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Image solution for vertical motion of a point source
towards a free surface

By JOHN P. MORAN

Therm Advanced Research, Tthaca, New York
(Recerved 22 April 1243 and in revised form 4 September 1963)

‘The verticad constant-speed motion of a constant-strength point source towards
a horizontal free boundary is analysed. A procedure based on expansions in
even powers of the Froude number is employed. The asymptotic expansion of
the potential is found to satisfy a simple differential equation, which, when
integrated,; viclds an image-type solution valid for all Froude numbers, Froude-
nu.n?ber effoets are contained in a distribution of sources along the vertical line
from the image of the submerged source with respect to the undisturbed free
surface upward to infinity. The solution iz valid for arbitrary values of the
density ratio across the free surface.

1. Introduction

In the theoretical analysis of the hydrodynamics of bodies moving near a
frec waber surface, it is convenient to work in terms of fundamental solutions
of the governing Laplace equation and of the linearized free-surface boundary
conclitions. Solutions corresponding to the motion of a point source beneath
the surface are of particular interest. By superposing these solutions such that
the body surface is covered with sources, the problem is reduced to the determina-
tion of the strength of the body-bound source distribution so as to satisfy the
body boundary condition. .

The fundamental solution corresponding to the motion along an arbitrary
path of a point source of time-dependent strength has been dervived by Haskind
(1946) and Brard (1948) and is discussed in Wehausen & Laitone’s (1960) review
article. The solution is derived by transform methods, and consists of three
terms: the potential of the submerged source, of a singularity of equal but
opposite strength at the image of the submerged source with respect to the undis-
trbed free surface, and of a superposition of standing waves of all wavelengths.
The first two terms constitute the infinite-Froude-number approximation to
the solution, whilc the effects of gravity on the fiuid motion are contained in the
third term.

The form of this last term, even in the special case of constant source strength
and rectilinear source motion, is somewhat unwieldy. It would be preferable,
at least from the interpretational {(and possibly from the computational) point
of view, if Froude-number effects were expressed as a superposition of sources
or other singular solutions of the Laplace equation. Such an ‘image’ solution
was found by Havelock (1927) for the two-dimensional problem in which a
doublet of constant strength moves parallel to the water surface at constant
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specd. Fis Image gystem consisty of a horizontal distribution of coublets trailing
rearward from the imege point to infinity |
but theiv axes rotate harmonically along the tength of the distribution.

In the present paper, an image solution is derived for the vertical constant-
speed motion of a constant-strength point source towards the surfacc. The
approach employed is somewhat unusual. The asymptotic expansion of the
potential in even powers of the Wroude number is derived, and is found to satisfy
a simple first-order differential equation. The solution of this equation yields
a final result, valid for all Froude numbers, in which Froude-number effects ave
contained in a vertical trail of sources from the image point upwards to minity,
The strength of the distribution decays exponentially with increasing distance
from the image point. Both the maximum valuc and the rate of decay of the
distribution strength are inversely proportional to the Froude number.

Tu the formulation of §2 and the solution of §3, the region above the surface
is supposed to have zero density, as is approximately true in the case of an air-
water interface. For completencss, the solution is cxtended in §4 to the case
where the fluid above the surface has an arbitrary density.

Cihe doublets are of conslany stvenghiy,

2. Formulation

The flow under consideration is assumed to be incompressible and irrotational.
The problem may thus be formulated in terms of a velocity potential ¢, defined
so that its gradient yields the velocity field. I'rom continuity, ¢ must satisty
the Laplace equation Vi = 0 (1)
everywhere in the flow field of interest, exeept at specified singular points. In
particular, we seek a potential of the form

m
O = +ér (2)
where 2 =g (g - B) 2t (3)

The first term in (2) is the potential of a point source of strength —4min*
The source is located at (0, 6, () in rectangular Cartesian coordinates (v, y. 2);
which are space-fixed, with the y-axis directed vertically upward. The planc
y = 0 is the undisturbed position of a boundary which is frec fo distort itself
under the influence of the source. The source is in vertical constant-speed motion
bencath and towards the boundary, so that

Bt) = Do+ Ut
£, (+)
Here {7 is the speed of the source and £ is the time variable.

