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Abstract

The interaction of regular waves with arrays of bottom-mounted circular cylinders is con-
sidered. This subject has been thoroughly investigated in the recent past, but most of the
time under the assumption of regular and spatially periodic arrangements. Unlike these
authors, we consider here arrays of unevenly spaced cylinders, displaced randomly from a
regular array according to a disorder parameter. Focus is put on two effects of this spacing
irregularity: reduction of peak forces associated to trapped mode phenomena, and regular-
ization of the transmission coefficient for waves propagating through the arrays.
# 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many offshore structures, such as oil rigs, VLFS or some breakwaters (Duclos
et al., 2003) are supported by vertical columns. Very large floating structures, sup-
ported by hundreds or thousands of piles are now under consideration. So, a fine
understanding of the interaction of water waves with such large sets of objects is of
fundamental importance to ensure successful design of these structures. Various
analytical methods have been developed to solve the wave diffraction problem for
arrays of vertical cylinders. The most noticeable early work is due to Twersky
(1952) who constructed a solution by using an iterative procedure in which success-
ive scatters by each cylinder were introduced at each order. This method was later
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extended to water-wave case (rather than acoustics) by Ohkusu (1974), while
Spring and Monkmeyer (1974) used a direct method to obtain the first-order exit-
ing forces on elements of the arrays by applying the boundary condition on all
cylinders simultaneously. This method was further improved by Linton and Evans
(1990) who provide simpler expressions for the velocity potential of a particular
cylinder. This leads to simple formula for the first and mean second-order forces
on the cylinders and also provides an efficient method for the computation of free-
surface amplitudes.
A number of recent papers (e.g Maniar and Newman, 1997 and of Evans and

Porter, 1997a,b) addressed the possibility that the waves scattered by the columns
could constructively interfere, causing large amplitude wave between cylinders and
generating very large forces on cylinders, in certain sea conditions, compared to the
force on an isolated cylinder in the same sea state. Maniar and Newman worked
on the fist-order exciting forces on a large number of identical, equally spaced, cir-
cular cylinders in a row. They showed that near-trapped modes occur between
adjacent cylinders at some critical wavenumbers, and that this could result in very
large loads on individual elements of the array.
Evans and Porter (1997a,b) considered arrays of identical bottom-mounted cir-

cular cylinders arranged in a circle. They showed that near-trapped modes can also
occur with this kind of arrangement and they demonstrated how the largest forces
arise when the near-trapped mode corresponds to a standing wave motion.
In this paper, we consider arrays of identical bottom-mounted cylinders. The

general formulation of Linton and Evans, which is recalled in Section 2, is used to
determine the velocity potential. In the initial layout, piles are positioned in regular
arrays composed of series of the four cylinders cell considered by Evans and Porter
(1997a,b). Then, we introduce random disorder in the pile group. The disorder is
gradually increased, from very low values, in order to assess its effect on the near-
trapped modes observed in regular pile networks. Then, the focus is put on the
effect of this arrangement perturbation on wave transmission through the pile
groups.
2. Formulation

The scattering of water wave by a group of N bottom-mounted circular cylinders
is solved by using the Linton and Evans (1990) formulation; their theory is recalled
in this section, keeping their notation for the sake of simplicity. The general frame-
work is the linear theory of free surface potential flow based on the assumption of
inviscid fluid and small wave steepness. Under these hypotheses, the velocity poten-
tial, solution of Laplace’s equation in the fluid domain, can be expressed as

Uðx; y; z; tÞ ¼ Reff/ðx; yÞf ðzÞe�ixtgg ð1Þ
with

f ðzÞ ¼ �igA
x

coshjðzþ hÞ
coshjh

ð2Þ
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where h is the water depth, g the acceleration of gravity, x the circular wave
frequency, A the incident wave amplitude and j the wavenumber, real positive
solution of the dispersion relation

jtanhjh ¼ x2

g
ð3Þ

The horizontal potential /(x, y) must to satisfy

ðr2 þ j2Þ/ðx; yÞ ¼ 0 ð4Þ

outside the cylinders, and the impermeability condition

@/
@n

¼ 0 ð5Þ

on the surface of each of these cylinders. The total potential is written as

/ðx; yÞ ¼ /incðx; yÞ þ
XN
j¼1

/jsðx; yÞ ð6Þ

where

/incðx; yÞ ¼ eijrcosðh�hincÞ ¼ Ikeijrkcosðhk�hincÞ ð7Þ
with Ik ¼ eijðxkcoshincþyksinhincÞ, hinc is the incident wave propagation direction as
shown in Fig. 1, (rk, hk) are polar coordinates of the field point (x, y) relative to
(xk, yk), the center of the kth cylinder. The general form for the scattered potential
due to cylinder j is

