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Inverse Problems ’Definition’ and Examples

Inverse Problems : Definition

Keller, 1976
Two problems are inverse to each other if the formulation of each of
them requires all or partial knowledge of the other. Often, for historical
reasons, one of the two problems has been studied extensively for
some time, while the other is newer and not so well understood. In
such cases, the former problem is called the direct problem, while the
latter is called the inverse problem.

(Inverse Problems , Joseph B. Keller,
The American Mathematical Monthly, Vol. 83, No. 2. (Feb., 1976), pp.
107-118. )
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Inverse Problems ’Definition’ and Examples

Inverse Problems : Examples

Example 1
What are the questions to which the answers are

1 ”Washington Irving” ?
2 ”Nine W”?
3 ”Chicken Sukiyaki”?

1 What is the capital of the United States, Max ?
2 Do you spell your name with a ”V”, Herr Wagner ?
3 What is the name of the sole surving Kamikaze pilot ?
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Inverse Problems ’Definition’ and Examples

Example 2 (Differentiation)
Direct problem (DP): Given ϕ ∈ C([0, 1]), solve

(Tϕ)(x) :=

∫ x

0
ϕ(t)dt , x ∈ [0, 1]

Inverse problem (IP) : Given g ∈ C([0, 1]) with g(0) = 0, solve

Tϕ = g

Remark
(IP) has a solution ϕ ∈ C([0, 1]) if and only if g ∈ C1([0, 1]).

Assume gδ ∈ C([0, 1]) with ‖gδ − g‖∞ ≤ δ, 0 < δ < 1.
Define gδ

n(x) := g(x) + δ sin nx
δ , x ∈ [0, 1]

We have (gδ
n)′(x) := g′(x) + n cos nx

δ , x ∈ [0, 1]
It holds ‖(gδ

n)′ − g′‖∞ = n.
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Inverse Problems ’Definition’ and Examples

Example 3 (Backward Heat Conduction )
Consider the heat equation

∂u
∂t

=
∂2u
∂2x

in D := [0, 1]× [0, T ] with

(BC :) u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T

(IC :) u(x , 0) = ϕ(x), x ∈ [0, 1]

Lee, Kuo-Ming (CCU) Inverse Problems NCTU 8 / 60



Inverse Problems ’Definition’ and Examples

Backward Heat Conduction II

Direct Problem :
Given the initial temperature ϕ ∈ L2([0, 1]),
find the final temperature f := u(·, T )

u(x , t) =
√

2
∞∑

n=1

ϕne−π2n2t sin(nπx)

Inverse Problem :
Given the final temperature f , find the initial temperature ϕ.

(THϕ)(x) :=

∫
2
∞∑

n=1

(
e−π2n2T sin(nπx) sin(nπy)

)
ϕ(y)dy

THϕ = f
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Inverse Problems Ill-posed Problems

Hadamard’s Postulation of Well-posedness

Hadamard (1902, 1923)
A problem is called well-posed, if it has the following properties

1 Existence of a solution.
2 Uniqueness of the solution.
3 (Stability) Continuous dependence of the solution on the data.

otherwise it is called ill-posed.
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Inverse Problems Ill-posed Problems

Examples of Ill-Posed Problems

Example 4 (Cauchy Problem for the Laplace Equation)
Find a harmonic function u in D := IR× [0,∞] satisfying the following
initial conditions

u(·, 0) = 0,
∂

∂y
u(·, 0) = f ,

where f is a given continuous function.

Let fn(x) = 1
n sin nx , x ∈ IR.

For n ∈ IN, we obtain the solution

un(x , y) =
1
n2 sin nx sinh ny , (x , y) ∈ D.