The second term in (2) is required to be harmonic in y < #, where y = y(w,2,) 18
the location of the free boundary. We assume the flow £o beonly slightly digturbed
at this boundary. The dynamic condition of constant pressuve on the free sur-
face is then lineavized and applied on the undisturbed position of the free sarface.
and takes the form G2, 0,2, 6) +gu(z, 2,1) = 0, (5)

* The souree strength, or volume rate of flow across any surface enclosing tho souras
is defined in this manmner so as to make our terminology agree with that of Wehausen
Taitone (1960).
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where the subscripts indieate partial differentiation and ¢ is the acceleration
dne to gravity., Combining (5) with the kinematic relation between the surface
motion and the fluid velocity at the surface, we obtain the linearized free-
curface boundary condition on the potential,

! L s 3
Pptge, =0 on y=0. (6)

The potential mnst also satisfy the requirement that the flow disturbauces

vauizh far from the sourc

% 4 4 & f
96;11: D@, >0 as ¥ . (7)

Pinally, we have the initial conditions,
S, 0,0 on y=0 as b-> —o0. (8)

It nay be noted that equations (1), (2), and {(6)—8) determine a unigue solution
(I inkelstein 1857).

3. Image solution
{tis conventent to rewrite the free-surface boundary condition (6) in the {orm

1
Pop 4 ¢, =0 on y=0. (9)

Here we have used (4) to replace £ with b as the time variable, and have defined
F=Utg. (10)
Taking our characteristic length to be unity, we may vefer to F as the square of
the Froude number.
We seek an expansion of the potential in even powers of the Froude number
F%, and so assume a solution of the form

b= X I, (11)

=
We then substitute for ¢ in the governing equations (1), (7), (8) and (9} from
equations (2) and (11) and equate terms of like order in F. Since m/r satisfies
the Laplace equation (1) (exeept at the source point) and the boundary conditions
(7) and (8) identically, so must ¢, as well as all the other ¢, ’s.
On cquating terms of order /7 in the free-surface houndary condition (9), we

obtain & 7
— |, +—]1 =0 on y=0. 12
oy [Q“ N T} L Wl

Thus, in the zeroth approximation, the problem is that of a poiut source near a
plane wall. This has the well-known image solution

7
] 1¥
s ==l L3
Po= 1 (13)
where . 7% = 224 (y +6)*+ 22, (14}
Now collecting terms of order ™ in equation (9}, we may write the free-surface
boundary condition on ¢, as
‘ el
5 Moy 4= om g= (15)
A W - ;
Py bR r oy ¢
or giﬂ.y = = 2eh,  on g = 0, (10
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whore the idontity of cquations (18) and (16) follows cesily from cquabiong (3)
(Ls) and (14). Bince g and ¢, are without singularities in y < 0, the function
L o A "] rafina T e’ B ¥ ST ' ey ~ { Tl P

P, 200, satisfies Laplace equ_&uon everywherc in y < 0, vanishes on y = 0
and at infinity, and hence, from Creen’s theorem, vanishes everywhere iny < 0,
Thus equation (16) may be continued into the region below the plane y = 0,
and integrated to yield ;

5 . A, _— I |

G = zéﬂy ‘3?50;): (17)
L PO [ N 0 3 I : T i ¢

\-\-Il_.(,.ii.' the equality of ¢y, and Doy is Q]G&l {;om equations (13) and (14).

Using similar arguments, we find by induction that

5.6
ghy & — 1)"”2‘%—{”: ¢, for n >0 (18)
Then, from (11) and (18),
5 g \
n=1 oo

This expansion in even POwers of the Froude number is only asymptotic
(consider, for example, its value at 2 = z = 0). In genecral, asymptotic expan-
sions may not be differentiated (Erdelyd 1656). However, by differentiating (9)
with respect to b, regarding ¢, a8 the unknown, and repeating the above
procedure, we find that the asymptotic expansion in I of ¢;, is simply the b-
derivative of (19), which we write as

I;ZSI'{" - énb B F':E_—Jl (= i :L:?)T"' 950' (20)

"Phus, from equations (19) and (20), we see that ¢, satisfies

@, + ;1 br=—y, + ;1 Po- (21)
The complementary solution of (21), of the form ¢ %7 x any time-indepei-
dent solution of Laplace’s equation, is eliminated by application of cquation {8).
‘The particular solution is easilv found, and, when substituted into (2), yields the
result, :
: m w2k

1
o =R _}_ e ——
roey T

T

oo .

which hasg the form advertised in §1.

