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paruai derivalive boundary value problem: that is, {he conditions of existence and unigue-
ness of the solution are tée same in both formulations. Several numerical experiments are
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. Theaim of this paper is twofold. First, the integral equations of linear acoustics are presented
is a more rigorous mathematical way than that classically used in theoretical acoustics;
~in particular, the basic concepts of distribution theory are used. Indeed, the best modern
mathematical tools for discussing integral equations (existence of solutions, uniqueness,
% 7ecld integral representations, regulariry properties, numerical approximations) are those of
{he recently developed theories of “nseudo-differential operators” {1, 2] and “Poisson
. pseudo-kernels™ [3, 4]. The studies in which these theories have been developed are described
by Mikhim T3] in his book Multidimensional Singular Integral Equations; the modern sym-
“ bolic calculus now developed is of easier and more general use. A significant result (not
sstablished here) deals with the so-called “edge conditions” for the diffraction by a thin
" sereen: it can be proved that if a thin screen is considered as the limit of a thick obstacle, the
thickness of which is decreasing to zero—and it seems that this is the only way for defining
4 mathematically 2 thin physical screen—no “edge conditions” are to be imposed, but edge
* properties can be proved. Another significant result concerns the definition and the numerical
. approximation of the value on a surface of the normal derivative of a double Jayer potential,
the layer being supported by this surface: the theory of Poisson pseudo-kernels proves that
such a quantity is perfectly defined by a limiting process, and justifies the numerical approxi-
mation given in section 3.

The second aim of this paper is to gather and explicitly describe numerical experiments
1 which have been proved to be efficient for solving the various problems which can be
4. encountered by the physicist; accordingly treatments are presented of interior and exterior
4 problems, eigenvalue problems and problems of diffraction by thin obstacles. The literature
. onthese problems is plentiful, but the more efficient and general methods for solving difficult
. tases such as exterior problems, or thin screen diffraction problems, seem to have been often
Ignored, despite their simplicity.

The remainder of this introductory section is devoted to recalling how a boundary value

problem can be replaced by a system of integral equations, and to pointing out some diffi-

~ ‘culties which appear.
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1.]. BOUNDARY VALUE PROBLEMS AND INTEGRAL REPRESENTATION OF THE SOLUTION

Let Q be a bounded or unbounded domain of space R” (for acoustics, n= 2 or 3); I" is the
boundary of 2 with normal n pointing out of Q. One seeks the solution u(M) of a partial

differential equation

where Z is an elliptic partial differential operator of order 2m with indefinitely differentiable
coefficients (C* coefficients) and fis a function (or more generally a distribution) compactly
supported in @ (i.e., fis zero outside 8 bounded domain contained in Q).

The function w(M) and its successive normal derivatives 2°u(M) up to order (2m —1)
are assigned to satisfy m differential relationships with C* coefficients on I' (boundary
conditions) which can be formally written as

I, 8,u,..., 0% Py)(P)=0, Pel,i=12,...,m
The first difficulty which appears is to define the value on I of 2 function like 95 u(M) which
is perfectly defined when M is closed to a point P of I", but remains in Q; for example:

By (M ) = 0l P). grad,, u(M),
B2y u(M) = n(P).grad,,[n(P) . grad, u(M)),

where P is a parameter and the differentiations are taken with respect to M. 1f u is a function
defined and derivable in the whole space, the value on I of the preceding quantities is obvious,
but when this is not the case some limiting procedure is needed.

If Q is unbounded, the uniqueness of « is ensured by a Sommerfeld condition at infinity
(or any equivalent condition) which expresses the conservation of energy principle from
which the governing equation is generally derived.

Define now the elementary kernel Gs(M) which represents the free field response toa
spherical point source d5(M) located at S. Let w(P) be the density of multipole sources of
order j supported by I'. An integral representation of u(M ) is given by

uM)= [ F(Q)Go(M)dQ +j§_0(—u‘ [ (@) 91er Gatit) a0,
o - r

or, by using the notation of distribution theory, ¥ can be written as

4

d 4

Jj=0

where ¢, > means an integration over Q and J, is the Dirac measure with support I This
representation depends on g functions, the 1/(Q), which have to be determined by the
boundary conditions; consequently g is at least equal to m.

1.2, INTEGRAL EQUATIONS AND REGULARITY PROPERTIES OF THEIR SOLUTIONS AND OF
ns, one getsd

Introducing the integral representation of (M) into the boundary conditio R
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The difficulty arising at this step is to define correctly the values on I" of u(M) and its

. successive normal derivatives. It is well known that if the expression of u(M) is written for a

point £ on I', it does not generally represent the value of w on I': that is,
aq =
[ 7(@GuP)a@+ 5 1V | (@) ) G(P, 1 Q #u(P),  PET,
a j=0 r

pecause of the discontinuity properties of layer potentials and of the fact that non-integrable
kernels can occur.

The theory of Poisson pseudo-kernels (Gs(M) is such a kernel) provides a limiting procedure
for defining the value on I" of the 8/u. The expressions so obtained represent the physical
quamities: the jumps of the discontinuous layer potentials are taken into account; the in-
tegrals with non-integrable kernels become meaningful by taking the integration in a more
general sense than the Riemann one (finite parts of integrals are involved [6]). Though the
theory is somewhat complicated, the results are very easy to use, as will be seen later in the
discussion of diffraction problems in exterior domains, such as, for example, diffraction by a
thin reflecting screen. For this problem it is well known that the integral equation obtained
has a non-integrable kernel, but the numerical computation can be performed in a simple
way by applying the fact that the integral represents the normal derivative of a layer potential.
Thus, the more or less complicated ways generally proposed in the literature to obtain an
integrable kernel are unnecessary (for example, many authors suggest a regularization method
which leads to an integral equation the kernel of which is an integral over I'; such a procedure
results in uselessly heavy numerical methods).

The system of integral equations determining the ! can be written as

- m,

L] d J - .
- Ony$GalM )‘Z(a‘;) (p' é,)( Q»} — _'I!{a:(ﬂ<G,Q(P)-f(Q)>}; i=1,2,..
=0

J{ lim
Mgfl— Pe

and g + 1 — m additional relationships if g+ | —m > 0.

Classically, use is made of the Fredholm alternative; but one has to keep in mind that this
theorem has been proved only for regular kernels. Nevertheless, Mikhlin [5] showed thata
regularizing procedure (always very complicated, and to be determined for each particular
case) enables one to transform the integral system into a Fredholm one. The modern theories,
using a simple symbolic calculus, lead to the same conclusion even if the integral equations
considered are of the first kind.

A more important result, difficult to establish with classical theories, concerns the regularity
of the solution u( M) of the differential system and of the solutions Jt of the system of integral
equations. The simplest one is the following: (a) if @ is the sources’ support, u is the C*
function in Q — w; (b) if @ is strictly contained in 2, then the p/ are C* functions on I. These
important regularity properties can be helpful for improving numerical methods.