/js ¼
X1
n¼�1

AjnZnHnðjrjÞeinhj ð8Þ
Fig. 1. The circular array of four cylinders.
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where Zn ¼ J 0nðjaÞ=H 0
nðjaÞ, HnðjrjÞ ¼ JnðjrjÞ þ iYnðjrjÞ, Jn and Yn are the Bessel

functions, a is the radius of the cylinders, all considered identical in the present
study. By using Graf’s addition theorem for Bessel function, Linton and Evans
have shown that the satisfaction of the boundary conditions on all the cylinders

(rj ¼ a) implies that the coefficients Akm should satisfy the following system of equa-

tions

Akm þ
XN
j¼1;j 6¼k

X1
n¼�1

AjnZ
j
ne

iðn�mÞaijHn�mðjRjkÞ ¼ �Ikeimðp=2�hincÞ

k ¼ 1; . . . ;N; �1 < m < 1 ð9Þ

where Rjk is the distance between the center of cylinders j and k, and ajk is the
angle between the positive x-direction and the line from the center of cylinder j to
the center of cylinder k, as shown in Fig. 1. Given the radius a of the cylinders and
the position (xj, yi) of their center, the linear system Eq. (9) can be assembled and

solved for the Ajn after truncation of the infinite rank m to a suitable value M. In
all the computations reported hereafter, M 
 7 was sufficient to obtain an excellent
accuracy. Once system Eq. (9) has been solved, the total potential can be recov-
ered, and the wave elevation and wave forces can be straightforwardly computed.
The first-order force on the jth cylinder which is given by integrating the press-

ure over the surface of the cylinder can be write

X j
�� �� ¼ 1

2
F j
�� �� Aj�1 �f gAji

��� ��� ð10Þ

where

F j ¼ 4qgAtanhjh
j2H 0

1ðjaÞ
ð11Þ

is the first-order force on an isolated cylinder of radius a in the same incident wave
train. (The minus sign in the bracket pair leads to the x-component, and the plus
sign to the y-component, respectively.)
3. Perturbation of ordered pile arrangements

The aim of the study was to assess the influence of the level of order of the piles
arrangement on certain properties of wave–arrays interaction like near-trapped
modes and wave transmission through a large multi rows array. For that purpose,
we have first considered arrays of evenly spaced cylinders (circular arrays, matrices
of cylinder, rows of cylinders, etc. . .) with a constant spacing 2d between two
neighboring cylinders. Fig. 2 shows such a group of 16 piles disposed in a regular
three rows arrangement which will serve as an example in the sequel. Then, from
each of these regular arrangements of cylinders, we have defined several perturbed
arrays by moving at random each cylinder center apart from its original location of
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a displacement defined by (Dxj, Dyj)

Dxj ¼ cjpscosð2pcjÞ
Dyj ¼ cjpssinð2pcjÞ

�
ð12Þ

where the random variable cj belongs to [0, 1], and s is a global disorder parameter
which defines the allowed displacement of the cylinders (s 2�0; 1½) as a proportion
s of the maximum permissible displacement p ¼ ðd � aÞ, with the properties at the
limit: s ¼ 0 ) no displacement of any cylinder, s ¼ 1 ) maximal permissible dis-
placement of the cylinders before contact, i.e. cylinder j possibly in contact with
one of its neighbors. Thus, the perturbation parameter s controls the level of dis-
order introduced in the array, while cj brings the randomness of this displacement
for each cylinder j inside the permitted range. Of course s is a parameter imposed
by the user, whereas the cj are determined by a random generator computer rou-
tine. Fig. 3 gives a view of the results for three level of disorder: s ¼ 0:3, s ¼ 0:5
and s ¼ 0:9 applied to the ordered reference array Fig. 2.
ered arrangem
Fig. 2. A three rows ord ent for a 16 piles group.
ree level of disorder introduced in the ordered arr
Fig. 3. Th ay Fig. 2.
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3.1. Effect of disorder on near-trapped modes

