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Numerical Evaluation of Singular and Near-Singular
Potential Integrals

Michael A. Khayat, Member, IEEE, and Donald R. Wilton, Fellow, IEEE

Abstract—A simple and efficient numerical procedure using a
singularity cancellation scheme is presented for evaluating singular
and near-singular potential integrals with 1/ R singularities. The
procedure not only has several advantages over singularity sub-
traction methods, but also improves on some aspects of other sin-
gularity cancellation methods such as polar and Duffy transforma-
tions. A theoretical analysis is presented for triangles, quadrilat-
erals, tetrahedrons, bricks, and prisms, and numerical results are
presented for triangles and prisms.

1. INTRODUCTION

OTENTIAL integrals involved in the integral equations

of electromagnetics are often singular, and therefore re-
quire special numerical considerations for their evaluation. Un-
bounded (but integrable) singularities occur, for example, in the
kernels of so-called self-terms in the method of moments where
testing and source subdomains coincide. Often quadrature rules
for direct treatments of these singularities do not exist. In such
situations, singularity subtraction or singularity cancellation
methods are often used.

In the singularity subtraction approach, terms having the
same asymptotic behavior as the integrand at the singularity are
first subtracted from the integrand, leaving a bounded difference
integrand that may be integrated numerically. The subtracted
singular term is then analytically integrated and the result
added back to the numerically integrated terms to complete
the potential evaluation. For a Green’s function G(r,r’) with
asymptotic behavior G(r,r') — G*¥™(r,r’) on a domain D

r—r

containing r, the procedure may be summarized as

/DA(r')G(r,r')d’D' = /DA(r’)[G(r,r') — G*Y™ (¢, 1")]dD’

~
Integrated numerically

+/A(r')GaSym(r,r’)dD’ (1
JD

J/

~
Integrated analytically

where A(r) is a vector (or scalar) basis function.

The singularity subtraction approach relies on the existence
of analytically evaluated potential integrals, usually of static
form. Many of these have been worked out for various tubular,
polygonal, and polyhedral elements for both constant and lin-
early varying source distributions [1]-[9]. Potentials resulting
from even higher order polynomial source variations are also
available [6], [10].
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Despite its widespread usage, however, the singularity sub-
traction method has a number of disadvantages, among which
are the following.

1)  The difference integrand G(r,r’) — G*¥™(r,r’),
while bounded, generally remains singular in a tech-
nical sense because it contains higher order derivatives
that are unbounded. In a practical sense, this means
the integrand cannot be well approximated by a
polynomial in the neighborhood of the singularity,
thus limiting the achievable accuracy of Gaussian
quadrature rules designed to exactly integrate such
polynomials. This fundamentally limits the accuracy
achievable by singularity subtraction methods.

2)  The singular term(s) G*¥™(r,r’) subtracted are usu-
ally determined by expanding the integrand in a Taylor
series about the singular point, a process that increases
in complexity for higher order or singular bases, curvi-
linear elements [11], or complicated Green’s functions
where the singularity may appear either in spectral or
spatial representations.

3)  The complexity of analytical expressions for the in-
tegrals of A(r')G*Y™(r,r’) increases with the com-
plexity of the bases, geometry, and Green’s functions
involved. Although exact in principle, such terms result
from differences between indefinite integrals evaluated
at upper and lower integration limits, and the potential
forerrorsresulting from small differences between large
numbers often increases dramatically withincreased in-
tegrand complexity. Furthermore, many of the terms that
arise need special treatment for limiting situations such
as nearly degenerate geometries or observation points
that lie close to subdomain boundaries. Since these nu-
merically difficult cases require arelatively large invest-
ment in analytical and programming effort, the subtrac-
tion method frequently becomes a costly approach that
achieves only modest accuracy in the evaluation of mo-
ment matrix contributions.

4) The subtraction method severely disrupts object-ori-
ented paradigms because the source subdomain
geometry, basis function, and asymptotic form of
the Green’s function are inextricably linked in the
analytically evaluated self-term integral. A typical
contribution to the system moment matrix element
requires the computation of an element-to-element
interaction matrix of the form

(A5G AT ) = / / A (r) - AL (¥)G(r,r")dD'dD (2)
JDe JDS
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corresponding to the interaction between the jth basis
function on element f and the sth testing function
on element e (Af (r) and A;(r), respectively), and a
Green'’s function kernel. A general-purpose object-ori-
ented code such as EIGER [12] computes the element
AS; G,Ajf >} by calling procedures
and exchanging data with other objects, namely, the
source and test basis functions, subdomain element
geometries, quadrature rules, and Green’s functions.
In a well-designed code, such objects should be as
independent as possible so that the element matrix
object can be constructed by independent calls with
data exchanges to these secondary objects.