2. INTEGRAL EQUATIONS FOR THE SCALAR HELMHOLTZ EQUATION

Starting from the partial differential formulation of linear acoustics in homogeneous media
(see, for example, reference [7] for the establishment of the linearized governing equations),
the integral representation of the scattered and diffracted field is introduced and the cor-
responding integral equations are recalled. Emphasis is given to some delicate cases, such
as exterior problems for which eigenfrequencies occur in the integral equations, or thin
sereen diffraction problems with Neumann boundary conditions.
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2.1. HELMHOLTZ EQUATION AND CLASSICAL BOUNDARY CONDITIONS
2.1.1. Statement of the problem in bounded domains

Let @ be a bounded domain of space R, and I' be its boundary, assumed to be regular
(C* boundary); let n be the unitary vector normal to I" and pointing out to [, the space
complementary to &. If fis a function defined for all M in Q, one may denote by Tr/and
Tra,f the functions defined on I' as the limits

Trf(P)=Meggnmf(M)- n

Tfa..f{P)=M“l,l_‘rr}"rn(P).gradf(M). 2)
One looks for the solution of the following boundary value problem:

4+ kHp=1, vV MeQ, (3)

aTro+fTra,e=0, VMerl, (4)

where f is any function (or, more generally, distribution) compactly supported in Q: that is,
a function which is zero outside a bounded domain contained in Q; « and J are C= functions
defined on I'.
Remarks, (i) Ife = 0and 8 = |, one gets the Neumann boundary condition; the Dirichlet
one is obtained forx=1and f=0.

(if) The cases of piecewise C* boundary, or piecewise C= boundary conditions, can
be studied as limits of C* boundaries, or C® boundary conditions.

(iii) More general boundary conditions can be significant from a physical point of
view: for example, an integro-differential boundary condition takes into account the
sound propagation within the boundary, but the classical theories cannot prove that such
a problem is well-posed—the pseudo-differential operators and the Poisson pseudo-
kernel theories are needed.

It can be proved that the problem specified by equations (3) and (4) has one and only on¢
solution unless k belongs 1o a denumerable sequence k,; the k, are called the eigenvalues of
the Laplace operator with respect to the domain € and the boundary condition (4)- If
k = k., then the homogeneous problem (/= 0) has a finite number of lincarly independent
solutions, ¢,, called eigenfunctions; the non-homogencous problem has no solution unless
f is orthogonal to the corresponding eigensolutions of the transposed boundary value
problem. This theorem can be established with the Green formula representation of the
diffracted field which leads to an integral equation which is shown to be of Fredholm type:

2.1.2. Unbounded domains: uniqueness conditions

If Qisan unbounded domain, it is well known that equation (3) and boundary condition (4)
do not determine a unique solution. A third equation is needed, and it is possible 0 choost
between three families of such equations, as follows. .

(2) The Sommerfeld conditions. These describe the asymptotic behaviour of the solution
at infinity (see reference [8]). If 7 is the distance from M to the origin, ¢ must satisfy
one of the two following relationships:

!L‘E @ = O(r ")

Ilm(a,. @ — ikgp) = olr —t"=12) ' (5
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E_m‘l’ - o(r—(n—llm)

lim (2, @ + ike) = ofr~"""%) (6)

where O(r—"~12) means that the function decreases at least as fast as r~"~""*and
o(r="=1)/2) means that the function decreases faster than r~®~'»2, Either of the two
conditions (5) or (6) will ensure the uniqueness of the solution.

(b) The limit amplitude principle. Define (¢, M) and y_(z, M) as the solutions, satisfy-
ing boundary condition (4), of the following initial boundary value problems:

(d —-c'—zaf.) Y, M)= Y()f (M)e*™, k=

Yy_=2,y_=0 fort<0 (N

Y(1)=0 forr <0, = | fort>0,

(a —-';ai) Valt, M) = Y(0)f (M)e*e
J (8)

b,=2y,=0 for1<0
The different limits,

p_(M) =!i_ﬂ; (1, M) and 9)
0+ (M) = lim U, (1, M) (10)

are then uniquely determined solutions of the general boundary value problem
specified by equations (3) and (4).

(c) The limit absorption principle. Define, for g > 0, the functions @_, and @,, as the
unigue bounded solutions of equations (3) and (4), where k2 is replaced by (k — ig)?*
or (k + ig)*. Then the two different limits

‘P+D=|£irgq’+c and (11

Po= Li_(féw_e (12)
exist and are unique, and they are solutions of equations (3) and (4) with real k.

It has been proved [9, 10] that equations (5), (9) and (11) define the same solution, w'hile
equations (6), (10) and (12) define another unique solution. All these conditions are vanmfs
expressions of the energy conservation principle from which the Helmholtz equation 1s
derived. Throughout this paper, the Sommerfeld condition (5) (or another equivalent
condition) is assumed when necessary.

2.9, ELEMENTARY SOLUTION FOR THE HELMHOLTZ EQUATION; LAYER POTENTIALS; INTEGRAL
EQUATIONS
Starting from the concept of an elementary solution of the Helmholtz equation, itis possible
to define a class of functions which are solutions of the homogeneous Helmholtz equation in
an open domain: the simple layer and double layer potentials. When the non-homogeneous
equation is to be solved, the use of a layer potential enables one to construct an integral
equation defined on the boundary of the propagation domain.
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2.2.1. Elementary solutions and elementary kernels for the Helmholiz operator

A function (or more precisely a distribution) G is an elementary solution of the Helmholiz
equation if it satisfies

(4+ k)G =4. (13)

G represents the sound field at a point M due to a spherical point source located at the origin.
If the point source is located at S, because of the fact that the Helmholtz equation is a con-
volution one, the field at any point M will be obtained by a translation of G that is to say that
the value of G at M depends on the distance r(M,S) only.

It is to be noticed that a function G, satisfying equation (13) is not necessarily unique. But
if one adds that G must represent radiation into a [ree field, then G will satisfy the Sommerfeld
condition and will be unique. One then has the well known results (for the e'' time-
dependency convention):

EikriM.S)
GM.S)=——————  inR?, »
( ) 4nr(M, §) . (4
G(M, .S‘)=—T;-H°[kr{M, 5)]  inRZ (15)

Here H, is the Hankel function of the first kind. In reference [6), a proof of results (14) and
(15), based on the limiting absorption principle, can be found.

2.2.2. Simple layer and double layer potentials

Before defining Lhese potentials, the expression for the Laplace operator in the distribution
sense is needed.

Let ¢ be a function, defined in the whole R*-space, discontinuous alonga closed surfac_c r,
and having a normal derivative discontinuous along I'. The surface I divides the space Into
two domains, 2 and BQ, and the unitary vector n normal 1o I” is assumed to point out o e
One may introduce the following definitions:

Trre= lim (M)
MeCi-Mel ; (16)
= = I'
Tr o wlim o(M)
Trtd, o= lim 8,0(M)
Melfi—Per
(17

Tro.e= Melgpm 2, p(M)
d,0=n.grad

1t is impossible to define the Laplacian of ¢ in the classical way, because this function 18 ﬂ‘_"
differentiable in the vicinity of I'. It is first necessary to associate with ¢ & distribution, 2880
denoted by @ (for definitions see reference [6], or [11] for example). Denoting by {dg)the
classical Laplacian of ¢ which is assumed to be defined everywhere but on I, and by dp the
Laplacian in the distribution sense, one can show that

d
40 =80} + = [T ¢ = Tr"@)br) + (Tr* 3,0 = Tr=2,0) . (18)

28 LAYER
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[n equation (18), 8 is the Dirac measure with support I; (d/dm)[(Tr e — Tr p)d,] can be
considered as the normal derivative of the distribution (Tr*¢ — Tr™¢)dy, the support of

whichis I".
Assume now that ¢ satisfies the homogeneous Helmholtz equation in Q as well as in [:f?

