+l)l 
YII)=O.S*IPYllltPY11+1)) 
o X l I ) = P X ~ I + 1 l - P X I I )  
O Y I I ) = P Y ( I + l ) - P Y 1 1 ~  
OS~I~=SORTlOX~Il**2+DYlIl**2l 

5 CONTINUE 
X O I l ) = X I N )  
X I N + l ) = X I l )  
Y O I l ) = V ( N )  
Y l N t l ) = Y ( l l  
O S O I 1 I = D S I N I  
O S ( N t l I = D S I 1 )  
DO 1 5  I=I.;N 
I l = l + l  
R I I t l l = O  
DO 2 5  J = l l s N  
R I l r J l = S O R T l ~ X I I ~ - X ~ J l ~ * * 2 + l Y ~ 1 1 - Y ( J ~ ~ * * 2 ~  
R I J s 1  I = R l I t J )  

2 5  CONTINUE 
I 5  CONTINUE 

READ 1 5 ~ 4 1  A 
4 FORMAT 14F10.01 

HEAD 1 5 ~ 4 1  HAOP.UtPlH 
READ COORDiNATES OF I N T E R I O R  POINT  I N T O  PX AN0 P Y  
REAO (5.1)  M 
REAO 1 5 r 2 l  I M E S S I I I ~ P X ( I I ~ P Y ( I I F ~ ~ ~ ~ ~ ~ ~  

1 6  READ ( 5 9 1 7 )  K 
17 FORMAT ( F 1 0 - 0 )  

EKA=A*K 
P E R T = ( 2 ~ O * P I ) I l S Q R T ( 3 2 ~ 2 * K * T A N H l K * O E P T H ) ~ ~  
CALCULATE U N I T  MATRIX OF DFDN I N s N P I  
0 0  1 1 5  I = l p N  
DO 1 2 5  .I=l.NP 

1 2 5  OFONI I , J )=OeO 
I F  II.GT.NP1 GO TO 1 1 5  
DFDN 11.11=1.0 

1 1 5  CONTINUE 
C CALCULATE ELEMENTS OF THE E A T R I X  A N = l C * G N - i l  

0 0  3 5  I=1 ,N  
DO 4 5  J = l r N  
I F  I J  .ER- 1 1  GO TO 1 0  
ARG=K*R I I , J ) 
DRDN=IIYlI)-YIJ)l*OX(J)- ( X ( 1 ) - X ( J 1  
A N I I ~ J ) = - C ~ K * C ~ P L X ( B E S J ~ I & R G ) I R E ~ Y ~  
GO T o  4 5  

1 0  CONTINUE 
Y SS= 

=h.O*((Yllcll-Y(IIl/(OSlI+ll+DS~I)I- 
/ lnslI-l~+DSlI)*c~SlI+l~l 

XSS= 
= b . O * ~ ~ X l I + 1 ) - X ~ I l l / l D S ( l + l ) c D S ~ I ~ l -  
/ I D S I I - l ) + D S ~ l ) + D S ~ I + l ) )  
TEMP=(DX(I)*YSS-XSS*OYllll/PI 
ANIIII)=CMPLX(O.OITEHPI*C-~~O 

4 5  CONTINI IE 
3 5  CONTINUE 

C CALCl lLATE THE R IGHT HAND S I D E  VECTOR Q 
DO 1 3 5  P=l .NP 
DO 5 5  I = l . N  
U I  I r P ) = L n P C x 1 U . r O * ~  
DO 6 5  J=l ,N 
I F  (P.NE.1) 6 0  TO 3 0  
I F  I J  .ER, I 1  GO TO 2 0  



