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ABSTRACT: In this paper, the diffraction theory originally developed for N bottom- 
mounted vertical circular cylinders is reviewed and generalized to be applicable to 
deep-draft truncated vertical cylinders, such as the columns of a tension-leg platform 
(TLP). More importantly, the complementary radiation problem for N vertical 
circular cylinders is solved. Radiation potentials as well as added mass and wave 
damping for six-degree-of-freedom motions are obtained in closed forms. To dem- 
onstrate the usefulness of the present method, it is applied to the computation of 
wave loads and hydrodynamic coefficients for four columns of the ISSC TLP and 
a row of 19 bottom-mounted vertical cylinders. The present method quickly pro- 
duces reasonably accurate solutions and precludes the laborious convergence test 
and grid generation, and hence should be a valuable tool for the preliminary design 
of deep-draft multicolumn structures, especially when the number of the columns 
is large. 

INTRODUCTION 

A number of offshore structures, such as tension-leg platforms (TLPs) 
and deep-draft semisubmersibles, consist of vertical columns that are usually 
connected by horizontal pontoons at large depths (Demirbilek 1989). It is 
also actively considered to use this system as a large-scale offshore airport 
or work station. This kind of gigantic structure can have up to several 
hundred columns. As the size and number of the columns increase, the 
interaction between waves and arrays of columns becomes increasingly im- 
portant. The resulting wave loads as well as free-surface elevation on these 
multicolumn structures can be surprisingly large due to a strongly reinforcing 
wave interaction. In a particular platform design, it is important to avoid 
these peaks, especially in an operational condition. 

There exists extensive literature on the subject of linear wave interaction 
with multiple bodies (Spring and Monkmeyer 1974; Ohkusu 1974; Kagemoto 
and Yue 1986a), however most of them are limited to the diffraction prob- 
lem, and the complementary radiation problem has rarely been studied 
(Chen and Molin 1990). Most notably, Kagemoto and Yue (1986) developed 
a powerful method that solves in principle all multiple-body diffraction 
problems where the solutions are already known for the individual elements. 
On the other hand, large-spacing approximate solutions (Mclver and Evans 
1983; Williams and Demirbilek 1988) have also been developed and shown 
to be efficient and fairly accurate when the cylinders are not closely spaced. 
Several attempts have also been made to investigate the second-order mean 
wave loads (Eatock et al. 1985; Mclver 1987) as well as second-harmonic 
forces (Abul-Azm and Williams 1988; Chen and Molin 1990; Kim 1991) on 
multiple columns. 

Recently, an explicit diffraction solution for arrays of bottom-mounted 
vertical circular cylinders, which is an extension of the earlier work by Spring 
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and Monkmeyer (1974), has been obtained by Linton and Evans (1990). 
This analytic solution is a generalization of McCamy-Fuchs' solution to N 
cylinders and expected to be an order of magnitude faster than any discre- 
tization-based numerical methods. This analytic solution is also expected to 
be very accurate at high frequencies, where other numerical methods need 
a large number of boundary or volume elements to have a reasonable ac- 
curacy at the expense of a substantial computing time. 

In this paper, Linton and Evans' (1990) diffraction theory for N bottom- 
mounted vertical cylinders is reviewed and extended to the complementary 
radiation problem. Analytical radiation potentials for six-degree-of-freedom 
motions of N vertical cylinders are obtained. In contrast to the diffraction 
problem, there exist local (or evanescent) waves in the radiation problem, 
which makes relevant analyses more complicated. The explicit expressions 
for the added mass and wave damping are also obtained. All the diffraction 
and radiation solutions are generalized in order to be useful for the arrays 
of deep-draft truncated cylinders, such as the columns of a TLP. 

FORMULATION OF PROBLEM 

We consider the linear interaction of monochromatic waves with arrays 
of N bottom-mounted vertical circular cylinders. For analysis, Cartesian 
coordinate system (x, y, z) as well as polar coordinate system (r, 0, z) with 
the origin on the mean free surface, and the z axis positive upward is used. 
We also use N local polar coordinate systems; (rj, 0 i, z), j = 1 . . . . .  N, 
which have origins at the centers of the jth cylinder (Xj, Yj, z = 0). The 
various geometric parameters relating to the relative positions of the jth 
and kth cylinders are shown in Fig. 1. 