One then obtains

d
(4+kDo={d+ k) o} + - [(Tr e —Tr @)d;] +(Tr* 8,0 — Tr~d,0)ér
n

d
=d—n[(Tr*(p—Tr‘¢p)6,—] +(Tr*d, ¢ — Tr-3,0)d,. (19

Equation (19) shows that the distribution g satisfies, in the whole space. a non-homogeneous
Helmholtz equation. The second term of the right-hand side,
(Tr* 8,0 —Tr=d,9)d, = udr,

represents a layer of simple sources, the density of which is p. The first term,
d ) d )
—[(Tr* @ —Tr @)ér]=—(vd,),
dn dn

isa layer of dipole sources with density v. Consider now expressions for the radiation of such
sources.

(a) The simple layer potential ¢, is the potential due to a Jayer of simple sources; conse-
quently ¢, satisfies (in the distribution sense) the non-homogeneous equation
Because equation (20) is of the convolution type, one has @, = Gsud, (where + indicates the
convolution product): that is (see reference [6, or 11]),

(M) = [ W(P)G(M, PYdP, (21)

r

where G is the free field elementary solution. By comparing equations (19) and (20), it can
be seen Lhat ¢, is a continuous function, but its normal derivative has a discontinuity

Tr*d,p, = Tr- 9,0, = (22)
Furthermore the following equalities can be proved:
H(Pg)
TE* Buury 01(Po) = -+ [ P) B0ir,y G(P, Po) AP
T
) . (23)
H o
Tr™ 0 nipyy 1 (Po) =— 20 g I.U(P) Oniry G(P, Po)dP
r

(b) The double layer potential g, that due to a layer of dipole sources, is a solution of the
non-homogeneous equation

d
(4 + K)o =—(udy) (24)
dn
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Here again it is obvious that
[ S
P2=Gs—(udy),
dn
or, more explicitly,

$;(M)=—J;:(P)a,(p,G(M. P)dP. (25)
]

By comparing equations (19) and (24), it is seen that ¢, has a continuous normal derivative,
but is 2 discontinuous function such that
Trr e, —Tro e, =pn,

the following equalities being easily proved;

(Pg)
Te* sl Po) = == [ W(P) By GLPo, P) 3P
r
u(Py) (26)
Tt~ @l Po) == == [ i(P) 8,5, G(Po, P) dP
= r

Itisimportant to remark that the value of 3,¢, at any point P, € I' cannot be expressed bya
classical integral: in fact, to get such an expression, the function G has to be differentiated
twice, so giving a non-integrable function. Nevertheless, a meaningful integral expression
can be obtained by introducing the concept of the finite part of an integral in a sense close to
that defined by Hadamard [6, or |1]; in the present case, the only possible definition of thal
finite part is given by the limit

Bucey Pa(Po) =—PI. [ 1(P) duie 30 G(Po, P) AP
' 2

—_ lim (27

M= By

jn“'{‘p) aanglaMP)G(M,P) dPp.
-

[n what Follows, each time that the symbol Pf. is used it is to be understood as the limit
value of the integral. Nevertheless, despite the non-integrability of the kernel, the numerical
evaluation of such an integral can be easily done by using rather classical approximations, as
will be shown in section 3.

2.2.3. Integral equations

Let I" be 2 closed surface in the R? space (or a closed curve in the R? space), the inside of
which is @ and the outside [}. One looks for a function, @, which is a solution of the
Helmholtz equation

(4+ K)o =1, (28)
where fis a source with bounded support and & is the wave number, assumed to be real, and
which satisfies on I" one of the two following boundary conditions:

Tre=0,
Trd,@ =0,

Dirichlet problem

‘ (29
Neumann problem

In equations (29), the symbol Tr stands for Tr* or Tr~, depending on whether an exllerior
problem or an interior one is being considered. One may denote by D.and Dy, rcsPecuvely.
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the exterior and interior Dirichlet problems; N, and N, similarly denote, respectively, the
exterior and interior Neumann problems. If an exterior problem is dealt with, a Sommerfeld
condition must be added:

lim @ = O(r~""112)

lim (2,0 — ik@) = o(r~t"~"2)  n=space dimension ] ' (30)
The conditions of existence and uniqueness of the solutions of equations (28), (29) and (30)
are well known; they can be obtained by applying the Fredholm alternative to the integral
equations derived from the Green formula (see reference [5], for example, where it is shown
qow this theorem can be used).

Let G be the elementary solution of the Helmholtz equation satisfying the Sommerfeld
condition. One seeks a solution ¢ of the form

d
¢=G¢f+6a[apér+ﬂa(vér)] (31)
(xand f are constants), or, more explicitly,
@(M) = 9olM) + [ [2(P) G(M, P) = BUP) 8,5, GM, P)]dP} -
r «
Qo= Gxf

The functions y and v must be such that the boundary condition is satisfied, which leads to,
for the D, problem,

(P)G(Pg, P)dP —
“!# )G(Pg, P) 2

P
BYED _ [ WPYouirs GlPorP) AP =~gelPe), ¥ Poel, (33)

for the D, problem,

P .
[ WP)G(Po,PYAP + EED _ B [PY 0, GlPo PYAP = —00(P), ¥ PocT. (34
r -

2

for the ¥, problem,

au( Po)
——5—+& [U(P)B,p,, G(Po, PYAP — BPY. [ WPYBuipyy s GlPo, PYAP = ~Bairy #(P),
r

r ¥V Peel, (35)
and, for the N, problem,
wi( Py)
7 @ [ 1(P) 2, e, GLPo, PYAP — PP, Ivu’) Bueg) Oniry G(Poy P) AP = —0nipyy 9ol Po);
r r v P,el.  (36)

First of all, a second relation between u and v is necessary to ensure the uniqueness of the
solution of the equations (33) to (36) (note, however, that the existence is not thereby proved).
For the choice u = v (which is the simplest relation), the following important theorem can be
Proved.
Theorem. For the interior problems D, and &, equations (33) and (35) have a unique
solution, whatever o and f are, unless k is an eigenvalue of the problem; in such a case,
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. the homogeneous equation (33) or (35) has a finite number of independent solntions}g
For the exterior problems D, and N,, the equations (34) and (36) have a unique solution-
for any k if the ratio «/f has a non-zero imaginary part. :

This result shows that, in any case, the solution of the interior or exierior Dirichiet and =

Neumann problems can be represented in the form
o(M) = po(M) + j ((P) [«G(M, P) — B 3nrsG(M, P)]dP.
r
The particular case of the representation derived from Green’s formula is obtained with

p=0,
=0, B=1,

e=1, u=Tro,@ for Dirichlet problems,

u=Tre for Neumann problems.