Let us now turn to the first part of this study. The goal is to assess the sensitivity
of the trapped mode waves with regard to a small deviation of the geometrical
arrangement from the perfect disposition leading to this phenomenon. Evans and
Porter (1997a,b) have shown that for a circular arrays of four cylinders like the
arrangement visible in Fig. 1 (with a=d ¼ 0:8), a near-trapped mode appears at
wave frequency such that jd=p ¼ 1:625293 (or ja ¼ 4:08482) and wave incidence
hinc ¼ 0.
For the 16 cylinders, linear array constructed by aggregating this circular

arrangement along the y axis (see Fig. 4), a trapped mode appears for the same
wave frequency. As a consequence, very large forces are exerted upon the piles,
except for cylinders numbered 7, 8, 9, 10 where total forces are less important due
to some partial cancellation. Fig. 5 shows the force experienced by cylinder number
3 of the linear array (Fig. 2) and on cylinder 1 of the circular array (Fig. 1). For
this critical value of ja, both curves present a very large and sharp peak, up to
about 46 times the force on an identical isolated cylinder in the same wave field.
Fig. 4 shows the free surface elevation magnification factor |/| for this wavenumber
for the linear array of regularly spaced piles. One can see that the amplitude of the
free surface elevation between the cylinders is not the same for each cell of four
cylinders, but that the figure is globally conserved and correspond to the scheme
observed by Evans and Porter for the four piles circular array (see Fig. 10 in Evans
and Porter, 1997a). For the cells located at the ends and for the middle cell, the
free surface amplitude is similar to the one obtained for the circular array of four
cylinders, the maximal wave amplitude is predicted to be about 150 times the inci-
dent wave amplitude. All around and behind the array, the wave amplitude keeps
the same order of magnitude as the incident wave. In the area behind the array, the
4. Near-trapped mode for the ordered pile array at jd=p ¼ 1:625
Fig. 293.
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mean amplitude seems to be lower than unity, indicating a kind of sheltering effect

which will be studied more closely in the next section.
Now, keeping the same wave frequency and the same basic array, we have intro-

duced a certain level of disorder in the location of the cylinders, as explained in the

previous section. For each value of the disorder parameter s, 15 different pile

groups corresponding to different sets of random parameter cj were tested. The
force on cylinder 1 of the circular array (Fig. 1) and (thick dotted
Fig. 5. Horizontal line) on cylinder 3

of the large array (Fig. 2).
ig. 6. Maximum resultant force versus disorder level parameter s.
F
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results are reported in Fig. 6, where the maximal force, reduced by the force on a
single isolated cylinder, observed on the whole set of cylinders is represented as a
function of the disorder levels (s) for all the random parameter sets. As a first
qualitative observation of these results, two different behavior of the maximum
force exist, depending on whether s being smaller or larger than 5� 10�3.
For low values (s < 5� 10�3), the maximal force increases with the disorder

level, from its reference value (46) corresponding to the trapped mode in the evenly
spaced cylinder group, and it can be practically twice this value at the upper end of

the range 10�4 < s < 5� 10�3. In this range, the displacement of the cylinders

remains negligible; s ¼ 10�4 means a maximum displacement of 1 mm for a 10 m
gap between cylinders. So it can be understood that the trapped mode phenom-
enon is still present, but that the maximum force can be even larger due to the dis-
parition of some force cancellation by symmetry effects in the regular array.
Now for larger values of the disorder parameter s � 5� 10�3, the maximal force

is considerably and rapidly reduced as s increases. It seems that the trapping mode
phenomenon tends to disappears in the array with a disorder above this threshold
value.
Let us now look to the sensitivity with regard to the frequency wave for a given

disorder level. We start again from the evenly spaced reference array Fig. 2 as a
basis, and we apply three disordering with a level s ¼ 0:1, leading to the three
unevenly spaced arrays presented in Fig. 7(a–c). Figs. 8–10 show the evolution of
maximal forces with wave frequency for these three different unevenly spaced pile
groups, the small narrows indicate the trapped mode frequency of the order array.
These curves should be compared to the force on cylinder 3 of the regular array in
Fig. 5 corresponding to the pure trapped mode. The frequency of this peak is
marked by a vertical dashed line in Figs. 8–10. We can observe that, for the three
displaced arrays, the trapped mode has been replaced by a moderate double peak
extending over a wavenumber band of 0.1 width, which is far broader than the
peak of the force in pure trapped mode, and that the amplitude of the peak is now
randomly displaced arrays (gray) (ordered array in black)
Fig. 7. Three different with a disorder para-

meter s ¼ 0:1.
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one order of magnitude lower. In Fig. 11, we have plotted the wave amplitude

magnification factor for the original arrangement, and for the two last displaced

arrangements denoted by (b) and (c) in Fig. 7. For such a disorder parameter

s ¼ 0:1, it is difficult to distinguish between the ordered (a) and displaced arrays (b)

and (c); but the wave amplitude attenuation is immediately evident. From these fig-

ures, we can say that there is practically no more trapped mode in the unevenly

spaced array at this disorder level.
. 8. Maximal force in unevenly (s ¼ 0:1) spaced array shown in Fig. 7(
Fig a).
9. Maximal force in unevenly (s ¼ 0:1) spaced array shown in Fig. 7
Fig. (b).
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Another interesting feature of the wave pattern is revealed by this last figure