Clearly, (fn) → 0, but (un) doesn’t converge in any reasonable norm.
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Inverse Problems Ill-posed Problems

Example 5 (Fredholm Integral Equation of the First Kind)

Aϕ(x) :=

∫ b

a
K (x , y)ϕ(y)dy , x ∈ [c, d ]

Solving Aϕ = f is ill-posed if, for example, the kernel K is continuous.
If K is continuous, then the operator A will be compact. In this case,
the operator A will not have a bounded inverse.
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Inverse Problems Ill-posed Problems

Fredholm integral Equations 2. Kind

ϕ(x)− 1
2

∫ 1

0
(x + 1)e−xyϕ(y)dy = e−x − 1

2
+

1
2

e−(x+1), 0 ≤ x ≤ 1

Trapzoidal rule
n x = 0 x = 0.5 x = 1
4 -0.007146 -0.010816 -0.015479
8 -0.001788 -0.002711 -0.003882

16 -0.000447 -0.000678 -0.000971
32 -0.000112 -0.000170 -0.000243

Simpson’s rule
n x = 0 x = 0.5 x = 1
4 -0.00006652 -0.00010905 -0.00021416
8 -0.00000422 -0.00000692 -0.00001366

16 -0.00000026 -0.00000043 -0.00000086
32 -0.00000002 -0.00000003 -0.00000005
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Inverse Problems Ill-posed Problems

Fredholm integral Equations 1. Kind∫ 1

0
(x + 1)e−xyϕ(y)dy = 1− e−(x+1), 0 ≤ x ≤ 1

Trapzoidal rule
n x = 0 x = 0.5 x = 1
4 0.4057 0.3705 0.1704
8 -4.5989 14.6094 -4.4770

16 -8.5957 2.2626 -153.4805
32 3.8965 -32.2907 22.5570
64 -88.6474 -6.4484 -182.6745

Simpson’s rule
n x = 0 x = 0.5 x = 1
4 0.0997 0.2176 0.0566
8 -0.5463 6.0868 -1.7274

16 -15.4796 50.5015 -53.8837
32 24.5929 -24.1767 67.9655
64 23.7868 -17.5992 419.4284
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Inverse Problems Regularization

Ill-Posed Problems : Regularization

Definition 1 (Regularization)
Assume X , Y are normed spaces.
Let the operator A : X → Y be linear, bounded and injective.
A family of bounded linear operators Rα : Y → X , α > 0 is called
a regularization scheme for

Aϕ = f ,

if it satisfies the following pointwise convergence

lim
α→0

RαAϕ = ϕ, for all ϕ ∈ X

In this case, the parameter α is called the regularization parameter.
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Inverse Problems Regularization

Regularization : Error

Find a stable approximation to the equation

Aϕ = f

The regularized approximation

ϕδ
α := Rαf δ

The total approximation error

ϕδ
α − ϕ = Rαf δ − Rαf + RαAϕ− ϕ

We have
‖ϕδ

α − ϕ‖ ≤ δ‖Rα‖+ ‖RαAϕ− ϕ‖
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Inverse Problems Regularization

Regularization : Methods

How to choose the regularization parameter α ?
1 a priori choice based on some information of the solution.

In general not available
2 a posteriori choice based on the data error level δ

Discrepancy Principle of Morozov :

‖ARαf δ − f δ‖ = γδ, γ ≥ 1
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Inverse Problems Regularization

Regularization : Example

X , Y Hilbert spaces.

Theorem 1
Assume A : X → Y compact and linear.
Then for every α > 0, the operator

αI + A∗A : X → X

is bijective and has a bounded inverse.
Furthermore, if the operator A is injective, then

Rα := (αI + A∗A)−1 A∗, α > 0

describes a regularization scheme with ‖Rα‖ ≤ 1
2
√

α
.
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Inverse Problems Regularization

Tikhonov Regularization

Theorem 2
Let A : X → Y be a linear and bounded operator. Assme α > 0. Then
for each f ∈ Y there exists a unique ϕα ∈ X such that

‖Aϕα − f‖+ α‖ϕα‖ = infϕ∈X

{
‖Aϕ− f‖2 + α‖ϕ‖2

}
The minimizer ϕα is given by the unique solution of the equation

αϕα + A∗Aϕα = A∗f

and depends continuously on f .
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Inverse Problems Regularization

Approximate Solution

Definition 2 (Minimum Norm Solution)
Let A : X → Y be a bounded linear operator and let δ > 0. For a given
f ∈ Y an element ϕ0 ∈ X is called a minimum norm solution of Aϕ = f
with discrepancy δ if ‖Aϕ0 − f‖ ≤ δ and

‖ϕ0‖ = inf‖Aϕ−f‖≤δ‖ϕ‖

Remark
ϕ0 is a minimal norm solution to Aϕ = f with discrepancy δ if and only
if ϕ0 is a best approximation to the zero element of X with respect to
Uf := {ϕ ∈ X : ‖Aϕ− f‖ ≤ δ}.
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Inverse Problems Regularization

Theorem 3
Let A : X → Y be a linear and bounded operator with dense range. For
δ > 0, there exists for every f ∈ Y a unique minimal norm solution of
Aϕ = f with discrepancy δ.
Furthermore, the parameter α can be so chosen, that ϕ0 is the solution
of

αϕα + A∗Aϕα = A∗f

with ‖Aϕ0 − f‖ = δ.