AKG=K*R ( I. J ) 
G ( I I J ) = C M P L X ( B E S J O ( A K G l t B E S Y O ( A R G I ) * O S ( J ~  
GO TO 3 0  
G ( I t I l = C M P L X ( 1 ~ ~ T ~ U O P I * ~ A L O G ( K * D S ~ J l * ~ 2 5 l - O 4 2 2 7 9 l I + O S ( I I  
Q(IpP)=O(IrPI+GlItJ)*DF0N(JvP) 
C O N T I N U E  
B ( I . P ) = C ; O ( I t P l  
CONTINUE 
CONTINUE 
CALL C S L E C V I A N I N s Q ~ N P ~ O E T I I E R )  
0 0  1 4 5  I = l r N  
0 0  1 4 5  J = l r 2  
OFOC~I;Jl=CMPLX~O.OtOOOl 
O=CMPLX(O.,-0.251 
CALCIILATE HAVE FUNCTION OF EXTERIOR PROHLEM AN0 WATCHING 
0 0  2 1 5  I = l . N P  
0 0  2 1 5  J=l ,NP 
I F  ( I ,EU .J I  6 0  TO 2 1 0  
H ~ I 1 J l = C M P L X ( B E S J O ~ K * R ~ I ~ J l 1 ~ B E S Y O ~ K + R I I ~ J l ~ l * 0 S ~ J l  
GO TO 2 1 5  
H(I~Il=CMPLX(1~0~THOOPI*(ALUG~K*DS(Il*~25l-0.42279))*DS~Il 
CONTINUE 
DO 2 2 5  I = l r N P  
0FDC(1511=CMPLX(1.0,0001 
DO 2 2 5  J = l r N P  
H ( I . J l = Q ( I . J l - C * H ( 1 9 J l  
CAI 1 T S I  FCOfH.NP.nFOC,IFDFT~IFRI 
WRITE ( h r 6 1  
FORMAT ( 1 H 1 1  
WRITE (6 ,191  K 
FORMAT ( Z X 3 H K  = F 1 0 c 5 , 2 X o '  ( l / F T I  * I 
WRITE ( 6 ~ 3 8 1  
FORMAT ( / / / .ZX; 'COMPLEX VALUE OF DFOC AT THE ENTRANCE ( l / F T l ' t / I  
H R I T E  (6.8)  ( D F D C ( I 1 l I ~ I = l . N P )  
FORMAT ( lX .bF13 ,51  
0 0  3 0 5  I = 1 7 N P  
A D F D C ( I ~ 1 I = C A B S ~ D F O C ~ I t 1 1 1  
WRITE I b t 6 8 )  
F O R M A T ( / / / , ~ X V ' A B S U L U T E  VALUE OF DFOC AT THE ENTRANCE I l / F T I * * / l  
WRITE (6 ;R I  I A O F O C ( I , l I F l = l . N P I  
CALCULATE BOUNDARY WAVE FUNCTION F 
0 0  2 3 5  I = l r N  
0 0  235 J = l r N P  
O F D C ( I + ~ ~ = O F O C I I ~ Z ~ + O ~ I O J ~ * D F O C ( J ~ ~ )  
DO 2 4 5  I = l + N  
P ( I 1 l l = D F D C ( I r Z l  
ABBF(1711=CABS(O( I i 111  
CONTINUE 
H R I T E  1 6 1 4 8 )  
FORMAT ( / / / rZX126HBOUMDARY F FUNCTION Q ( I + l ) s / I  
WRITE Ib rB)  ( O ( I r l ) s l = l r N I  
H R I T E  ( 6 9 1 4 8 )  
FORMAT ( / / / cZX . 'ABSOLUTE VALUE OF THE BOUNDARY F FUNCTIOM' I / I  
H R I T E  l b r R l ( P B B F I I r l l r l = l t N )  
H R I T E  (6.6)  
WRITE 1 6 - 1 1 9 )  HADPIDEPTH 
FORMAT (ZXs 'HARBDR OPENING I F T . I = ' v F  7 * 3 9 5 X t ' D E P T H  (FT, I= 'oF7,31 
WRITE l b r 1 9 l  K 
WRITE ( 6 ~ 2 9 1  EKA 
FORMAT IZX3HKA=F10.51 
WRITE l 6 p 1 2 9 1  PERT 
FORMAT (ZX,'PERIOO T = * , F I O . S t Z X t ' ~ S E C s ) @ J  
CALCULATE WAVE FUNCTION F FOR INTERIOR POINTS 
DO 7 5  J = l * M  
F=C#PLX(Or rOr )  
0 0  8 5  I = l r N  
R 1 = S O R T ~ ~ X ~ I l - P X ~ J l l * * Z + ~ Y ~ I l - P Y ~ J I 1 r + Z )  
R 1 K = # W  1 
D G D N = K * C M P L X ( 8 E S J 1 ~ R 1 K ~ ~ B E S Y 1 ~ R 1 K 1 l * ~ ~ P X ~ J ~ - X ~ I l l * O Y ~ I l  