matrix object [

Clearly, despite its workhorse status, the singularity subtraction
method has major disadvantages. To extend the capabilities, ac-
curacy, and maintainability of general-purpose codes, the sub-
traction method is being replaced in favor of the purely numer-
ical quadrature schemes reported here. These schemes employ
singularity cancellation methods in which a change of variables
is chosen such that the Jacobian of the transformation cancels
the singularity. In contrast to the singularity subtraction method,
the resulting integrand is analytic in the transformed variables
on the element geometry, and hence is amenable to integration
by a Cartesian product of Gauss—Legendre rules. The scheme
may be made transparent to the user by transforming the sample
points and weights back to the original parametric domain, re-
sulting in a purely numerical scheme for integrating singular and
near-singular kernels.

An example of the singularity cancellation approach is the
method popularly known as the Duffy method [13]-[15]. The
Duffy method, however, has two drawbacks.

1) It produces an angular variation about the singular
point in the resulting integrand.

2) It appears not to work well when applied to nearly sin-
gular integrals occurring when an observation point is
near a source point.

In this paper, we present a purely numerical singularity can-
cellation method that not only removes the angular dependence
about the singular point but also is effective in computing nearly
singular integrals [16]-[18]. The discussion is divided into two
sections dealing with 2-D and 3-D geometries.

II. 2-D GEOMETRY—TRIANGLES AND QUADRILATERALS

A. Theory

To evaluate potential integrals of the form

o ikR

I:,/DA(”MR dD 3)

on triangular domains D, consider the projection of a nearby
observation point r onto a triangular element with vertices at
ri, 'y, r3. From the projection point ry, we subdivide the tri-
angle into three subtriangles, as shown in Fig. 1, and evaluate
the partial potential contribution from each. The analysis is de-
tailed for subtriangle 1, shown in Fig. 2. The figure shows a local
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Fig. 1. Subdividing a triangle into subtriangles about the projected observation
point.

v Observation Point
Fig. 2. Subtriangle coordinate system and geometry of subtriangle 1.

zyz coordinate system with origin at the projection point, cor-
responding to local vertex 1. We also use local coordinates and
geometrical quantities in the subtriangle defined as

ry =ro, =1y —r)
ry=ry —r3—r], fh=r1]-1}

/ / / /
Iy =r3 —r] — Ty, £3=ry—1]

L, x g , 0l x
g xeT T 2
2A' .
QZWEQXH/ “)
1

where the arrows indicate permutations on the right-hand side
of the equalities needed to go from treating subtriangle 1 to sub-
triangles 2 and 3 of Fig. 1. Note that primes are used to indicate
geometrical quantities on a subtriangle.

The integral over subtriangle 1 has the form

h/1 zu(y') A( ,) e-ijd /d ,
L= r o' dy )
0 II‘@/) 47'I'R

where A(r’) is a vector or scalar basis function, R =
V(@) + (y)2 + 2% is the distance between source and
observation points, and e /*%/(47R) is the 3-D Green’s
function. The integration limits on the inner integral are

=4 (B x ) (1-€) ©)
and

vy = - (B < 4) (1-¢). %)
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The normalized area (simplex) coordinate [19] &/ is unity at
y' = 0and zero at y’ = hi,ie.,y = h} (1 —&). To eliminate
singularities or near-singularities associated with the 1/R term,
we let

p dx’ da’ ®)
U= ——=
R~ @2+ () + 22
yielding
N -1 a’ 1 R+
u(z") = sinh 2 In (R — x’) )

Equation (5) now becomes

h’l uy )
I, =— / A(r)e IR qudy’

K M
—“L)

Z Z wGLwGLh/ (

11]1

x A(r/(0))e kRO

where B = +/(y)?+ 2%2coshu so that the integrand is
analytic in v and y. Hence it may be integrated accurately
using repeated Gauss—Le%endre quadrature with weights

w and sample points f on the normalized interval (0,1)
that is used to approx1mate each integral of the double in-
tegral. The lower and upper limits of the inner integral in
(10) are, from (9), ur,v = u(zr,v), and u<L )U are the corre-
sponding jth sampled values along 3. The quantities r'(*7)
and RO = /(y/()2 4 22 coshu(® denote sampled values
of the position vector and R, respectively, but are more simply
evaluated if the sample points in (u,y) are mapped back to the
original triangle coordinates as discussed below [see (18)].