Theorem 4
Assume A : X → Y is a linear, bounded and injective operator with
dense range. δ > 0, f ∈ A(X ). For f δ ∈ Y with ‖f δ − f‖ ≤ δ and
δ < ‖f δ‖ we have

ϕδ → A−1f , δ → 0,

where ϕδ is the minimal norm solution with discrepancy δ
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Integral Equations Main Classifications

4 main types of integral equations

Fredholm Integral Equations
1. kind ∫ b

a
K (x , y)ϕ(y)dy = g(x), x ∈ I

2. kind

ϕ(x) +

∫ b

a
K (x , y)ϕ(y)dy = g(x), x ∈ I

Volterra Integral Equations
1. kind ∫ x

a
K (x , y)ϕ(y)dy = g(x), x ∈ I

2. kind

ϕ(x) +

∫ x

a
K (x , y)ϕ(y)dy = g(x), x ∈ I
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Integral Equations Historical Remarks

Historical Remarks I

Maxime Bôcher 1908
The theory of integral equations may be regarded as dating back
at least as far as the discovery by Fourier of the theorem
concerning integrals which bears his name; for, though this was
not the point of view of Fourier, this theorem may be regarded as a
statement of the solution of a certain integral equation of the first
kind.
Fourier’s inversion formula

g(x) =

√
2
π

∫ ∞

0
cos(xξ)f (ξ)dξ

f (x) =

√
2
π

∫ ∞

0
cos(xξ)g(ξ)dξ
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Integral Equations Historical Remarks

Historical Remarks II

Abel’s Integral 1826
a mechanical problem : a Tautochrone
the general accepted begin of the theory of integral equations
actually an inverse problem
The problem is to find the unknown path in the plane along which a
particle will fall, under the influence of gravity alone, so that at each
instant the time of fall is a known function of the distance fallen.

g(t) =

∫ t

0

f (y)√
2a(t − y)

dy
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Integral Equations Historical Remarks

Historical Remarks III

Joachimstahl’s attraction problem 1861
also an inverse problem
find the law of attraction if one knows the attraction force

g(h)

2h
=

∫ ∞
h

f (r)√
r2 − h2

dr

at the turn of 20. century :
Volterra, Fredholm, Hilbert, Schmidt, . . . .
Introduction of Hilbert spaces
functional analysis
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Integral Equations Solutions of Integral Equations

Solutions of Integral Equations

Over 99.99 . . .% of integral equations do not have a closed form
solution.
The solvability of integral equations is ensured by functional
analytic approach.
Numerical approximate solutions.
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Integral Equations Solutions of Integral Equations

Linear Operators

linear operator
X , Y linear spaces. A : X → Y is linear iff for all α, β ∈ C

A(αf + βg) = αA(f ) + βA(g), ∀f , g ∈ X

bounded operator
X , Y are normed spaces. A is bounded if there exists a constant
C > 0 such that

‖Af‖ ≤ C‖f‖, ∀f ∈ X

compact operator
A is compact if it maps a bounded set to a relatively compact set.
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Integral Equations Solutions of Integral Equations

Integral Operators

integral operator

(Aϕ)(x) :=

∫
G

K (x , y)ϕ(y)dy , x ∈ G ⊂ IRm

where K is called the kernel of the integral operator.
K is called weakly singular iff there exists a constant M > 0 and
α ∈ (0, m] such that

|K (x , y)| ≤ M|x − y |α−m, ∀x , y ∈ G ⊂ IRm, x 6= y

A is compact if K is continuous or weakly singular.
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Integral Equations Riesz Theory

Riesz Theory I

Consider the following integral equation of the second kind with a
compact A : X → X