Assuming ideal fluid and small wave amplitude, we express the total first- 
order velocity potential ~ as a sum of incident, diffraction, and radiation 
potentials 

Yk 

0 

/ 
m, X 

FIG. 1. Coordinate System 
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�9 (x, t) = dO, + dOo +dOR = R,[+(x)e -~'~ . . . . . . . . . . . . . . . . . . . . . . .  (1) 

The diffraction potential dOo represents the scattered waves due to the pres- 
ence of a fixed body, and radiation potential dOe represents radiated waves 
due to body motions. 

Wave Diffraction by Arrays of N Vertical Columns 
In this section, we revisit the first-order diffraction problem of a regular 

incident wave in the presence of N bottom-mounted vertical circular cyl- 
inders, which was considered in Linton and Evans (1990). 

The incident monochromatic wave of amplitude A,  wave heading [3, and 
frequency ~o has the form 

dp, - i~b4fo(z)eik .... (o-~) = _ i g A  fo(z ) ~ i~J~(kr)ei~(o ~) . . . . . .  (2) 
O) 03 n = - ~ 

where wave number k and frequency oJ satisfy the dispersion relationship; 
1.0 2 = k 9 tanh kh with g and h being the gravitational acceleration and water 
depth, respectively. The depth attenuation function fo(z) is given by fo(z) 
= cosh k(z + h)/cosh kh. The variable Jn is the first-kind Bessel function 
of order n. Eq. (2) can be rewritten in terms of the local coordinate system 
of the jth cylinder 

igA 
6'  = - --o~ fo(z) ~j e i k q c ~ 1 7 6  f~), ( ~ j  = e i k ( X , c ~  + Y, sin 13)) . . . . . . . . . . . . .  ( 3 )  

where ~j = phase factor associated with cylinder ]. 
The corresponding diffraction potential of the jth cylinder can be ex- 

pressed in the form 

?pJo - igAfo(z)  ~ A~Z~H~(krj) e~~ . . . . . . . . . . . . . . . . . . . . . . . . .  (4) 
(I)  n =  - ~ 

The function Z~ = J ' ( k a y H ' ( k a j ) ,  where H~ = first-kind Hankel function 
of order n; and aj = radius of the jth cylinder. The notation ' denotes the 
derivative of a function. To solve for the unknown coefficients A~, we first 
apply the following Graf's addition theorem for the Bessel functions to (4): 

ei"(%-~Jk)H~(krj) = ~ J-m(krk)H~-,,(kRjk)e -im(~kj-~ . . . . . . . . . . . .  (5) 
m =  - - ~  

Then, we can rewrite the total scattering potential +s(= do1 + +o) in the 
form 

+S(rk, Ok, Z) _ 

igA fo(z) . . . .  
O3 

k k inOk [~fl~(krk)i~# ~(~ + A,ZnHn(krk)e ] 

+ Z J j A . Z ~  ei(n-'~)~lke-i"(~-ok)J-m(krk)Hn-,~(kRjk) . . .  (6) 
j =  l , : /=k  n = - - ~  m = - - ~  

Upon applying the boundary condition on the kth cylinder; Odps/Or k = 0 on 
rk = ak, the coefficients A~ can be determined from the following infinite 
systems of equations: 
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N 

Akm + ~ A~nZ~e'("-m)~J~H,,-,,,(kRjk) = -- ~keim('~/2-f ~) 
j =  1,~-k n = - ~  

(k = 1 , . . .  , N , m  = - ~ - - ~ )  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (7) 

In order to evaluate A ~, the preceding infinite series with respect to n needs 
to be truncated at M. Then, we solve the resulting matrix equation for N(2M 
+ 1) unknowns. The fast convergence of this series with n has been observed 
in Linton and Evans (1990). After solving for the coefficients A~, the first- 
order diffraction potential is explicitly given by (4). 