We finally obtain (3) by summing similar contributions from
all three subtriangles; it is convenient, however, to express the
overall quadrature scheme in the form

(10)

jkR™)

I~jZWkA ’<k>) (11)

47 R(k)

where W}, are weights corresponding to area coordinate sample
points [f;k), fék), §§k)] of the original triangle of area A and
unit normal 1. In this form, the homogeneous medium Green’s
function in (11) may be replaced by any Green’s function with
a 1/R singularity. Also, from a programming standpoint, we
are then able to essentially hide apparent differences between
integration over smooth versus non-smooth integrands (except
that in the latter case, the weights and sample points depend
on rg). In (11), 7 = 2A is the Jacobian of the transformation
between global and parametric coordinates on the triangle and,
comparing (10) and (11), W}, is a concatenated listing of the
now-dimensionless weights

wiw; b (ug) —
J

u%)) R
W = (A - )

12)
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arising from each subtriangle, with the double index (3, j)
mapped to a single index k. The factor i - i/, where 1’ is the
unit normal of the subtriangle, is included to extend the method
to near-singularities that occur when the projected observation
point falls outside the original triangle. In this case, at least one
of the subtriangles lies entirely outside the source triangle. The
factor i - N’ makes its weights negative, and its contribution
then cancels those from partial domains of subtriangles that
extend outside the original triangle [see Fig. 4(b)].

Finally, to complete the mapping of quadrature data back to
the original triangle, we map the sample points in the (u,y’)
domain back to area coordinates (ék), fék), 13 §’“)) of the original
triangle as follows. First, the ¢/ samples are given by

gD = (1-6), g = a3

and then we use (6) and (7) to determine :v(LJ)U =zLuy ’(j)).

Next, we calculate u(L])U =u (x(L])U) from (9)—noting that

if z = 0, then u(Lj,)U are constant—and find the u samples from
) = uf) (1= €8]) +ullel) (14)
The corresponding 2’ samples are then found from (9)

29 = [ (/)2 + 22 sinh u(9)

and, hence, the remaining subtriangle area coordinates are

15)

-l x (flfly/(ﬁ _ zlx/a,j))
24’
_ 51(])

— gD (16)

Finally, the mappings from subtriangle back to original triangle
coordinates are given by

(k) ¢/
w | _ 10.4)
2| = e
SN &
& 0 0 & 0 1 1 0
=16 1 0] =& 0 0| —=]& 0 1
& 0 1 & 1 0 90 0
(17)

where (€9, €9, £9) are the area coordinates of the projected ob-
servation point and the index correspondence k < (i, j) pairs
sample points with their corresponding weights. Again, the ar-
rows indicate permutations on the right-hand side of the equal-
ities needed to go from treating subtriangle 1 to subtriangles 2
and 3 of Fig. 1. The sampled values of R in (12) are now simply

) — ot — rael? (18)

RUOD = |y — rlfik

To extend the method to integration over rectangular do-
mains, we simply split the domain into four rather than three
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Fig. 3. Geometry of a parent quadrilateral and a subtriangle.

subtriangles and repeat the procedure above. The major dif-
ference is in the transformation from subtriangle coordinates
back to rectangle coordinates. For example, consider the par-
allelogram in Fig. 3 with normalized coordinates satisfying
&1+ &3 = 1and &+ &4 = 1. The relationship between the local
and global coordinates for each of the subtriangles is given by

r) =rg
rh=r; —>ry —>r3—T1y

(19)

rg:r2—>r3—>r4—>r1.

The mappings from subtriangle to original triangle coordinates
are given by

ok

f%ék; 511(“)

é%&k) =[T] 5;(2’:)

%K,k) €§(’)

4
&7 017 réy 117

HIREINI By
3 3
lee 1 1) Lee 1 ool
réy 1 07 rég 0 07
& 11 5 1 0
~ g o al-le 1) 20)

e 0 o]  Leg o 1l

B. Results for a Triangular Element

Before presenting numerical results, it is instructive to look
at the distribution of sample points produced by the singularity
cancellation method in order to graphically understand how
near-singularities are handled. The geometry being used is that
of [7], a right triangle with vertices at (0,0,0) (0.1, 0, 0), (0,
0.1\, 0), and A = 10 [m]. Fig. 4(a) and (b) shows the clustering
of the sample points around a singular and near-singular ob-
servation point, respectively, in the plane of the triangle. Note
that subtriangles 1 and 3 in Fig. 4(b) are partially outside the
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Fig. 4. Distribution of sample points for (a) singular observation point and (b)
near-singular observation point.