Remark. For exterior problems, the integral representation derived from Green’s
formula is not convenient for numerical computation. Indeed, the integral equation so
obtained has the eigenvalues of the D, problem if the D, one is solved, or of the ¥,
problem if the N, one is solved. Nevertheless, it can be shown that these equations
always have a unique solution, butitis always difficult to compute accurately the solution
of an equation which has a non-trivial solution for a zero second member.
Proof of the theorem. The proof of the theorem is presented here for one case only: that of
the representation of the solution of the D; problem with the help of a double layer potential.
The integral equation obtained here is

(38)

P
ﬂ(z 0)—.[.“{})) Oppy G(Po, P)dP = —@a(Po), VPsel.
2

Assume first that k is not an eigenvalue of problem D,; then let ¥ be its unique solution, and
define the function ¢ as the solution of the following N, problem:

(4+k)$p=0 in[D
Tr* 3, =Tr (8, — 9,¢°)
+ Sommerfeld condition

onfl ).

The function u defined on I by

u=Tr (- o) —Tr*¢=-Tr g, —Tr* ¢ (39)

enables one to construct the double layer potential

0dM) == [ u(P) 3 GM, P)dP.
)

One can now show that ¢, satisfies the boundary condition Tt~ @4= —@, on I': that is to say
that u given by equation (39) is a solution of equation (38). For that purpose, one may con-
struct the function

U=Y(Q) ¥ — @)+ [l — Y] —0u (40)

where
2= |

for M e Q,
Y(){ _

0 forMe &

@7
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number of independent soluzion;; s
34) and (36) have a unique solutjp
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- Y()] ¢; its normal derivative is equally continuous. As a consequence, Uisasolution
of the homogeneous Helmholtz equation defined in the whole space, because

d
4+ ) Y(Q Y — @0l =+ a(Tr‘ ®06r) — Tr™8,(y — @) or,

dxmG(M, P))dP. @7, -
(4+6)[) = V(@) ¢ =—-(Tr* $67) +Tr* 2,4 dr,

‘reen’s formula is obtained with

d d
sr Dirichlet problems, (4+kY) .= e (udr)=-— = [(Tr @0+ Tr* ¢)dr].

>r Neumann problems,
54 purthermore, U satisfies the Sommerfeld condition; this finally implies U= 0 in the whole

resentation derived from Green’s space, and, consequently,

. Indeed, the integral equation so f

the D, one is solved, or of the N, \

:an be shown that these equations

t to compute accurately the solution

1 zero second member.

nted here for one case only: thatof =" 1

the help of a double layer potential, "t

%
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One can now prove that u as defined in equation (39) is the only solution of equation (38).
Assume that a second solution u* exists. Then, the function @,— G«(d/dn)(x'5), which is
sero in 2, has a continuous gradient, satisfies the homogeneous Helmholtz equation in 2
and (@, and the Sommerfeld condition at infinity, and has a zero normal gradient on [';
hence it is identically zero in (@ as in ©, and, consequently, its jump g — u' is zero. Finally,
il k is an eigenvalue of the D, problem, there exists a finite number of linearly independent
eigen!'unctions i;. The functions

1 o

P), VPerl. (38)..

PR
o

aen It i B its uniique solution, a“dw* are solutions of the homogeneous integral equation associated with equation (38). It can be
-problem: “i4 shown that the functions g, are linearly independent; furthermore, the only linearly
: independent solutions of the homogeneous equation associated with equation (38) are those
defined by equation (41). Thus the theorem is proved.

u,=—Tr*¢; ¢, defined by Tr* 2, ¢, =Tr™ {, 4D

onrl ).
2.3, INTEGRAL REPRESENTATION OF THE FIELD DIFFRACTED BY AN INFINITELY THIN SCREEN

From a physical point of view, the concept of an infinitely thin screen is meaningless:
indeed, a screen of zero thickness does not exist. But it is interesting to look for possible
mathematical simplifications when such a screen is considered; furthermore, because of the
continuity of the diffracted field with respect to the diffracting obstacle geometry, if a zero-
thickness diffracting obstacle is mathematically meaningful, the diffracted field so obtained
will be close to that due to a thin screen, as shown in references [12) and [13]. Accordingly, for
the physical problem, the mathematical infinitely thin screen has to be defined as a limiting
_ case of a finitely thin obstacle. We will give an idea of the limiting procedure which can be
“'4  used for that purpose.

Let us consider, in R?, a sequence of obstacles ° limited by a boundary I'% and which
have a curve segment I as limit when & — 0 (for example, the successive ellipses of the elliptic
co-ordinate system have such a limit). Assume, for example, that Q° diffracts an incident wave
and that the total field satisfies a constant boundary condition whatever ¢ is. For sufficiently
large r, the diffracted field ¢§ has the asymptotic development

~po—Tr* o 39) . 4

P)dP.

[

ke ¥=

E a: clnﬂ
E it 2l
Vv

=)

P =
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The energy radiated through the circle at infinity is proportional to
+o 2
E'=73 |aj|

and is bounded by the incident energy flux. So, as ¢ — 0, the sequence E*® remains bounded,
and a classical theorem ensures that the af have limits a,. To these limits a, corresponds a ¢,

of the form
ikr +0

e
Py :W Z a,ein? for large r.

This function being analytic in a non-zero domain, it has a unique continuation up to I on
which the initial boundary condition is satisfied by the total field, It is important to remark
that no edge conditions appear,

If the Green integral representation of the @F is considered, it can be shown that this
integral representation has a limit. Consequently, another correct statement of the problem
is the following.

‘Let I" be a bounded two- (or one-) dimensional domain in R* (or R*) with normal .
One seeks a solution of the Helmholtz equation

U+k)o=f inf[l.
The function ¢ satisfies 2 Sommerfeld condition, and has an integral representation of
the form
O(M) = @o(M) + [ {(P)G(M, P) = V(P) ducrs G(M, P} dP.

r

(a) Dirichlet boundary condition. The total field must be a continuous function in the
whole space, which implies that v = 0. The function x is the unigue solution of

J’,u(P) G(Po,P)dP =—po(Po), ¥ Poel. (42)
;

The discontinuity of the normal gradient of ¢ is u.
(b) Neumann boundary condition. The total field must have a gradient continuous in the
whole space, which implies that u = 0. The function v is the unique solution of

PE. [ WP)3uieys uirr G(Po, PYAP = ~ducryy 0(Po), ¥ PoeT 43)
r

Remark. The so-called “edge conditions™ are useless when the screen is defined as 2
limiting case, or when an integral representation of the diffracted field is adopted.
Furthermore, when the classical partial differential equation and boundary condition
are used, the edge conditions appear as sufficient conditions only to secure the uniqueness
of the solution [14]. In reference [14] it is proved that the integral equation (42) provides
a solution satisfying these conditions. It is consequently better to speak of “edge
properties”.

3. NUMERICAL SOLUTION OF THE INTEGRAL EQUATIONS ASSOCIATED
WITH THE SCALAR HELMHOLTZ EQUATION

The present section deals with one numerical method only which appears to be simple bt
efficient in every case. Three classes of problems have been pointed out in the preceding
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* gection: interior problems for which forced oscillations as well as free modes (eigenwave-

aumbers or eigenfrequencies) have to be computed; exterior problems in which the associated
integral equations can have eigenfrequencies; and diffraction by an infinitely thin screen
for which the finite part of an integral can occur. Examples will be given for each of these
three cases.

The method is essentially based on the approximation of the integral by a sum, and the
gnknown function by its approximate value at a finite number of points. A linear algebraic
systemis thus obtained by letting the approximate first member of the equation be equal to the
second member at a finite number of points; when eigenwavenumbers are looked for, an
approximation is obtained by adjusting the wavenumber so that the determinant of the
system is as close to zero as possible.