- I ~ Y I J I - Y I I I I J U X I I I I ~ ~ I  
F=F+ 

+ O ( I ~ 1 J * O G O N - O F O C ~ I ~ 1 J * C F : P L X ~ B E S J O ~ R 1 K l ~ 8 E S Y O ~ R l K I l * O S ~ l l  
8 5  C O h l I N l J E  

F=O+F 
F I I J I - F  
FZ(Jl=SIGN(CABSfFJtREAL(FIl 

7 5  CDNTlNUE 
CALL  M A X M I N I F Z ~ M . F ~ M X T F ~ M N I  
F 2 M A X = A M A X l ~ A B S ( F 2 M X I ~ A B S ( F 2 M N l I  
0 0  6 0 5  J = l r M  

6 0 5  F R I J l = F Z ( J l / F Z M A X  
WRITE f b r 1 9 9 J  FZMAX 

1 9 9  FORMAT ( / / .2Xp'F2MAX='  pF 10.5) 
H R I T E  (6 .991  

9 9  FORMAT I / / 1 2 X v ' M E S H ' r  B X o ' P X ' r  ~ X ~ ' Y Y ' * ~ ~ X I ' F C M P L X ' D ~ ~ X ~ ' F ~ ~ ~  
+ 1 O X o e F R A , ' ~ / I  

WRITE ( 6 ~ 9 1  ~ M E S S ~ J ~ ; P X I J ~ ~ P Y ( J ~ ~ F ~ ~ J ~ D F ~ ( J ~ . F H ~ J ~ ~ J ~ ~ ~ ~ ~  
9 FORMAT ( l X t 1 5 e F l l r 3 r F l l r 3 ~ 2 F 1 3 - 5 e F 1 3 - 5 t F l 1 - 3 1  

GO TO 1 6  
END 



SUBROUTINE C S L E C D I  A t  Mp B v  N ?  O E T t  I L L )  

C S O L U T I O N  O F  COMPLEX SYSTEM OF LIN.EQUAT.UITH N R I G H T  HAND VECTORS 
C AND/OR COMPUTATION OF COMPLEX DETERMINANT 

COMPLEX A r  By AT, F A G S  DET 
D I M e N S I O N  A I 7 5 r P l ) ~ R l 7 5 , N )  
I L L =  0 
C A L L  O V E R F L I I O  
S I G N =  + l  

ARE= R E A L ( A I J ~ 1 1 1  
A I M =  A I M A G ( A ( J I I  I t 
A J I =  ARE*ARE + A I M * A l M  
I F I A M A X - A J I )  1 8 . 2 0 1 2 0  

1 8  AMAX= A J I  
JMAX= J 

2 0  CONTINUE 
I F I A M A X )  2 1 t 9 0 t 2 1  

2 1  I F l l - J M A X I  2 3 r 2 5 t Z 3  
23 S I G N =  - S I G N  

DO 24 K=IIM 
AT= A ( 1 , K )  
B l I ? K ) =  A I J M A X F K I  

24 A I J N A X I K ) =  AT 
IF IN ,LE ,O)  GO TO 2 5  

3 0  A ( J * K ) =  A I J o K )  - F A C * A l I e K l  
I F l N , L E - 0 1  GO TO 35 
DO 3 2  K = l s N  

3 2  B l J o h l  = B I J q K )  - F A C * B l I s K l  
35 C O N T I N U E  

C TR IANGULAR M A T R I X  READY 
I F l N . L E - 0 )  GO TO 7 0  
I F  I C A B S l 4 l M ~ W l )  .EO, 0 - 1  GO TO 90 
DO 40 K = l r N  

4 0  B I N , K )  - B I M . K ) /  A 1 M . M )  
00 60 I = l r I M A  
J= M- I  
K 1 =  J + l  
DO 50 K = K l r M  
130 50 L = l  .M 

5 0  B ( J ; L I =  B ( J v L 1  - A I J p K ) * B l K r L l  
00 60 L = l o N  

6 0  0 l J . L )  = R I J v L )  / A ( J e J )  
7 0  OET= A ( 1 ; l )  

DO 74 I = Z ? M  
7 4  OET= D E T * A l I , 1 )  