ϕ− Aϕ = f

Let L := I − A.
First Riesz Theorem
The nullspace of L is a finite-dimensional subspace.
Second Riesz Theorem
The range of the operator L is a closed linear subspace.
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Integral Equations Riesz Theory

Riesz Theory II

Third Riesz Theorem
There exists a uniquely determined nonnegative integer r , called
the Riesz number of A such that

{0} = N(L0)
⊂
6= N(L1)

⊂
6= · · ·

⊂
6= N(Lr ) = N(Lr+1) = . . . ,

and

X = L0(X )
⊃
6= L1(X )

⊃
6= · · ·

⊃
6= Lr (X ) = Lr+1(X ) = . . . ,

Furthermore, we have the direct sum

X = N(Lr )⊕ Lr (X ).
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Integral Equations Riesz Theory

Fundamental Result of Riesz Theory

Theorem 5
Let A : X → X be a compact operator on a normed space X. Then
I − A is injective if and only if it is surjective. If I − A is injective, then its
inverse operator (I − A)−1 is bounded.
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Integral Equations Riesz Theory

Solvability of a Second Kind Equation I

Theorem 6
If the homogeneous equation

ϕ− Aϕ = 0

has ony the trivial solution ϕ = 0, then for each f ∈ X the
inhomogeneous equation

ϕ− Aϕ = f

has a unique solution ϕ ∈ X and this solution depends continuously on
f .
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Integral Equations Riesz Theory

Solvability of a Second Kind Equation II

Theorem 7
If the homogeneous equation

ϕ− Aϕ = 0

has nontrivial solution ϕ 6= 0, then it has only a finite number m of
linearly independent solutions ϕ1, ϕ2, . . . , ϕm ∈ X and the
inhomogeneous equation is either unsolvable or its general solution is
of the form

ϕ = ϕ̃ +
m∑

i=1

αiϕi

where ϕ̃ is a particular solution of the inhomogeneous equation.
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Integral Equations Riesz Theory

Remarks

Reduction of the solvability of the equation to the solvability of the
simpler homogeneous equation ϕ− Aϕ = 0.
No answer to the question of whether the inhomogeneous
equation ϕ− Aϕ = f for a given inhomogenity is solvable in the
case where the homogeneous equation has a nontrivial solution.
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A Scattering Problem Direct Scattering Problem for a crack

Γ ν 

x*
−1

 

x*
1
 

Γ
+
 

Γ
−
 

Γ0 := Γ \ {x∗−1, x∗1}
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A Scattering Problem Direct Scattering Problem for a crack

Direct Neumann problem

Given: C3-open arc Γ
Find: u ∈ C2(IR2 \ Γ)∩C(IR2 \ Γ0), a solution to the Helmholtz equation

∆u + k2u = 0, in IR2 \ Γ, k ∈ IR. (1)

which satisfies the Neumann boundary condition(NBC)

∂u±
∂ν

= f on Γ0 (2)

for f ∈ C0,α(Γ) and the Sommerfeld radiation condition(SRC)

lim
r→∞

√
r
(

∂u
∂ν

− iku
)

= 0, r := |x | (3)

uniformly for all directions x̂ := x
|x |
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A Scattering Problem Direct Scattering Problem for a crack

Well-posedness of DP

Theorem 8

The direct Neumann problem is well-posed. That is,
for every f ∈ C0,α(Γ), the solution of the direct Neumann problem is
given by

u(x) :=

∫
Γ

∂Φ(x , y)

∂ν(y)
ϕ(y)ds(y), x ∈ IR2 \ Γ. (4)

with the density function ϕ ∈ C1,α,∗(Γ) which is the unique solution to

∂

∂ν(x)

∫
Γ

∂Φ(x , y)

∂ν(y)
ϕ(y)ds(y) = f (x) (5)

for x ∈ Γ0, and u depends continuously on f .
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A Scattering Problem Direct Scattering Problem for a crack

Main idea of the proof

Functional analytical approach
Uniqueness by Rellich Lemma and Radiation condition
Existence and stability by Riesz Theory
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A Scattering Problem Inverse Neumann Problem

Inverse Problem

Definition 3 (IP)
Determine the scatterer Γ if the far field pattern u∞(·, d) is known for all
incident directions d and for one wave number k ∈ IR.
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A Scattering Problem Inverse Neumann Problem

Theorem 9 (Uniqueness)

If Γ1 and Γ2 are the solutions to the inverse problem with the same far
field pattern for a fixed wave number k, then Γ1 = Γ2.
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A Scattering Problem Inverse Neumann Problem

Newton Method

Solve the nonlinear ill-posed far field equation:

F (Γ) = u∞ (6)

Linearization:
F (γ) + F ′(γ)h = u∞ (7)

Newton iteration:

γν+1 = γν + h, ν = 0, 1, 2, . . .