The numerical approximations here proposed are compared to either analytical solutions
(variable separation), or experiments. The good agreement shows the efficiency of the
mcthod.

3.]. GENERAL DESCRIPTION OF THE APPROXIMATION SCHEME

In sections 2.2 and 2.3 several integral equations have been established. They can be written
in the form

Ku=1, (44)
where K is an integral operator of Fredholm type of the first kind,
u— Ky =[ R(Po, P)u(P)dP, Pyel, (45)
or of the second kind, '
(46)

p—> K =p(Po) + [ R(Po,P)u(P)dP,  Poel.
r

In these expressions, the integrals are of several kinds: Riemann integrals, Cauchy principal
values, Hadamard finite parts. The function K(P,,P), called the kernel of the integral
equation, is always a singular function.

Whatever the operator K is, the same approximation scheme is adopted. The boundary I’
isdivided into NV elements, denoted by I, (j = 1, 2, ..., ), the centers of which are named P;
the areas (or lengths in R?) of the I, are of the same order of magnitude. If the linear dimen-
sions of the I", are small enough compared to the wavelength (less than A/6 seems to be
sufficient), it is quite reasonable to approximate the unknown function p(P) by a constant
y, in each I';. With y, again denoting the function which is zero everywhere on I but I'},
equation (44) becomes

g Ku;=/1. (47)

J=i

Itis obvious that equation (47) cannot be satisfied everywhere on I', because its first member
depends on N constants (the u,) only. If the equality (47) is satisfied at NV points, equation (47)
can be solved: it is to be noticed that this is equivalent to the approximation of the function f
by an N-step function. The test points must be the P; if K has the form (46); they can be
other points when K is given by expression (45). It is possible to choose more than N test
points and to solve the resulting algebraic system in the mean square sense, but such a
complexity does not seem to be useful: the computing time is much increased, but not the
accuracy of the result.
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Finally, the most interesting approximation is provided by a system of the following romf

S KufPY=1(P),

Jmul
Nevertheless, it is generally impossible to obtain an exact expression of the
Ky (Py). (49)

In such an expression, the integral of the kernel, extended to I';, occurs. An approximation
of the value of such integrals will be needed.

Two cases are to be distinguished.

(a) If i % j the kernel K(P,,P) is regular everywhere in I';; the simplest approximation of
expression (49) is then provided by

jR(P,,P}n,dP:u,K(P,.P,)xareaofr_,. (50)

rJ‘

(b) If i = j, the kernel K(P,, P) is singular in P,, and another kind of approximation is needed.
For example, I'; can be replaced by a disk, located in the plane tangent to I" at the point Fy;
the area of the disk is chosen equal to that of I';; the analytical integration of E(P,,P) over
that disk then provides a good approximation.

Remark. It is sometimes necessary to obtain more accurate estimations of the integral of
the kernel than that given by expression (50). A powerful method is the following: let
I', be divided into n sub-elements I'} (4 to 9 are in general enough), centered at points Pj;
an approximation is then given by

jff(P,.P),u,—dP:p, }u'_ R(P,,P}) x area of I'}. (51
i f=1

3.2, INTERIOR PROBLEMS

For the two interior problems here proposed, both forced and free oscillations are examined.
The first example is that of a plane circular domain on the boundary of which a Neumann
condition is assumed. Comparison of the numerical solution to the analytical one is madt_i‘
The second example deals with an ellipsoidal room containing a sphere, the center of which s
that of the ellipsoid; here again, the Neumann boundary condition is considered. The
numerical results are compared to experimental ones.

3.2.1. Circular plane domain: comparison of the numerical method to the analytical one [15]

Consider a plane circular domain with center O and radius a (see Figure 1); a cyiindrical
point source is located at S, the cylindrical co-ordinates of which are (R, 0). A point MingQ
has cylindrical co-ordinates denoted by r and @; the co-ordinates of a boundary point P are
a and 6. The acoustical field (M) due to the point source § satisfies the equation

A+ k) eM)=64M), YMeQ, (52)

and the boundary condition

Tré, o(P)=0, Y Perl (53)

i=1,2...,N g
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Figure 1. Geometry of the plane circular domain.

(n is the outer normal). Let the diffracted field be represented by a simple layer potential

o(M) = (M) + | G(M, P) u(P)dP,

PolM)=Gaf(M), G(M,P)=— %Ho{kd(M, P)).

The boundary condition (53) provides the integral equation

2r
o5 § .
= %)- é j 8,, Ho [kd(Po, P)) i(P) adB(P) = — f: 8, Holkd(S, Po)),

o
P=(a,8), Py=(ro—ab,). (54)

(2) Analytical solution
The function #(P) can be represented by a Fourier series

+w

UP)= 3 ane™.

me—x

By using the series expansion of Ho[kd(M, P)],
4o
Holkd(M, P)] = 3 J,(kr)H,(ka)e'"®~®, a>r,

the Fourier coefficients of z can easily be calculated, leading to

= Ju(kR)H,(ka)
. 2nall(ka) H (ka)

img

wP)=-

The corresponding expression for the sound field is provided by the following series:

i i & Hiy(ka)
(P(M)=‘ZH0{kd(S,M)]+" ——

ing
32 T.(ka) J(kR) I (kr)e™™s. (53)

This series is defined for all values of k but those for which J,(ka) is zero; the values of k such
that J(ka) = 0 are the eigenwavenumbers of the problem.
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(b) Numerical solution
Let I be divided into N equal arcs I';, with centers £,. Along each I, u(P) is approximated
by a constant. Equation (54) will be approximated by the following linear algebraic system:

’
S Aym=fi,  i=12,..,N, (56a)

J=1
Aijwi=—ikH (kd,)cos(dy,m) Ty, dyj=PP,, (56b)
Ay =2 = (inl",/42) [Se(z) H (2) — HO(ZJSI(Z)]':-J;{‘,}L (56¢)
Ji=ikH,(kp)cos(p;, 7)), ;= SP.. (56d)

In equation (56¢), A}, is obtained by integration of the kernel of the integral equation
over the arc element I'y, making use of the Struve functions Se¢(z) and S,(2) [16]; (d,,. 7;)
is the angle between the vector P}J"I and the unit vector n; normal to I'" in P;; (7;, u) is
the angle between the vector SP; and ;. The total field due to the point source § is
approximated by

@(M) = ool M) — :IZ 1y Holkd(M, P)IT,. (57)

Jal

Remark. The problem has symmetry with respect to the OS axis, but, to obtain a more
significant test of the method's efficiency, the authors of reference [15] ignored this
simplification.
(c) Comparison between numerical and analytical solutions
In a first computation, eigenwavenumbers were sought; in Table | the exact eigenwave-
numbers from ka = 0 to ka =10 are compared to the approximated ones, for lwo approxima-
tion orders: N =20 and N = 40.
In a second calculation, the total approximated field has been computed for ka = 4-5 and
ka= 18, along several diameters; the source is located at the point (R = a2, 0). Figure 2