original triangle, but the excess potential integral contributions
from their exterior domains are canceled by subtriangle 2’s
contribution since it overlaps them and has negative weights.
As long as the method is used only when the projected ob-
servation point is near the triangle, the subtriangles always
have quite different shapes and substantially differing potential
contributions; hence there is negligible loss in accuracy due
to cancellation effects. Also note that [see (10)] for a constant
basis function, the static kernel (kK = 0) may be integrated
exactly using only one sample point per subtriangle; indeed,
this case reduces to the results in [4]. This feature helps to
explain the method’s efficiency relative to other approaches.
Numerical results for four different observation points are
presented inTable I for the right triangle of [7]. (Note that the
subtriangles, however, are not right triangles.) As in [7], all four
observation points lie in the plane of the triangle and the in-
tegrand used in the potential calculation is e=/*% /R, The last
row of the table shows the reference calculation of [7] using the
software package Mathematica. Recall that the current method
uses a product of two Gauss—Legendre sampling schemes—one
in the transverse direction corresponding to sampling at a fixed
value of 3’ and one in the radial direction corresponding to
the fixed value of z’. For each observation point, the current
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TABLE I
COMPARISON OF NUMERICAL RESULTS FOR INTEGRATING A SINGULARITY ON A TRIANGLE AT FOUR DIFFERENT OBSERVATION POINTS
Observation
Point Losation (ey.zy [y | (01, 01,0.0) | (0.2,02,0.0) | (0.3,0.3,0.0) | (0.4,0.4,0.0)
Cancellation Scheme
Total Sample Points = 12 1.900764 - 2.248722 - 2.383519 — 2.286197 —
Radial Samples = 2 j 0.3072100 j0.3083719 j 0.3084644 j0.3073284
Transverse Samples = 2
Rossi and Cullen 1.89818 — 2.24628 — 2.38100 — 2.28374 —
Total Sample Points =24 j0.309025 j0.31111 j0.311817 j0.311502
Cancellation Scheme
Total Sample Points = 18 1.898717 — 2.246418 - 2.381171 - 2.284133 —
Radial Samples =2 j 0.3096465 j0.3111560 j0.3118219 j0.3115903
Transverse Samples = 3
Rossi and Cullen 1.89853 — 2.24629 — 2.381 - 2.28386-
Total Sample Points =30 j 0.309515 j0.311141 j0.31187 j0.311661
Cancellation Scheme
Total Sample Points = 24 1.898567 — 2.246282 - 2.381004 - 2.283886 -
Radial Samples =2 j 0.3096465 j0.3111464 j0.3118307 j0.3116952
Transverse Samples = 4
Cancellation Scheme
Total Sample Points = 36 1.898579 — 2.246288 — 2.381009 — | 2.283890 —
Radial Samples = 3 1 0.3096492 j0.3111477 0.3118314 j0.3116960
Transverse Samples = 4
Rossi and Cullen 1.89857 - 2.24628 - 2.38099 - 2.28386 —
Mathematica j 0.309643 j0.311144 j 0.311826 j0.311688
6 the subtriangles. The rate of convergence was found to be es-
55 | A sentially independent of observation point and the result for
n ~r . . . .
E g (z,y,2) = (0.01X,0.01X,0) shown in Fig. 6 is typical. The
a 5¢ reader should keep in mind, however, that efficiency is not our
- - . . . . . . . . . .
& a5t principal motivation; our interest is more in a simple, arbitrarily
;,2 b A Q accurate, and robust scheme that fits well into the object-ori-
c - . .
& 4r ented approach. Fig. 7 shows the real part of the potential for
g 35 | o (y,z) = (0.5, 0.0).as a func.tion of z. This ﬁggre merely veri-
5 E fies that the potential is continuous but has an infinite slope as
£ 3¢ A the observation point moves across the triangle’s boundaries.
Z 25f Q Rossiand Cullen | | No calculations were performed in [7] for near-singularities
~F A Singularity Cancellation . . . .
F : : : where the observation point lies outside the plane of the source
2 b e e e L . .
10 15 20 25 30 35 a0  triangle. A convergence study was therefore performed using

Number of Sample Points

Fig. 5. Singular integration convergence comparison.

method converges toward the reference result. To see the con-
vergence more clearly, Fig. 5 shows the number of significant
figures that agree with the reference result at the observation
point (z,y, z) = (0.01\,0.01A, 0) versus the number of sample
points.

The reference result provided in [7] has only six significant
figures. Hence, to see the convergence trend to a higher order of
accuracy, a reference potential was calculated at the four obser-
vation points to 14 significant figures using the singularity can-
cellation method. These values were validated by analyzing a
large number of cases involving different combinations of radial
and transverse Gauss—Legendre sampling schemes. The final
results appearing in Table II represent combinations that min-
imize the number of samples for convergence to the number
of significant digits of the table. It is likely that further mini-
mization of the number of samples could still be achieved since,
for simplicity, the same sampling scheme was used in each of

the singularity cancellation method for the same geometry as
before, but with the observation points located at (z,y,z) =
(0.1,0.1,d) [m], where d = 0.0001,0.01, and 0.1 [m].