Using (6) and (7), combined with Wronskian formula for Bessel functions, 
we can derive a simple expression of +s on the kth cylinder 

z )  - - 2 0 A  ~tOkak do(z) s Ak e in~ 
. . . . .  H'(kak------5 . . . . . . . . . . . . . . . . . . .  (8) 

This simple expression is particularly useful in obtaining wave forces on 
each cylinder. The first-order wave loads are given by the integral 

M(t)/ = Re M F) e-'~" (MF) = ip~ f fs~ ~bs (r x n)dS.. .(9) 

where p = fluid density; Sb = the mean body surface; r = (x, y, z) position 
vector; and n = (nl, n2, n3) unit normal vector pointing into the body. 

For deep-draft truncated cylinders, the fluid particle motions below the 
bottom of the cylinder are much smaller than those near the free surface, 
thus diffracted wave field by arrays of such cylinders can be reasonably well 
approximated by (3), (4), and (8). After integrating (8) over the body surface 
[e.g., performing z integration from the bottom (z = - D) to the waterline 
of the cylinder], we obtain wave loads on a group of deep truncated cyl- 
inders. In case D = h, we can recover the exact solutions for the bottom- 
mounted cylinders. 

The horizontal forces on the jth truncated cylinder of draft D(>>I )  can 
then be approximated by 

(A' I aJ,) (10) 
FJy] \ l J  k2H;(kaj) cosh kh "" 

The upper elements in the parentheses refer to the surge force and the lower 
elements to the sway force. Similarly, the pitch and roll moments are given 
by 

/ / 1 ~  2pgA [ k D s i n h k ( h - D ) - c o s h  kh + cosh k ( h -  D)] 
i k3H~(kai) cosh kh 

(AC, -+ A~) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (11) 

Finally, the yaw moment on the jth cylinder with respect to the global vertical 
axis can be obtained from 

M~ = -YjF~ + XjFJy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12) 

674 



The total forces on the entire structure can be obtained by summing all the 
forces on each cylinder. There is no straightforward way to evaluate the 
vertical force by the present method, since the diffraction potential has been 
obtained only outside the radius of each cylinder. This will be further ex- 
plained in the next section. 

Radiation Problem for Arrays of N Vertical Columns 
In this section, Linton and Evans' (1990) diffraction formulation is ex- 

tended to the corresponding radiation problem. In contrast to the previous 
diffraction problem, there exist local (evanescent) waves in radiation prob- 
lem, which represent a standing wave system around a body. Wave numbers 
associated with such local waves can be found from the equation 

-Kh  tan Kh ( l  l t~r<--K,h<--l~ (l 1 , 2 , . . ) ( 1 3 )  
~o2h 

9 \ Z ]  

For convenience, let us introduce a normalized radiation potential ~0k for 
modes k = 1-6  (in order of surge, sway, heave, roll, pitch, and yaw), which 
represents the radiation potential for forced oscillation in kth mode with 
unit velocity. Then the total radiation potential has the form 

6 

qb R = ~ --ito~k~k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) 

where ~k designates the amplitudes of six-degree-of-freedom body motions. 
We next consider the simultaneous forced oscillation of N vertical cyl- 

inders in a particular mode i. The radiation potential ~i of the jth cylinder 
can be written as a sum of progressing and local (evanescent) waves 

Hn(kr') KnSKlr)) ~ e ~"~ . . . . . . .  (15) 
�9 i = .= ~ - .  BJ.fo(z) kH'(ka]) + , = 1  ~ LJ.,fi(z) K,K.(Kfl,)] 

where K = modified Bessel function of the second kind; and the depth 
function for local waves ft(z) = cos K~(z + h)/cos Kth. It is well known that 
the eigenfunctions f~(z), l = 0, 1, 2, . , satisfy the orthogonality relation 
(fO_hft(z)fm(z) dz = 0 if m ~ l). "I~o solve for the unknown coefficients 
B~ and L~z, we need to rewrite (15) using Graf's addition theorem. The 
propagating wave term with wave number k can be treated exactly in the 
same manner as in the previous section. For local waves, we use the following 
addition theorem: 

ei"r176 = ~ l_m(Kfk)K,_,,(KtRjk)e-'m("~J -~ . . . . . . . . . .  (16) 

where I = first-kind modified Bessel function. Then, we can rewrite (15) 
with respect to the local coordinate system of the kth cylinder as follows: 