TABLE |
Exact (v,) and approximate (v,) eigenwavenumbers
N=20 N=40

r A N fr A N

o Vs Av Va Ao

v v
1-84118 184105  7-06 (=5) 1-841165 0-815(-5)
3-05424 3-05393  1-015(—4) 3-05419 164 (—5)
3-83171 383138 861 (-9) 3:83175 1-04 (-5)
420119 420053 1-57 (—4) 4-20110 2:14 (-5)
5-31755 531650 197 (—4) 531738 3-13 (=5)
5-33144 533083 114 (—4) 5:33139  0:938(-5)
641562 641404  2-46 (—4) 641579  2:74 (-5)
670613 670516  1'44 (—4) 670600 1-94 (-5)
701559 7-01462 138 (—4) 701542 2-42 (-5)
7-50127 7-49900  3-03 (—4) 7-50097 400 (=5)
801524 801379 181 (—4) 8:01503 262 (—5)
8-53632 853486 1'7T1 (—4) 853609 269 (-5)
8-57784 8-57501 3:30 (-4) 8:57748 420 (—5)
9:28240 9-28053 201 (—4) 928209  3-35 (—5)
964742 964389  3:66 (—4) 9-64695  4-87 (—=5)
9:96947 996748 200 (—4) 996917 3:01 (-35)

(12} o
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‘. Purposes; indeed the accuracy of
"'{ furthermore, a 10~? accuracy is q
Figures 2(a) and 2(b) (ka =4
== Approximation; but whenka = 18
E ﬂt‘-cumcy (Figures 2(c)and 2(d)).1
+ that required by physicists: inde«
l°gal'llhmlc representation will s



‘geach I', u(P) is approximateqd
llowing linear algebraic system:

N, (S6a)
d;=PP, (56b)
31(2)] | zenryr2s (56¢)
: SP,. (56d)

kernel of the integral equation
ns So(2) and S,(2) [16]; (d,;. 11;)
i; normal to I' in Py; (7, m) is
i due to the point source S is

P . (57)

S OS5 axis, but, to obtain a more
5 of reference [15] ignored this

in Table | the exact eigenwave-
mated ones, for two approxima-

been computed for ka =45 and !

the point (R =a/2, 0). Figure 2

avenumbers
N=40
__..-__ﬁ
4v
D

165 0-815(—5)
19 1-64 (—5)
15 104 (-5)
10 214 (—=5)
38 313 (=5
39 0-938(-5)
9 274 (-5)
X 194 (=5)
2 242 (-5)
37 400 (=5)
B 262 (—3)
9 2:69 (-5)
18 420 (—5)
9 335 (-5)
35 487 (-5)
17 301 (-5
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Figurc 2. Exact and approximate results for the fieid in the circular plane domain, —, Exacl solution;

numerical approximations: A, N=20; 0, N=40; o, N=80. 0 is the angle between the diameler passing
through the source and the diameter along which the acoustic field is computed, (8) ka=43, 8=0, n;
(byka=4 5, 0= £n[6, n £ n/6; (¢) ka=18, =0, x; (d) ka = 18, &= 1n/6, x = x/6,

shows the exact curves on which the numerical values, distinct from the exact ones, have been
plotted; the approximation orders used are N =20, N =40 and N =80.
(d) Conclusion and remarks

Table | shows that the results obtained with N =40 are accurate enough for physical
purposes; indeed the accuracy of eigenfrequency measurements js hardly better than 107%;
furthermore, a 10~2 accuracy is quite sufficient in most cases.

Figures 2(a) and 2(b) (ka =4-5) show that the total field is well described by the N=40
Epproximation; but when ka = 18, an N = 80 approximation is needed to obtain an equivalent

. ccuracy (Figures 2(c) and 2(d)). Note that the accuracy of the numerical results is higher than
. that required by physicists: indeed, one is essentially interested in the dB levels, and such a
. logarithmic representation will smooth out the errors indicated in Figures 2(a—d).
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We conclude this section by a remark concerning a second analytical representation of the 3 equations (5 ?0 ‘2?;:?;;2:;‘: ?‘3::‘!_
solution:; that obtained by an eigenfunction series. The authors of reference [15] computedit, - dmdcdmto )
It appeared that the computation time is very long (six times that needed by ?he numerical :
method), and the accuracy is not as good as that given by the direct numerical approach i j P)3ucry G(Po
proposed here. E UP) Bnpy Gy,

| I
3.2.2. Multiply connected domain: comparison between the numerical method and experiment 80 .
[17] A”=>jza,,(,,.,c(P,,P,*) T+
K=

Consider an oblate spheroidal domain, containing a sphere in its central region (see
Figure 3); the axial lengths of the spheroid are respectively a and a/2, the sphere radius being g% £ U k=1,2, ..., 80) =ares
0-4a. A spherical point sound source is Jocated at one focus of the sphcrold ’l_’hc boundaries ¢ PI (i=1,2, ... 80)=center o
X and ¢ of both the ellipsoid and the sphere are assumed to b reflesting, For sucha IV k=12 80) = cent:

bl lytical t  known. The efﬁc:en of the numerical method will Pl K= dy 2y iy ) e 0D
problem no analytical representation is known. cy P, = center of the common i
be demonstrated by comparing the prediction so obtained to experimental results.

) O14 = oy [%(@) 80,

A < 0

ou(f=12:532,1=1,2,.
clements of o,

0,(j=1,2,..,32,i=12,.

+ - Similar approximations are made f

F In this example too, the eigenfrec

¥

i+, been computed ; comparison is ma
‘{5 Table 2 show the difference betwe
¢ the agreement is good (the error is
s curves for ka =5, 10 and 20 (full li
> the complexity of the problem, the

Z

" physical purposes.
Figure 3. Geometry of the multiply connected domain. a purp

The diffracted field i§ described by a simple layer potential, the density of which i is‘u o Z, ‘: 7ﬁ
and v on o. These functions are a solution of the following system of integral equations: , : 4& Blifiusion:
#(_p) B oes V. = COML
=+ [P 2 GEE e+ | 12 ) GE QIS0 -~a.m¢ou°)} £ —
i ¥ (H
( (P Byq GLQ, P')3P" ~ —+jv(Q ) e G(Q, O 4Q' = -au:m‘Po(st ¥ geo 1
S ) o
_— 36¢
where P 43¢
g lkrtM. Py elkr(S. M) 645
_P T e —— (M A -
ORI = st ry | P s e
\a(/The symmetry of the geometry impliesthat the functions u.and y depend on the x co-of dir:;i:; g;;
only; thi cation has taken into account. The surfaces Z and g have been divh : 99¢
into annular elements (80 for 2 and 3 each surface element, z and v are aPPer 104(

\
mated by constants »; (i=1, 2, ..., 80) and !-, (j=1,2, .., 32). The integrals occurring i

D - v




!