In analyzing near-singularities, it was found that, in order
to achieve sufficient accuracy, the subtriangles had to be sub-
divided along the radial direction, especially when d was ex-
tremely small but nonvanishing. The reason for this lies in un-
derstanding the mapping of the domain where the integral is
being calculated. Recall that, after transforming into the u do-
main, the upper limit in (10) is given by

.TI

From Fig. 2, we can define tan(¢y) = y'/x7;, which yields

uy(z') = sinh ™! 1)

’
Yy

up(z') = sinh~! —2200) 22)
v V)2 + 22
Fig. 8 plots uy versus ¢y’ for tan(¢y) = 1 and

z = 0.0001,0.01, and 0.1 [m]. The lower integration limit

would yield a similar plot and the domain of integration lies
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TABLE 11
REFERENCE POTENTIAL VALUES
Radial | Transverse | Total |x [m]|y [m]| Real (Potential) | Imaginary (Potential)
9 16 432 | 0.1 | 0.1 [1.89857266176845| -0.30964308563686
5 32 480 | 0.2 | 0.2 [2.24628500696514| -0.31114351821225
6 12 216 | 0.3 | 0.3 [2.38100297872747| -0.31182631634521
5 32 480 | 0.4 | 0.4 |2.28386985510842| -0.31168824333213
14 1
E -Z i - 0.9 .
&8 12 || Observation Point ;
=) F Q@ (xy)=(0.1,0.1) [m] 0.8 [ oo
a ot T
€ F 07
8 [
£ 8f 0.6
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& 6 r 3 05 Legend
5 ; 0all B |—9—z=0.0001[m] | .
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5 r
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. ° 0.1
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Fig. 6. Convergence of singularity cancellation scheme for a self-term. Fig. 8. Mapped domain of integration as the observation point moves off the
surface.
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Fig. 7. The real part of the potential.

between the two curves. From the expressions above, we
see that, for z = 0, the triangular domain is mapped into a
rectangle because uy and ujy, are constant. As the observation
point moves off the surface, however, ur, iy — 0 as y — 0.
This rapid change in the domain limits the accuracy of the
integration. Note that if the near-singularity lies in the plane of
the triangle (d = 0), this problem does not occur.

To overcome this difficulty, we chose to split the subtrian-
gles along the radial direction at 3y’ = 0.5d and 3’ = 3.0d and
to use a Gauss—Legendre scheme in each of the resulting three
regions. For simplicity, the same Gauss—Legendre scheme was
used in each region of the subtriangle, and for all three subtrian-
gles. Clearly one could further optimize the choice of splitting
points and sample point distributions within the split subtrian-
gles to minimize the number of sample points. Table III shows
the reference value for the three different observation points

to 14 significant digits for (z,y,z) = (0.1,0.1,d) [m], where
d = 0.0001,0.01, and 0.1 [m]. The radial and transverse sam-
pling schemes of the table represent the combinations that min-
imize the number of samples for a given accuracy. A plot of the
convergence relative to the reference values in Table III is shown
in Fig. 9. Note that, as we move further off the surface, ur 7 in
Fig. 8 becomes much smoother and, therefore, increasing the
number of sample points by a modest amount increases the ac-
curacy.

For the triangle under consideration, we have seen that to
achieve a desired accuracy the number of sample points must
be increased as the observation point moves out of the source
plane. It is important to note, however, that the more difficult
cases examined above represent extremely small distances rel-
ative to triangle size that often do not occur in applications. As
Fig. 9 shows, for even very small distances, the method easily
produces the three to four significant digit accuracy that is usu-
ally needed. This is in contrast to the Duffy method, for instance,
and it is in this sense that the method may be considered a com-
prehensive approach for treating both singular and near-singular
integrals.