( H,,(krk) 
~,(rk, Ok, z) = n = - - ~  Bnkf0(z) kH:(kak) 

• •  einOk + ,:1 ~ L~,f,(z) K,IC.(~k)] 

+ 
] = l , ~ k  n = - ~  m = - ~  

j,.(krk) ei(.-m)~J~H._m(kR]~) BJ"f~ kH:(ka]) 
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\ 
+ Z L~tft(z) ei("-m)'~Jke-im=K"-m(KtRJk)) e i m O k  . . . . . . . . . .  (17) 

,=, ~,K;,(K,ai) 

The normalized radiation potential q~i satisfies the following body-bound- 
ary condition on the kth cylinder: 

= ( - n i ( - D  -< z -< 0)) (i = 1-6) . . . . . . . . . . . . . . . . . . . . .  (18) 
Or k \ O(z < - D) 

where, for convenience, the definition r • n = (n,, ns,/16) is used. Here,  
we artificially enforce the boundary condition below the cylinder bot tom to 
apply (17) to the truncated cylinder of  draft D > >  1. After  applying (18) 
and exploiting the orthogonality of  depth functions ft(z), (l = 0, 1, 2, . . .), 
we obtain the following infinite systems of  equations for B~ and L~t: 

N ~ J ' (kak)  
B~ + j=,, ,k ~ ,,=-~"" Be, H',,(kai)ei(n-") '~ 'kH"-m(kRjk) = Rmig~ . . . . .  (19) 

N 
I'(Ktak) k , L~,,, + Z z.~ L~, ei('~-m)'~'ke-i""~K,~ m(KlRjk) = Rm,g,(h) 

j = l , 4 = k  . . . .  K'(Kfa~) 

(k =1  . . . . .  N , m  = - c o - c o  1 <- l<-co)  . . . . . . . . . . . . . . . . . . .  (20) 

where the right-hand-side term Rkmi for mode i is given by 

R~, 1 (for i = 1, 5) (21a) = ~ s_+,.,~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

- m i  
Rkmi = ~ + l m  (for i = 2, 4) . . . . . . . . . . . . . . . . . . . . . . . . . .  (21b) 

2 - ' 

R~,,6 = X~R~m2 - YkRkm, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (21C) 

with ~.u = Kronecker  delta function. The depth functions g ~ (h) and g [(h) 
are given, respectively, by 

g~(h) = 4 cosh kh[sinh kh - sinh k(h  - D)] for i = 1, 2, 6 (22) 
2kh + sinh 2kh "'" 

4 cosh kh[kD sinh k(h - D) + cosh k(h - D) - cosh kh] 
g~(h) = k(2kh + sinh 2kh) 

for i = 4, 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (23) 

gi(h) = 4 cos Kth[sin K~h -- sin K~(h -- D)] for i = 1, 2, 6 (24) 
2K~h + sin 2Kth . . . . .  

4 cos Kth(KtD sin Kl(h -- D) - cos Kl(h -- D) + cos Kth) 
gi(h) = Kz(2Kth + sin 2K~h) 

for i = 4, 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (25) 

To evaluate the unknown coefficients Bkm and L~t,  we need to truncate 
(19) and (20) at n = M and l = L to obtain L + 1 sets of N(2M + 1) 
systems of equations. Using (17), (19), and (20), we can derive a simple 
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expression of ~ on the kth cylinder, which is very useful in deriving the 
formula for the added mass and wave damping 

~,(ak, Ok, Z ) =  n= ~ -= ( f0 (z )~ ;  + ,=1 ~ f l(z)cp~.)e "~ . . . . . . . . . . . . . .  (26a) 

1 {B~ [H~(kak) Jn(kak) ] Jn(kak) ~ . . . . . . . . .  (26b) 
J'(kak)J + g~(h)R~ J'(ka~)J 