‘The solution for our speeial case is recovered from the general result yeported
by Wehausen & Daitone (1960) gimply by intcgrating their equation (1:3;.--1‘21)
over time, with the result that

o G e, W C o dk _ . - 5
P = g e + ﬂJ N clt?J . TEF Faxp { Fs[;;; +B] +ik{xcos (! +zsind]). (23)

The equivalence of this result with oar equation (22} is readily established bY
substituting the identity

. 1 s ] 1 ] N .
e L [ epf— (e L) el ae 24
l -+ ;;'-_L;T € _.f'_’fq‘ ¢ J -1 X p \ (\‘? f F‘[) = I ['-[-_-_\ .

fnto (23) and integrating over kand 0.
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Thus we see that the known® solution (23) for vertical congtant-specd motion
of a constant-strength source could have been expressed in terms of images by
introducing the trivial, though not obvious, substitution (24). Such a procodure
was employed by Havelock (1927) in deriving the image solution for horizontal
motion of a taro-dimensional doublet benecath the surface. Nevertheless, the
present procedure has the virtue of being more divect, and is felt to be of interest
in lf‘%@]f :

Unfortunately, our procedure is not very powerful It has been possible to
reproduce Havelock’s (1927) solution, though not without difficulty. However,
no success was obtained in attempts to express the solution for horizontal motion
of a point singularity in terms of images, or to treat cagses in which the source
strength 1z variable,

4, Superposed-fluid problem

We now extend the solution of §3 to the case in which the fiuid above the free
houndary ¥ = » has a finitte density. The flow field of interest is then not restricted
to the region i < 7, but consists of all space.

We define g and p~ as the fluid densities in the regions above and below the
free surface, respectively. We anticipate ciscontinuities in the potential and in
some of its derivatives across the free surface, and so define

b1

I

b -+ : -
o7 for y >,

¢y for y <. (25)

Both ¢; and ¢; are functions defined everywhere, but which coineide with the
potential ¢, only as required by cquation (25). Where they do coineide with
¢r, ¢F and ¢y are without singularitics.

We negleet surface tension, so that the dynamic free-surface boundary con-
dition is that the pressure be continuous across the surface. Inits Hnearized form,

this condition is |cf. equation (5)]
prodde, Ot 2, 8~ p=d(x, 0, 2, 8+ (pt—p)gn(z, z,1) = 0. (26)

We also requive that the veloeity normal to the surface be coutinuous across it.
Sinee mfr and all its derivatives are continuous across the surface, this condition
/ E

may be written : .
3 At — o

Combining equations (26) and (27) with the kinematic relation between 7, and

@]y, we obtain a second free-surface boundary eondition on the potential,

which we write [ef. equation (9)]

7 on y =0 (28}

i e pr—p= . e 2 197t
I Al +_‘j‘“'""' §’5.fy = m(p~--p7) [3’5’2’ S Fay

* While the trivial gpecialization of the known solution for arbitrary motion of a vaviable-
strength souree to our case has not, to tho author’s knowledge, been published proviously,
Bakal, Husimi & Flatoyaima (1933) derived a solution similar in form io (23) for the casc
of vertical moticn Ly two dimensions of e line doublet.
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‘e notential defined by cquations (2), (3), and (25) i nlso required o satisty (1)
= .. i A o 2
(7), and (8). .
Equation (27) shows that ¢, may e ropresented by a vortex shech on the
undisturbed free surface. Then
A 2 f 3 = A h 3
éF (x,0,2,0) = —¢7 (2, 0,2,0). (29)
Differentiating (29) twice with respect to b, we may eliminate ¢F from (28), which
may then be written

prpt b ¢ 1211 30
p=—pt Brt TP = Mt gy O YT v Pl

The solution for ¢7 now proceeds as in §3. We determine the asymptotic ex-
I I 3 YL

pansions in I of 7 and ¢7, and show thereby that ¢7 satisfies a simple fi rst-order

difforential cquation [cf. equation (21)], whieh, when integrated, yields the final

gl
resulh o= —ptm

‘- L 2p7_ o (” g (EHDNET {:1,2 + (1 £+ S NI 31)
H I L L el 7 —he i " _— W EEe TR e, £
i f P,_.+p.i_ 7y p +p+ Ff —b Y 5 i ) (

where F = £ _ﬂ{: Efa (52)
pr—p Y

From equation (29), the potential ¢;" + ¢y vanishes on the plane y = 0. Asis

well known, a system of singularities satisfies such a condition if, for cach source

above the plane, a singularity of equal but opposite strength is positioned at

its image with respect to the plane. Thus, taking note of equation (31), we may

Iy

write down the solution for ¢ without further cal culation as

. — ot R 20— o (P o PEERI S 5 -
(;’)1" —= p_: .__{(_ { !:_ s _:£; i }"I—r ’\ . ef_l:.—?),'.' 3 {:—8‘3 __i_ (y e 5)2 _E_. 22}"' l‘ (Z{E. (33)
{J + p 1 !{) T p b LA 'h'-'-'..'- _’/‘I

This solution is readily extended to the case in which the source i moviug
i1 the Jow-density fluid downward towards the frec boundary.

This research was supported by the Fluid Dynamies Branch, Office of Naval
Bescarch, mmder Contract Nonr-3396(00), Task NR 062-269.
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