The results shown up to this point have been obtained as-
suming a constant source density or basis function. Of interest,
however, is the convergence of the scheme for higher order
bases. Therefore, as a final example for 2-D geometries, we
plot the convergence relative to the reference values generated
in Table IV for a quartic (scalar) source density. Three obser-
vation points were considered for the right triangle used in the
previous examples. The results are shown in Fig. 10, where the
quartic source density is £f. As expected, the convergence rates
are similar to those of Figs. 6 and 9, but a few more sample
points are needed to obtain a given accuracy level.
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TABLE III
REFERENCE VALUES FOR NEAR-SINGULARITIES
Radial(Transverse|Total|x [m] |y [m] | z[m] Real Imaginary
32 12 3456| 0.1 | 0.1 |0.0001|1.89795445129807|-0.30964308543194
32 24 6912| 0.1 | 0.1 | 0.01 [1.83755816482970|-0.30964103642031
32 24 6912] 0.1 | 0.1 0.1 ]1.42970516324653|-0.309438204 12320
TABLE IV
REFERENCE VALUES FOR SINGULARITIES USING QUARTIC BASIS FUNCTIONS
Radial|Transverse|Total [ x [m] |y [m] | z [m] Real Imaginary
6 20 360| 0.1 | 0.1 0.0 ]0.37918591657965|-0.02089680301877
32 24 6912| 0.1 | 0.1 |0.0001 |0.37893270526228|-0.02089680300501
32 16 4608| 0.1 | 0.1 | 0.01 |0.35433936106655|-0.02089666539961
14 ] i il P i 12 Qo ™
13 -1 Distance From Source e SRR L "
12 |-— @ d=0.0001[m] - Distance From Source |/ /|| 9 ||
11 [ ® d=0.01[m] 1 10 | Q@ d=0.0[m] ° '=‘
® 10 A d=0.1[m] =0 ° A d=0.0001[m] ! A
- I i = " d=0.01
D9 o 8L o ° A
o g o I A
E 7k S 6 - W
€ 6 &
5 5f 5 4
(I (2]
3F {
2| 29 2}
1F Lg Aad
oL LU | ] ] 1 0 1l
1 10 100 1000 10000 1 10 100 1000 10000
Total Number of Samples Total Number of Samples
Fig. 9. Convergence for near-singularities. Fig. 10. Convergence using quartic basis functions.

The number of sample points needed for a given accuracy is
expected to increase if 1) higher order bases are used, 2) the elec-
trical size of the triangle increases, or 3) the triangle is curved.
We do not examine these cases here, but remark that the latter
case is handled by using the weights and sample points obtained
by applying the present scheme on the planar triangle tangent
to the original triangle at the projected observation point and
having the same position vector derivatives with respect to area
coordinates as the original (curved) triangle there [11].

III. 3-D GEOMETRY—TETRAHEDRONS, BRICKS, AND PRISMS

The previous analysis is easily extended to three common
volume elements: tetrahedrons, bricks and prisms. Recall that
by subdividing the 2-D geometry about the observation point
we achieved the property that the method exactly integrates a
singular kernel having the static form 1/R. To retain a similar
property in the 3-D case, we must again subdivide the geom-
etry about the observation point. The procedure is illustrated
in Fig. 11(a) and (b) for a prism, where we show a subtetrahe-
dron and a subpyramid, respectively. We illustrate the procedure
with a prism because it has both triangular and rectangular faces,
leading to subelements that are tetrahedrons and pyramids, re-
spectively. Indeed, all the 3-D geometries we analyze can be
similarly subdivided into subtetrahedrons and/or subpyramids.

In order to make use of the previous 2-D analysis, we further
subdivide the subtetrahedrons and subpyramids into layers of

I
1
I
-

Fig. 11. Subdividing a prism about the observation point. (a) A subtetrahedron
and (b) a subpyramid.

triangles and quadrilaterals, respectively. For example, Fig. 12
shows a subtetrahedron with a stack of three triangles repre-
senting three sample points along the height of the subtetrahe-
dron. Note that the height of the subtetrahedron is defined from
the observation point to the face of the prism and the triangles
are stacked perpendicular to this height. The ratio of a triangle’s
distance from the observation point to one of its edges remains
fixed, and hence the problem of small z relative to an edge only
occurs for degenerate subtetrahedrons (observation point near a
face of the original tetrahedron). Thus, integrating a 3-D element
reduces to integrating a stack of 2-D elements, each of whose
cross-section integrals are relatively simple. Furthermore, since
the 2-D integration handles the near-singularity, we can use a
simple Gauss—Legendre scheme for sampling in the third di-
mension. We summarize the procedure as follows.
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Fig. 12. Subtetrahedron with three layers of triangles.

1) Subdivide the element about the observation point into
subvolume elements.

2) For each subelement, choose the number of Gaussian
sample points along the height. The subelement cross-
section at each sample point is a 2-D element.

3) Find the vertices of the 2-D subelement (triangle or
quadrilateral) and the position of the observation point
with respect to the 2-D subelement.

4) Calculate sample points and weights for the 2-D
subelement using the scheme detailed in the previous
section.

5)  Map the local subelement sample points back to the
global coordinate system.