I~(Ktak)] + g~(h)R~i I,,(Kflk)~ . . . . . . . .  (26C) 
I',,( Kzak).] I'.( Klak) J 

Recalling the fact that the added mass Ix and wave damping b are in 
phase with the acceleration and velocity of a body, respectively, they can 
be calculated from (26) and the following integral: 

I ~ q + i b q  f f s  - -  = p ~inj dS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (27) 
(.0 b 

where Ixq(bq) represents the added mass (wave damping) in direction j due 
to a sinusoidal motion of unit amplitude in the direction i. After performing 
the preceding integral, the added mass and wave damping of the kth cylinder 
for mode i are given by 

- -  ( /~1 k ) (for i = 1, 2, 4, 5) Ixii + i bii= Z ~kniQi + ~,,liOli "l'rGak 
t~l n = •  = 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (28) 

Ix,, + i - ((Xk'  2C2 -- Vk'  lc,)Q, 
O) n = •  \ 

+ ~ k k ) (29) (XkcP,,i2c2- Yk%mcOQn "rrak . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/=1  

where q ,  c5 = 1 and c2, c4 = in'ft. The depth-related functions in (28) and 
(29) are given by 

Qi = sinh kh - sinh k(h - D) (for i = 1, 2, 6) . . . . . . . . . . . . .  (30) 
k cosh kh 

Qi = kD sinh k(h - D) - cosh kh + cosh k(h - D) (for i = 4, 5) 
k 2 cosh kh 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (31) 

Qt, = sin Kth - sin K~(h - D) (for i = 1, 2, 6) . . . . . . . . . . . . . .  (32) 
K l COS Klh 

Qte = KiD sin Kl(h -- D) + cos Kth -- COS Kt(h -- D) (for i = 4, 5) 
c o s  ,,:,h 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (33) 

The preceding equations (28)-(33) can be used for the approximate eval- 
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18 19 
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"7, 
. C  

r 
/ / I / / / / / / / / / . / / /  

FIG. 2. Array of 19 Bottom-Mounted Vertical Legs in Oblique Waves 

uation of the hydrodynamic coefficients of N deep-truncated cylinders. When 
D = h, (26), (28), and (29) can be used as exact radiation solutions for N 
bottom-mounted cylinders. As was pointed out earlier, we are unable to 
determine the heave-added mass and wave damping directly by the present 
method. This will be further discussed in the next section. 

NUMERICAL RESULTS AND ANALYSIS 

The validity of the formula derived in previous sections is demonstrated 
through comparison with other numerical methods. The convergence of the 
present solutions with increasing numbers of Fourier components M and 
local waves L, is fast. The choice of M = 6 and L = 8 gives sufficient 
accuracy and is used for all the results presented in this paper. It is worth 
noting that more local wave terms need to be included as water depth 
increases (Kim 1991). 

The diffraction and radiation solutions derived in previous sections are 
exact solutions for arrays of bottom-mounted vertical cylinders. For illus- 
tration, we compute the surge and sway forces on 19 bottom-mounted iden- 
tical cylinders arranged in one line in oblique incident waves (13 --- 45~ as 
shown in Fig. 2. Surge and sway forces on each cylinder in this case are 
calculated and compared with Kagemoto and Yue (1986b), where the full 
interaction method combined with a hybrid finite element program is used. 
In Fig. 3, we see excellent agreement between them. The wave-load cal- 
culation on large number of vertical cylinders can easily be treated by the 
present method, as shown in this example. 

Although the equations are originally developed for arrays of bottom- 
mounted cylinders, it is applicable to deep-draft truncated vertical cylinders 
in view of the fact that the fluid-particle motions attenuate exponentially 
with depth. Therefore, we expect that wave loads on and diffracted wave 
field of deep-draft truncated cylinders can be well predicted by the present 
method. Based on this assumption, the modified formula for truncated 
cylinders was derived in previous sections. For illustration, wave loads on 
four identical columns (radius a = 8.44 m, draft D = 35 m, center-to- 
center spacing L = 86.25 m, and water depth h = 200 m) of the ISSC TLP 
(Eatock et al. 1986) are calculated for three wave headings (13 = 0 ~ 22.5 ~ 
and 45~ and the results are compared with those computed from a three- 
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Nondimensional Wave Number  ka: ( m . _ _ )  13 = 22.5~ and ( . . . .  ) 13 = 45~ (o BEM) 

dimensional boundary element method (BEM) (Korsmeyer et al. 1988) in 
which four cylinders are discretized by 1,920 total quadrilateral elements. 