-~ |
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§ cquauons (58) are evaluated by a simple integration formula. Each annular element being

| analytical representation of the
" givided into 80 sub-elements, the following approximations are used;_

rs of reference [15] computed j "4

= =
es that needed by the numericg| ==
* the direct numerical approg —
i IP(P')anw,)G(-PbP )P~ Z FJ{Z Bnrp G(P L Pl) Zps+ Auaul
I Jml k \
umerical method and experimeny 80 oy
u=zzan{r,)G(Pi-P3t) Lo+ 0,y G(Py Pry) Zy,s oy=1 ifi=}j, =0 ifi#}j,
k=
shere in its central region (see
and a/2, the sph i i 3
of th‘cz/sphcroilcjl ::‘rr;: iif:l::'.ng i (i k=1,2, ..., 80) = areas of the 80 sub-elements of the 80 annular elements of Z,
s pectactly refiecting For i :}‘f: : P (i=1,2, ..., 80) = center of the sub-element (i, 1),
cy of the numerical method will Py (js k=1,2, ..., 80) = center of the sub-clement (j, k),
0 experimental results. Py, = center of the common limit arc of £, and Z,;
] . 80 32 2
l [H(Q) 30z G ©)8Q = 3 vy{ 3 Guiny GLPu Qi
l 0 J=1 l=]1
en(j=1,2,...,32,1=1,2, ..., 80)=areas of the 80 sub-elements of the 32 annular
elements of o,
0,(=1,2,...,32,1=1,2, ..., 80) = center of the sub-element (j, ).
i Similar-appreximations are made for the second of equations (58).
{  Inthis example too, theeigenfrequencies of the domainand the forced acoustical ficld have
been computed ; comparison is made between numerical and expenm
3 QM" aBle2show the difference between the computed ejgenfrequencies and the measured ones:
f the agreement.is good (the error is about 2 %), Figure 4 shows the experimental sound field
| curves for ka =5, 10 and 20 (full lines) and the numerical predictions (dotted lines); despite
the complexity of the problem, the numerical approach appears to be efficient enough for
=t ; physical purposes.
1, the density of which is  on Z,
iystem of integral equations: TABLE 2
Eigenfrequencies of the ellipsoidal raam containing a sphere; —
v, = computed values, v,, = measured va!ue:
Q' =—0um @olFP), VPel 1
| (HZ) (I;Iz) N
‘=B @ol@), VOQE& 111-0 113
(58) | 2012 204
2771 279
3649 364
gIkr(S,M) & 4385 44]
. kil : 6421 640
dnr(S,M) 1 7826 784
# 5492 854
nd v depend on the x co-ordinale < 912-6 907
rfaces T and o have been divided 2} 931-3 933

9961 990

ice element, g and v are dppfox_l‘ 10406 1033
, 32). The integrals occurring it =
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.;/'/'I

‘/—-I s
A
g

e’

N (dB)

o] : a
x f .
Figure 4. Sound field within the ellipsoidal room containing & sphere. ..., Computed points; —,
experimental curves, (a) ka = 3, (b) ka = 10; (¢) ka = 20. )

' 4
3.3. EXTERIOR PROBLEMS

Central to this example is the aim of showing the efficiency of the use of a simple layer-
double layer potential combination with complex coefficients. The present results are due 10
Bolomey and Tabbara (18, 19]. The diffraction of an incident plane wave by a perfectly soft
cylindrical obstacle (Dirichlet problem) of radius a is dealt with. The numerical resulls arc
compared with the analytical series solution obtained in cylindrical co-ordinates (by
separation of variables).

First, the Green formula is used, giving a simple layer potential description of the diffracted
field:

o(M) = @o(M) - [ 2, 0(P") G(M, P)dP" (59)
r
The corresponding integral equation is
d.9(P
q; )+_[3ufP(P')3an(P.P')dP' =dmm@o(P), VPel. (60)

r

The wavenumber k is chosen equal to n eigenwavenumber of the interior Dirichlet problenjt-
Equation (60) is solved numerically under the restrictive condition that the expression (59) 18
zero within the cylindrical obstacle (this method was proposed by Schenck [20]). '

Second, the diffracted field is described by a simple layer-double layer potential combina-
tion:

(M) = po(M) + j H(P") [Bnien G(M, P") — iG(M, PY]AP". 1 (61)
r
Here the corresponding integral equation is
P
—g(—z—)+J-,u(P') [@ncety G(P,P") — iIG(P,PN]AP’ = —@olP)s Y Pel, (62)

>

and this is solved numerically in the way proposed in section 3.1.
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[n Figure 5, the moduli of the determinants of the algebraic systems approximating

equations (60) and (62) are compared: it appears immediately that, as the wavenumber

ifiCreases, the system derived from equation (60) can be singular, while that deriving from
cquaﬁon (62) is always regular. The total field is computed for k = 3-8317/a, which is an
sigenwavenumber for the Dirichlet interior problem: for such a k, the de.terrninam of the
system produced from equation (60) is singular. Figure 6 shows that, despite the use of the
condition that expression (59) is zero within the obstacle, this description provides a very bad
gumerical result, conversely, the representation (61) provides numerical results in very good
agreement with those from the series expansion of the total field; the errors are too small to

pe shown on the drawing.

107% T T T T T
Mixed loyer
potential
-0 L. .
10 7
— BT T
3 Simgle layer
E potentigl
oS |D-Zﬂ - , -
Ja (k0120
0 ) g
[l ol 1 ! i 1 1 | ]
k-1 20 25 30 38 40 45
Ko

Figure 5. Comparison of the moduli of the determinants of the algebraic systems approximating equations
(60) and (62) for, respectively, a simple layer potential and a mixed layer potential. '

. : A ¢ | ' T Cyindricol obstacle

2:5)- -

—> kx

Plane o = 3-8317
wove =

Sumple loyer potential
————— W ized o
potental_
| |

v dw

Figure 6. Comparison of the simple layer (------ ) and the mixed layer (: ) approximate field of the soft

cylindrical obstacle.

3.4, DIFFRACTION BY AN INFINITELY [HIN PERFECTLY REFLECTING SCREEN

It was shown in section 2.3 that the only layer potential description of the field diffracted by
a perfectly reflecting infinitely thin screen is that of a double layer one; the corresponding
integral equation involves a finite part in the Hadamard sense. Hence it is useful to show how
such an integral equation can be numerically approximated and solved (see also reference
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The integrals for X < Qor(X':
‘by using the series representatiol
position of cylindrical waves centet

[21]). Two examples are detailed here: first, the diffraction of a plane incident wave by ay
infinite plane strip is considered, and numerical results are compared to the Mathieu function;
series expansion solution; in the second example, the acoustical field due to a spherica| .'
incident wave and diffracted by & rectangular screen is numerically computed and compared

4
to experimental results.

3.4.1. Diffractionef a plane incident wae by an.infinite plane strip

Let an infinite plane strip be located in the ¥ =0 plane, and extended from X'=-ato
X = +a. A plane incident wave, go =" is diffracted by the strip which is assumed to be

0
b 4 o —
Heller)
= > ~04-A A
a +2 .j-o (’&v) e
s )
T'rp°=gllr ) ]

Figure 7. Geemetry of the infinite plane strip:

perfectly reflecting. The diffracted field is described by a double layer potential, the density

i

of which is the solution of the following integral equation: : s
¥
+a agc X, Xr 5 )
Pf.j y(X')—-—(—,-—) dx’ =wik, . —a< X<+a,, : ol®
S’ OyOy ' os
PGX,X) i - o
1.4 L H VX=XV + (=T ! (TR ¢ a
ayay' ayay'| 4 oV y ] W— o ;
b
In equation (63), the finite part is defined as the limit Al boal
i E az V— (64) E 3
—lim— X! H X—XP+ (Y=Y PhyaodX ‘
i | W) 5 el T T (=T D : ol
- . i
Because of the geometrical symmetry of the data, the function u(X") is symmetrical Wllﬁ i el
respect to X,
Upon dividing the interval (0,+a) into N equal elements, the extremities of which 8¢ 3
[(j— Da/N,ja/N;j=1,2,...,N], and approximating x by a constant y, on each element, the  } 'ﬁ"r'
following approximation for equation (63) is obtained: P
T @6l -PalN, X] ™ #6ln—DalN, X oer
N n-— a n—= a ' -
——dX"+Pf. f dx’|=—ik,
;2:,’”[ aYay’ e 2Yay’ (b)
—{j—=1)alN (J=1)a/N 5) -0-8 &
n=1,2...N @ Figure 9. Diffraction by a strip, ka=