A. Weights and Sample Points for a Prism

Consider the geometries of a subtetrahedron and subpyramid
shown in Fig. 13(a) and (b), respectively. Geometrical param-
eters for the subelements are denoted by primes. When inte-
grating a volume element, it is important to use a consistent no-
tation for labeling the vertices. For example, in Fig. 13(a), the
global vertices are labeled such that if the fingers of the right
hand curl around vertices 1, 2, and 3, then the thumb points into
the volume element. Similarly for the subelement, if the fingers
curl around the vertices 1/, 2’, and 4/, then the thumb points into
the volume element. For this paper, the observation point is la-
beled 3’ for a subtetrahedron and 5’ for a subpyramid.

The integration over a subtetrahedron is given by

By h T efij
I: A / / ,I d ld Id,/.
/0 /0/“ (a9, 2') - da'dy'dz

Note that the subscript v in the limit of the integral is used
to indicate integration along the height of the volume subele-
ment, which distinguishes it from the height / used for triangles.
The two inner integrals represent the potential from a triangular
source distribution at the cross-section for a nearby (near-sin-
gular) observation point. The result is given by

h ry e
[ ] A
J0 JIy,

DD RE

k=1 j=1

(23)

—jkR
dx'dy'

e_]’kR(j-k’)

R 24%( RO

_],k‘) y/(k I) (24)
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Fig. 13. (a) Subtetrahedron and (b) subpyramid geometries for a prism.

where W, are the weights given by (12) and 2A4°(2’) is the Ja-
cobian of the triangle at the cross-section location. Substituting
(24) into (23) yields

Ry K J
I~ / 2A°(z ZZW WA (2GR g () 7y
k=1 j=1
e_ij(j-k') )

Normalizing the remaining integration interval and applying a
Gaussian scheme yields

I~ 2h ZA[ Z ZwZngZA

(=1 k=1j5=1

GRD 1) 10

e_ij(J\kI)

We note that the changing area A7 of the triangular cross-section
at the £th sample point is given by

2
AS = (1 - gf}) A
where A°? is the area of the base of the subtetrahedron and E GL is

the normalized Gauss—Legendre coordinate that vanishes on A®
and is unity at the observation point. Equation (26) now becomes

J K L 2
1%2}74,14})222(1— g?) wZij

j=1k=1 =1

27

_ij(jJ\w?)

1GkE) (R IO

(28)
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where Jaubtet = 2h, A® is the Jacobian of the subtetrahedron.
The weights for the subtetrahedron are therefore given by

2
/(L
Tsubtet (1 - CEL)) weWip
jprism
where Jprism is the Jacobian associated with the global prism
element.

In order to handle near-singularities, we introduce the factor
om = £1 given by

Wike = om (29)

_ b, (£/13 X %4)
|£l24 : ( 13 X 134)|

(30)

for a subtetrahedron and

- :12‘(i15 X£:25)
|£12 : (els X £25)|

€29

for a subpyramid, with the subscript ™ denotes the subelement
being analyzed. If the observation point is outside the global
tetrahedron, then the weights for subtetrahedrons that lie com-
pletely outside the global element are negative.

The derivation of the weights for subpyramids follows that
for subtetrahedrons with two exceptions: 1) the Jacobian of the
quadrilateral in (25) is A°(z) instead of 2A4°(z) and 2) the Ja-
cobian of the subpyramid is given by Jsubpyr = 3Vsubpyr =
h, A®. The weights for the subpyramids are thus given by

2
\7Slll)pyr (1 - gi)) UI/W]'k
jprism .

We next consider the mapping of local coordinates back to
the coordinates of the original prism. We illustrate this map-
ping first for the subtetrahedron and then for the subpyramid. In
order to distinguish them from the global coordinates, the sub-
volume coordinates are primed while the 2-D layer coordinates
are double-primed.

Consider the subtetrahedron in Fig. 13(a). We first find the
vertices for the layers of triangles. Their position vectors are
given by

Wike = om (32)

) =1} + 508, (33)

) =1, — 508, (34)
and

ry =1+ &5 by (35)

where fg? is the Gauss—Legendre sample point along the
height of the subtetrahedron. Once the vertices of the triangle
and the position of the observation point are known, we can use
the 2-D scheme previously discussed to find the weights Wy,
and sample points (£} '(G:k) 5”(] ’ fg(] ") on the triangle. The
global position vector for the prism is then given by

Tprism = (I‘@ + fl(e ) ( fl(l)l )

+(ra+€808,) & G6)

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 53, NO. 10, OCTOBER 2005

3
£y 3
Fig. 14. Geometry of global prism.