It is seen in Figs. 4 - 9  that reliable results for surge-sway, pitch-roll, and 
yaw excitations can be obtained by the present method even at low fre- 
quencies, where the presence of the bottom of the cylinder can be felt. As 
pointed out earlier, the present method is not directly applicable to the 
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computation of the heave force, which is expected to be small anyway for 
deep-draft columns. For heave-force computation, averaged peripheral bot- 
tom pressure times bottom area of the cylinder is used, and reasonable 
results are obtained in this way. These bottom pressures also influence the 
pitch-roll moments through the corresponding moment arms (Faltinsen and 
Demirbilek 1989). To account for this bottom effect more accurately, ei- 
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genfunction expansions may be used inside the radius of each cylinder (Wil- 
liams and Demirbitek 1988). 

In Figs. 4-9,  we see pronounced peaks and troughs, which are closely 
associated with wave-phase effects among individual members. Ignoring 
wave-diffraction effects, the cancellation frequencies of the surge force for 

682 



2.5 

2 0 -  

1 5 -  

1.0 

0 5  

O0 

i v /  v l 
9 0  180 2 7 0  3 6 0  

ANGLE (DEGREE) 

FIG. 10. Wave Run-Up ['q/A[ around Leg No. 1 for Wave Number ka = 0.8: 
( ) 13 = 0~ ( - - - )  [3= 22.5~ and ( . . . .  ) [3 = 45 ~ 

2.5 

2 . 0  

1.5 

i 

1.o 

0.5 

o.o 

/ \ 

~" " ~ . \  7 .  ~ "~'-~. ~ . . t '  

0 180  2 ? 0  3 6 0  

ANGLE (DEGREE) 

FIG. 11. Wave Run-Up I.q/AI around Leg No. 2 for Wave Number ka = 0.8: 
( ) ~ = 0~ ( - - - )  ~ =  22.5~ and ( . . . .  ) ~ = 45 ~ 

[3 = 0, for example,  can be found from cos kL/2 = (2n - 1)~r/2(n = 1, 
2 . . . .  ). According to this, the cancellation frequency occurs at ka = 0.31, 
0.92 . . . .  for the given geometry,  which coincides well with the result given 
in Fig. 4. It is seen in Figs. 4 - 9  that wave loads are very sensitive to the 
change not only in wavelength but also in wave headings. It is of  interest 
to see that the maximum surge force for [3 = 45 ~ is greater than that for 
13 = 22.5 ~ H e a v e  forces are very small ,  as expected ,  compared  to the other 
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forces, and attenuate rapidly with wave frequency. In Figs. 4-9,  circles 
represent the results computed from the three-dimensional panel program. 

In Figs. 10 and 11, the wave run-up around no. 1 and no. 2 columns (see 
Fig. 12) is plotted for wave number ka = 0.8 and three different incident 
wave angles. Due to the interaction between columns, run-up profile of 
each cylinder is quite different from that of a single cylinder (Kim and Yue 
1989). In most cases, we observe maximum wave run-up at the weather side 
of each cylinder. The "bird-eye" view of the free-surface elevation around 
the four columns is presented in Fig. 12. This kind of computation is par- 
ticularly required to determine the air gap (deck height) of the offshore 
platforms (Demirbilek 1989) and can be routinely carried out by the present 
method. 
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In Fig. 13, the transfer  function of  surface ampl i tude  along the x-axis 
['q(x, 0)/.41 for four columns (radius = 8.4 m, draft  = 29.9 m, column 
center- to-center  distance = 67.2 m) of the TLP considered in Ea tock  Taylor  
et al. (1989) is r ep roduced  by the present  me thod  for the case; wave per iod  
= 6.1 s and wave heading = 0 ~ In Ea tock  Taylor  et al. (1989), three-  
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dimensional hybrid-element approach was used to obtain the result for the 
full TLP including pontoons. As can be seen, good agreement is observed 
and this implies that the pontoons little influence the diffracted surface 
waves. 