DET=  OET* S I G N  
C A L L  O V F R F L ( I O 1  
I F I I O . E O . 1 1  GO TO 9 1  
RETURN 

9 0  OET= (OlrO.l 
9 1  H R I T E l 6 t 9 2 1  
9 2  FORMAT l46HOOET A = 0 OR UVERFLOH I N  SUBROUTINE CSLECO I 

I L L =  -1 
RETURN 
END 



DATA INPUT 



DATA OUTPUT 

CCNPLEX VbLUE OF DFOC AT THE ENTRANCE I I I F T )  

- 1,04198 - 9,81575 -0,95365 -8=74154 

ABSOLUTE YALUE OF OFDC AT THE ENTRANCE I 1 / F T )  

S-87088 8,79368 

BOLNCARV F FUNCTION Q ( I r 1 )  

ABSOLUTE YALUE OF THE BOUMCARV F FUNCTION 



HARBOR C P E N I N G  l F T . l =  d.2~: UEPTH I F T . ) =  
K = 2.350'YJ I l I F T l  
KA= 3.384'13 
PERICD T = C.72890 15EC.J 

F C K P L X  
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V. 2. Computer Program for the Total Velocity at the Harbor Entrance 

The computer program for  the total velocity a t  the harbor entrance i s  

presented on p. 266. The calculations a r e  based on Eq. 6.7 which comes 

f rom Eq. 3.4 1. A specific example (the calculation of total velocity at 

the entrance of the Long Beach Harbor model) i s  presented for k=2.35 f t - l .  

The input data are: 

(i) the characterist ic dimension (A=l .  44 ft), water depth (H=l. 0 f t) ,  

(ii) the rlumber of vertical positions (M= I), the nu~mber of incident 

wave numbers (N=l),  and the number of entrance segments (L=2) 

to be used, 

(iii) the value of the vert ical  coordinate (Z=0. O), 

(iv) the wave number (K=2.35 f t - I ) ,  

(v) the complex value of the normal derivative of the wave function for 

the two entrance segments, ( -  1. 0420, -9.8 157) and (-0. 9507, -8. 7415), 

and the complex value of the wave function for the two entrance segments, 

(0.2528, 1. 5200) and (0.2484, 1.4602). These input data a r e  obtained 

f rom the output data shown on p. 262; the f i r s t  number inside the 

bracket re fe r s  to the r ea l  pa r t  of the complex number, and the second 

number re fe rs  to the imaginary part. ) 

~ h e s e  data a r e  shown on p. 266 under the heading of DATA INPUT. 

The output data a r e  also listed on p. 266 under the heading of DATA 

*i OUTPUT. The value of ( ~ z ) ~ ~ ~ / & & ~  (denoted i n  the program as  VNW) 

listed (6. 5689) corresponds to the resul t  shown in  Fig. 6.44 for ka=3.384. 

(It should be noted that for convenience some statements in the program 

a re  written for this specific example, i. e. two entrance segments, to facilitate 

the calculation). 
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Some of the symbols used in the program a re  listed in the following: 

z(J) = Vertical positions (2). 

K(I) = Wave numbers (k). 

KA (1) = Wave number parameter associated with K(1) (ka). 

CF(1, J)  = The complex value of f2 at  the harbor entrance for K(1) and 
the J~~ entrance segment. 

DF(I, J )  = The complex value of af, /an at  the harbor entrance for K(1) 
and the ~ t h  entrance segment. 

DFX(1, J) = The complex value of af2 /ax at  the harbor entrance for K{I) 
and the Jth entrance segment. 

DFXR(1, J)  = The r e d  par t  of 8fz /ax at the harbor entrance for K(1) a d  the 
~ t h  entrance segment. 

= The imaginary part of af, /ax at  the harbor entrance for K(1) 
and the Jth entrance segment. 

= The absolute value of af, /ax at  the harbor entrance for K(1) 
and the ~ t h  entrance segment. 

= The real  part  of af, /an at the harbor entrance for K(1) and the 
J~~ entrance segment. 

= The imaginary part  of i3f2 /an at  the harbor entrance for K(1) 
and the J~ entrance segment. 

= The absolute value -of af2 /an a t  the harbor entrance for K(1) 
and the J'th entrance segment. 