TABLE V
GEOMETRY OF PRISM

Vertex (x,y,2) [m]
(0,1,0)
(0,0,0)
(1,0,0)
(0,1,1)
0,0,1)
(1,0,1)

DN B [WIN|—~

In terms of normalized coordinates we have, from Fig. 14

1‘1) : (315 X llz)

5 _ (rprism -
1=

7 (37)
52 — (rprism - rl}' (£12 X l23) (38)
53 _ (rprism - rl‘)7' (£13 X l34) (39)
L=1-6-& (40)

and
& =1-Es (41)

The sample points for the subpyramid are derived in the same
manner, but the underlying 2-D subelements are now quadrilat-
erals. Based on the geometry in Fig. 13(b), the vertex position
vectors of the quadrilateral are given by

r1 =r} +£’“)£’ (42)
ry =rj+ f’“)! (44)

and
v =1, + 08, (45)

From the 2-D scheme, we obtain the weights Wi and sample
points (£, (:k) 5”(1 k) fll(l’k) 5"(]’ ) on the triangle. Using
the geometry of the normahzed coordinates as defined for the
quadrilateral in Fig. 3, the global position vector for the prism
is given by
rprsm = (r2 4 €600 ) €7 + (s + €800 ) €161

+ (1"6 + 5"(%/ ) 1€ + (1"3 + 5"(%/ ) 2 &5

The normalized coordinates are then given by (37)—(41).
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TABLE VI
STATIC POTENTIAL FOR AN OBSERVATION POINT AT (x, y, z) = (50,50, 50)
NUMBER OF NUMBEROF | TOTAL
NURMBER | sampLEs SAMPLES | NUMBER
SAMPLES ALONG THE ALONG THE OF POTENTIAL POTENTIAL
ALONG RADIAL TRANSVERSE | SAMPLE | WITH OUR SCHEME | WITH GAUSSIAN SCHEME
HEIGHT | P'RECTION OF DIRECTION POINTS
TRIANGLE OF TRIANGLE | IN PRISM
1 6 1 108 4.63010811E-04
1 8 1 144 4.63039839E-04
1 10 1 180 4.63039849E-04
9 4.63039846E-04
35 4.63039848E-04
TABLE VII
REFERENCE VALUES FOR THE POTENTIAL OF A PRISM
Vertical|[Radial [Transverse| Total X y z Real Imaginary
5 16 9 12960{0.333 [ 0.333 | 0.5 | 0.1101990007812 | -0.0246818749055
5 20 16 28800/0.333[0.333| 1 |0.07701456144055|-0.02427846658870
5 24 16 34560/ 0.333 | 0.333 | 1.25]0.04833922443213|-0.02377978649190

| | Observation Point i
Q Observation Point = (1/3,1/3,0.5) [m] | :
A Observation Point = (1/3,1/3,1.0) [m]
™ Observation Point = (1/3,1/3,1.25) [m] :

10 [

Number of Significant Digits
(=2}

2;
- @ I il _
10 100 1000 10000 100000

Number of Sample Points

Fig. 15. Convergence of the potential for a prism.

B. Numerical Results for a Prism

As a first check, we calculate the static potential in the far
field of a prism with unit source density at an observation point
(z,y,2) = (50,50, 50) [m]. At this location, the potential may
be calculated using either the singularity cancellation method
or a regular Gauss-tetrahedron integration scheme. The vertices
of the prism are given in Table V. Results using the singularity
cancellation scheme and regular Gauss-tetrahedron points are
shown in Table VI. We see good agreement between the two
methods. Note in particular that, as previously stated for the
statics case, by dividing the prism about the observation point
we only need one 2-D layer for each subvolume element in order
to achieve convergence.

A convergence study was performed using the same geom-
etry as above and a wavelength of 10 [m]. The observation
points were located at (z,y,z) = (1/3,1/3,d), where d =
0.5,1.0, and 1.25 [m]. The convergence results are shown in
Fig. 15, where the reference values are given in Table VII. Fi-
nally, in Fig. 16, we plot the absolute value of the potential for
z = 0.5 [m] to check continuity as we move across the prism
boundaries.

Fig. 16. The absolute value of the potential for a prism.

IV. CONCLUSION

A new integration scheme is presented that accurately and ef-
ficiently handles both singular and near-singular potential inte-
grals with kernels of the form 1/R. An important feature of the
scheme is that it exactly integrates the free-space static potential
of a constant source distribution on a triangle using only three
sample points. Because the method also works for near-singular
terms, potential integrals on triangular elements can be used
as building blocks for evaluating potentials defined on other
common elements. Detailed analyses and numerical results are
presented for triangular and prism elements; the method is easily
extended to quadrilaterals, bricks, and tetrahedrons.

Extensions of the method to treat the kernels of wire and body
of revolution kernels have also been made. Furthermore, inte-
grals involving kernels of the form grad 1/ R are also of interest
and are currently under investigation. It is expected that results
of these studies will be reported in the near future.
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