We next consider the radiation problem of N vertical circular cylinders. 
In this case, the matrix equation needs to be solved not only for the fun- 
damental wave number k, but also for each local wavenumber K~, hence the 
CPU time is increased accordingly. In Figs. 14-17, the added mass and 
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wave damping for six-degree-of-freedom motions of four cylinders of the 
ISSC TLP are computed by the present method and plotted as functions of 
nondimensional wave number ka. The results are compared with those 
calculated from the three-dimensional panel program and good agreement 
is observed, except at low frequencies of heave and pitch modes, where the 
discrepancy can be attributed to the bottom effect. In Figs. 14-17, circles 
and boxes represent the results computed from the three-dimensional panel 
program. 

Due to the large draft, the heave-added mass is almost constant with 
frequency and the heave-wave damping is very small. As pointed out earlier, 
the heave-added mass and wave damping cannot be obtained directly by 
the present method. In this paper, the heave-added mass of a single deep 
cylinder is calculated by the ring-source boundary-element method (Kim 
and Yue 1989), and the average value of Ix33/pa 3 is found to be close to 
two. Neglecting the mutual influence, four times of the preceding value can 
be used as an approximation of the actual heave-added mass of the four 
cylinders, as shown in Fig. 15. This bottom contribution also affects the 
pitch-roll added moment of inertia through its moment arm. 

Although the heave-wave damping is very small and practically not im- 
portant, there is a simple way of evaluating it from the combined use of 
Froude-Krilov heave-force approximation and Haskind relation. This result 
is shown in Fig. 15, and we see that the approximation reasonably predicts 
the actual trend. One possible way of improving the present method to 
better estimate heave hydrodynamic coefficients is to use additional inner 
eigenfunction expansions inside the radius of each cylinder (Garrett 1971; 
Williams and Demirbilek 1988) followed by matching the entire flow. 

In Figs. 4-17, the hydrodynamic loadings on four truncated cylinders are 
presented in the frequency range ka = 0.2-1.4. The lowest frequency cor- 
responds to the draft wavelength ratio, D/L = 0.13. The present analytic 
solutions are supposed to give better accuracy at higher frequencies (or 
shorter wavelengths). In other words, if D/L > 0.5, the wave cannot feel 
the bottom of the cylinder, hence the present solutions should be accurate. 
Otherwise, the present method is an approximation. From our numerical 
examples, it is seen that the results at low frequencies are still pretty good, 
except for pitch-wave damping and can be used if such an error is allowable. 

CONCLUSION 

In this paper, Linton and Evans' (1990) diffraction theory originally de- 
veloped for N bottom-mounted vertical circular cylinders is generalized to 
be applicable to deep-draft truncated vertical cylinders. More importantly, 
the complementary analytic radiation potential, added mass, and wave 
damping are also derived in closed forms. The radiation problem turns out 
to be more complicated than Linton and Evans' (1990) diffraction formu- 
lation due to the existence of local (or evanescent) waves. Since local waves 
are included, the present radiation solutions can be used even when the 
cylinders are very closely spaced. Based on those analytic solutions, an 
approximate, computationally efficient method to compute hydrodynamic 
loads on deep truncated cylinders is developed. The results are validated 
through comparisons with other numerical methods. In our numerical ex- 
amples, we see pronounced peaks and troughs depending on the wavelength 
(or the spacing of the columns), and they are very sensitive to the change 
of wave headings, which underscores the importance of wave directionality 
in such application. 

687 



The hydrodynamic loading on multicolumn structures containing a very 
large number of cylindrical legs can be efficiently approximated by the 
present method, while the use of  the three-dimensional panel program in 
those applications could be tedious and costly. The present method quickly 
produces reasonably accurate solutions and precludes the laborious con- 
vergence test and grid generation. The present method is particularly useful 
in the preliminary design, where a parametric study with varying geometry 
is required. 
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