Regularization is needed in solving (7).
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A Scattering Problem Inverse Neumann Problem

Advantages:

Conceptionally simple
Very good reconstructions

Disadvantages
Convergence ?
a priori information
Forward solver at each iteration step
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A Scattering Problem Inverse Neumann Problem

A new method

Recall Equation (5) in Theorem 8

∂

∂ν(x)

∫
Γ

∂Φ(x , y)

∂ν(y)
ϕ(y)ds(y) = f (x), x ∈ Γ0.

Denote the left hand side of (5) by (WΓϕ)(x), we have

Theorem 10

(IP) is equivalent to the system:{
WΓϕ = f
FΓ,∞ϕ = u∞

(8)
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A Scattering Problem Inverse Neumann Problem

Newton Method

Rewrite the equation (8) in Theorem 10 in operator form:

F (γ, ϕ) = g(γ) (9)

Newton’s Method

F (γ, ϕ) + F ′γ(γ, ϕ)h + F (γ, χ) = g(γ) + g′(γ)h (10)

n-th Iteration Step:

γn+1 = γn + hn, ϕn+1 = ϕn + χn (11)
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A Scattering Problem Inverse Neumann Problem

Solution Space

We treat curves which have a form Γ = {(x , f (x))|x ∈ [−1, 1]}. As
solution space for Γ, we choose

Vm = span{T0, T1, . . . , Tm}

where T ′
ks are the k-th Chebyshev monomials Tk (x) = cos(k cos−1 x).

For the density function ϕ, we choose the trigonometric interpolation
space

Pn = span{sin x , sin 2x , . . . , sin(n − 1)x}
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A Scattering Problem Inverse Neumann Problem

Tikhonov Regularization

Minimizing the Tikhonov functional:

‖F (γn, ϕn)+F ′γ(γn, ϕn)h+F (γn, χ)−g(γn)−g′(γn)h‖2 +α‖h‖2 +β‖χ‖2

for h ∈ Vm and χ ∈ Pn.

Stopping criterion:
‖h‖2/‖γn‖2 ≤ 10−5
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A Scattering Problem Numerical Examples

y = x

Example 6

k = 1

α = 4−3

β = 4−5

10 iterations
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A Scattering Problem Numerical Examples
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A Scattering Problem Numerical Examples

y = 0.2x2 − 0.1x + 0.3

Example 7

k = 1

α = 4−5

β = 4−11

18 iterations
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A Scattering Problem Numerical Examples

Lee, Kuo-Ming (CCU) Inverse Problems NCTU 52 / 60



A Scattering Problem Numerical Examples

y = 0.2 cos(πx
2 ) + 0.5 sin(πx

2 )− 0.1 cos(3πx
2 )

Example 8

k = 1

α = 4−3

β = 4−7

25 iterations
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A Scattering Problem Numerical Examples
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A Scattering Problem Numerical Examples

y = 0.2 cos(πx
2 ) + 0.5 sin(πx

2 )− 0.1 cos(3πx
2 )

Example 9

k = 3

α = 4−3

β = 4−7

22 iterations
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A Scattering Problem Numerical Examples
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A Scattering Problem Numerical Examples

y = 0.2 cos(πx
2 ) + 0.5 sin(πx

2 )− 0.1 cos(3πx
2 )

Example 10

3% noise

k = 1

α = 4−3

β = 4−7

30 iterations
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A Scattering Problem Numerical Examples
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Summary

Summary

Transform the inverse problem to a set of nonlinear integral
equations.
Solve the system with regularized Newton’s method.

Major advantage :
No need to solve a direct problem at each Newton iteration step.
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