= The rea l  part  of f, at  the harbor entrance for K(1) and the ~ t h  
entrance segment. 

= The imaginary part  of f, at the harbor entrance for K(1) and 
the ~ t h  entrance segment. 

= The absolute value of f, at the harbor entrance for K(1) and 
the Jth entrance segment. 

= Circular wave frequency (a) associated with K(1). 

= Wave period associated with K(1). 

= Averaged total velocity across the entrance normalized with 
respect to the maximum horizontal water particle velocity in 
shallow water for K(1). (This quantity i s  -equivalent to - 

;t Ai 
(Vo lave , see Eq. 6.7. ) 



,COMPUTER PROGRAM FOR THE TOTAL V E L O C I T Y  AT THE HARBOR ENTRANCE 

R E A L  KIKA 
COMPLEX O F X t 1 0 0 . 3 )  
CORPLEX C F 1 1 0 0 : 3 ) ~ D F 1 1 0 0 ~ 3 1  
D I M E N S I O N  D F X R l 1 0 0 ~ 3 l ~ O F X 1 l 1 0 0 ~ 3 ~ 1 F F X I 1 0 0 ~ 3 )  
D I M E h S I O N  Z l l O O I ~ K l 1 0 0 1 ~ F l 1 0 0 1 3 ) . F F t 1 O O ~ 3 l t O F R ~ l O O ~ 3 l ~ D F ~ t l O O ~ 3 ~ ~  * F R 1 1 0 0 ~ 3 ) ~ F 1 ~ 1 0 0 p 3 ) 5 S G M l 1 O O l ~ T l 1 O O l r T O T A L 1 3 r l l ~ K A l 1 0 0 l r  

ip V E L 1 1 0 0 1 3 ) r V A V 1 1 0 0 ) . V N H 1 1 0 0 1  
DATA T O T A L l 4 H T O T V  e 4 H E L  e4H 
P I = 3 , 1 4 1 5 9  
K t A U 1 3 v L I  A v H  

F O R H A T I 8 F 1 0 . 0 )  
R E A D 1 5 r l l  MIN F L  
F O R M A T 1 5 1 1 0 1  
R E A 0 1 5 ~ 2 )  I Z I J I t J = l r H )  
R E A D 1 5 r 2 1  l K I 1 I t I = l . N l  
R E A D l 5 . 2 )  I I D F I I r l I r O F I I ~ 2 ) r C F l I ~ l I r C F I I o 2 I 1 ~ I ~ l r N I  
00 5 0 4  J = l r L  
DO 4 0 5  I = l r N  
F I I ; J I = C A B S ( C F I I ; J I I  
F F I I r J I = C A 8 S I D F I l r J I )  
F I I ~ J l - F ( I ~ J l ~ F ( l g J l  

F F I I Q J I = F F I I ~ J I * F F I I ~ J )  
D F R I I s J ) = R E A L I D F I I . J I I  
O F I I I I J I - A I H A G I O F I I s J 1 l  
F R I I . J l = R E A L I C F l l r J l )  
F I I I D J I ~ A ~ ~ ~ A G I C F ~ ~ ~ J ~  
COMTIMUE 
CONTINUE 
00 5 0 5  J - l t L  
DO 5 0 6  Ie1.N 
OFXRlI~JI=IFRlI~1l-FRIIt2ll/O-1 
nFXll1..Il-~F1I1.1~-FIll.?~l/O.l 
DFXII,Jl=CEPLXIOFXRlItJltDFXIlI~Jll 
F F X I I q J ) = C A B S f O F X l l r J ) I  
F F X I I ; J ) ~ F F X I I J J ~ * F F X I I ~ J )  
C O N T I  W E  
CONTINUE 
C S = S O R T I 3 2 . 2 * H l  
DO 1 0 5  J J ~ ~ F H  
H I = Z l J J ) + H  
DO 65 1=1.# 

.... , 
E R I T E l b o 1 9 1  I S G ~ ~ I I ) ~ T I I I ~ K ~ ~ I ~ K A I I I F Y M V I I I ~ ~ = ~ ~ # )  

19 FORt4PTI5FL2,41  
105 C O N T I M J E  

STOP 
EPJD 

DATA I M P U T  

DATA OUTPUT 

V E R T I C A L  P C S I T I L N =  0.0 FT 