In this expression, the symbol Pf. is relevant only for j=n. SWations,

e P P N
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The integrals for X' <0 or (X' >0, j# n) are of the Riemann type; they can be evaluated
py using the series representation of 8y Holk/(X, — X')* + (Y — Y Ply:o as the super-

positionofcylindrical waves centered at (X, =/ — al N, differentiat is series with
h._-—v—\./"\.._/"—"

4 T T T ¥

o

=02

~0-4

-06 -
) D2 o4 c6 OB -0

Figure 8. Diffraction by astrip, ka= 2. (a) Real part of &; (b) imaginary part of pt, 5, 10 equations; ©, 100
cquations.

(a)

(b) . [ i
0 02 0-4 06 o8 10

Figure 9. Diffraction by a strip, fa= 3. (a) Real part of z; (b) imaginary part of . A, 10 equations; ©, 100
tquations.

~0-8
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respect to ¥, and letting ¥ =0, one obtainsa series of Besse] functions which is next integrateqd

term by term; in this resulting series, the terms up to the third are taken into account, the!*
others being neglected. To evaluate the finite part, a shightly different scheme is used: the  +1
potential ata point M, ductoa unit double Jayer supparted by the nth segment, iscalculated <

by using the asymptotic series representation of Hylkr) for kr € 1; the normal derivative of
the result with respect to the normal at P, is calculated, and, hence, the limit for M — P, is
taken. T

Figures 8 and 9 show the exact value of for ka=2 and ka =3, obtained by a serics
representation with Mathieu functions. The numerical approximations corresponding to
N = 10 and N = 100 are very consistent with the exact values; it is to be remarked that the
accuracy obtained increases from N =10 to N =100, which proves experimentally the
convergence of the procedure; but the increase in accuracy is small compared to the computa-
tion time increase.

3.4.2. Diffraction of a spherical incident wave by @ plane rectangular reflecting screen

A plane rectangular screen Z, the dimensions of which are 2a and 2b, lies in the Z=0
plane, asshown in Figure 10;a spherical point source S is located on the Z axis. The diffracted
field is described by a double layer potential, the density of which is the solution of

= 2 G(P.P")
e ph L L dpr = -, P), VPeZ, 66)
Pf'!ﬂ(r 9 n(P)nP") ) Po(P) (
with
ik M. M) ¥ ( glkr(5.8)
GIM, M) =~ ———, M) =— ———.
¢ )= dm) )= )

Tosselye. equation (66), use has been made of the symmetry properties of the function
UP) = p(X, X):
uX, Y)=p(xX,2Y).

n

///’J

Figure 10. Geometry of the rectangular screen.
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For the numerical approximation of equation (66), the screen is divided into rectangular
equal elements, the centers of which are

X,=(r—m—05)a/m, Y, =(s—n—05)b/n,

gnd which lie within the lines

X=X, +05am, Y=Y, + 0:5b/n.

The parameters m and n are integers; the integers r and s take the successive values (1, 2, ...,
om) and (1, 2, ..., 2n), respectively. The number of elements so defined is 4mn. For easier
computation, it is useful to denote the elements by one index only, to do so, the author has
used the following index: i=(s— Nm+r(s=1,2,..,2n;1sr< m), so thati=1,2, ...,
s andi=(—Dm+r+@2n—-)m(s=12,..,2n;m+1<r< 2m) so thati=2mn+ 1,
2o + 2, ..., 4mn. With this index, the co-ordinates of the center M, of an elementare given by

X, =(r—m—05)a/m, Y, =(s—n—0-5)b/n,

with s = integer part of (1 + (¢ — 1)/m) and r = i — (s — I)m for 1 < i < 2mn, and s = integer
partof (1 — 2n + (i — 1)/m)and r =i — mn — (s — )m for Zmn + | < i < 4mn. The coefficients
Ay, of the linear system approximating equation (66) are the lollowing:

7 BIG(MI, M_”)
L

——— (67
:;: 0ZoZ' )

AU*I - ZmZ! D‘

To obtain expression (67), the element j is divided into 9 equal rectangular sub-elements
centered at points denoted M ;. The diagonal coefficients 4, are obtained by calculating the
finite part of the integral of 22G/3Z8Z’ on a disk, the area of which is equal to that of the
rectangular element, Finally equation (66) is replaced by a linear system which takes into
account the symmetry properties of the g, induced by those of the function u(X").

The diffracted field is approximated in a very simple way by

4mn ab aG(M,M
QM) = 3 H:'-'az—,‘)

I=} mn Z‘-O’
where M, is the point with co-ordinates (X;, ¥, Z").

In Figures 11(a-c) the experimental curves (in dB levels) are given for different values of ka;
the ratio a/b is equal to 3/2, the source-screen distance is 2a. [t can be seen that the accuracy of
the computed points is good enough to provide a satisfactory description of the phenomenon.

Remark. In the book by Delves and Walsh [22], a regularization method is proposed.
It consists in multiplying the non-integrable kernel 8, 8, G(P,,F) by a regularizing one
R(P;, P,) and integrating over I to obtain a regular kernel:

K(P4,P) = [ R(P4, Po) ducty Duier G(Poy P)dPs.

r

The numerical approximation of the integral equation so obtained will be a linear system,
the coefficients of which are integrals over I'! Such a method will be very expensive
because of the time needed for computing each integral; furthermore, less accuracy is
to be expected because the errors in the integrals’ computation add to those in the
evaluation of the original and the regularizing kernels.
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4. CONCLUSION

" The first result of this paper has been the demonstration that the solution of any boundary
— 34 Jalue problem for the scalar Helmholtz equation can always be represented by a layer
‘& otential; the layer type (simple, double, or a combination of simple and double layer)
= 43 can be chosen in such a way that the solution of the integral equation so obtained is subject
"4 {othe same existence and uniqueness conditions as those of the partial differential system.
The second result is that simple approximations can be made, leading to a convergent
numerical procedure for solving the derived integral equations (the convergence is not
v established here, but is shown by numerical experiments). Particularly, even when a finite
X ik part of an integral occurs (non-integrable kernels), the approximation procedure remains
«} fficient; it appears that the more complicated ideas proposed by several authors to avoid
/ "4 |hedifficulty of a non-integrable kernel are not useful or necessary.
/ The third result is that integral equation methods are efficient within the frequency range
’ “%  orresponding to ratios (wavelength/obstacle dimensions) of about 1/20 to 20. For such a
- 49" frequency range, the long wavelength and the short wavelength approximations break down.
. One can note further that such methods are powerful for many other boundary value
Y, . problems of mathematical physics, for example in electromagnetism, hydrodynamics,
x93 gatical and dynamical elasticity, thin plate vibration problems, etc. In the complementary
~ pibliography, the more recent important works about integral equations in mechanics are
— g listed.
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