Fig. 11. Comparing figures (b) and (c) to figure (a), it seems that introducing a

small amount of disorder in the array reduce sensibly the mean wave amplitude

behind it. From this observation, we have extended the initial scope of this study
10. Maximal force in unevenly (s ¼ 0:1) spaced array shown in Fig. 7
Fig. (c).
Wave amplitude magnification at trapped mode wavenumber jd=p ¼ 1:625293. (a) Undi
Fig. 11. sturbed

reference array; (b) displaced array (s ¼ 0:1) same as Fig. 7(b); (c) displaced array (s ¼ 0:1) same as

Fig. 7(c).
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to assess the effect of disorder on the transmission of waves through such arrays of
identical cylinders.

3.2. Effect of disorder on wave transmission through the array

Let us first define a reference array as previously by aggregating the basic four
pile circular cell in a four rows array (38 cylinders) as depicted in Fig. 12. This
array is indeed larger than the previous one, but still finite in length. The sheltered
area will not therefore extend to infinity downstream, and we have defined a fixed
triangular area (ABC) were a mean transmission is defined. Let /i be the incident
velocity potential of unit amplitude propagating along the horizontal X axis, i.e.
/i ¼ expðikxÞ and let /t be the total complex potential at any point M in the tri-
angle ABC, still computed by Evan’s method exposed in Section 2 above. /i being
unitary, the modulus of /t can then be considered as a local transmission coef-
ficient

/tðMÞj j ¼ ktðMÞ /ij j ¼ ktðMÞ ð13Þ
Now let us define a mean transmission coefficient Kt by integrating kt over the

triangle ABC

Kt ¼
1

SABC

ð ð
ABC

ktðMÞdS ð14Þ

We shall now use this coefficient to quantify wave transmission across the pile
array as we will progressively introduce some disorder in the cylinders arrange-
ment. Different levels of disorder have been considered, and five of them are
plitude map around a 38 piles ordered array; triangular area (ABC
Fig. 12. Wave am ) for wave trans-

mission computation.
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reported here: s ¼ 0 (ordered array as a reference), then s ¼ 0:1, 0.3, 0.5 and 0.9

(see examples Fig. 13). Again, the geometrical arrangement depends not only on s
but also on a set of random variables cj, each one being affected to cylinder j. The

mean coefficient Kt therefore depends on each particular array arrangement. So we

have proceeded to five different random choices of the cjs for each level of disorder,

in order to define an average coefficient Kth i by Kth i ¼ ð1=NÞ
PN
1 Kt, with here

N ¼ 5. This averaging is reported in Fig. 14 where five Kt curves and their average
array (left), and two disordered arrays: s ¼ 0
Fig. 13. Ordered reference :5 (middle), s ¼ 0:9 (right).
smission coefficient Kt for five different randomly disordered arrays (
Fig. 14. Mean tran dotted lines), and

their average (bold black line) for a disorder level s ¼ 0:3.
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Kth i are plotted as a function of the reduced wavenumber jd/p, for a disorder
parameter s ¼ 0:3, to appreciate the typical standard deviation around this average
curve.
Finally, this averaging method was applied to compute the transmission proper-

ties of the array over a wide frequency range, for four values of s (plus s ¼ 0) as
mentioned above to assess the influence of disorder on the average transmission
coefficient Kth i. All results are presented in a single figure (Fig. 15). For reduced
wavenumber smaller than 1, it seems that the array is practically transparent to the
waves whatever the level of disorder. The value jd=p ¼ 1 corresponds to a wave-
length k equal to 2d which is the typical spacing between cylinders centers; when
jd=p < 1, waves are longer than this spacing. Beyond this value, the coefficient
falls abruptly to a value around 0.5. Then, as j increases, the curve corresponding
to the ordered array has a very oscillating behavior, reaching a value Kth i ¼ 0:1 for
jd=p ¼ 1:7 and falling to Kth i ¼ 0:1 at jd=p ¼ 2:7. These large oscillations may be
due to resonance phenomenon and are common in transmission coefficient curves
for arrays of evenly spaced cylinders. After the critical value jd=p ¼ 1, we can
observe on this example that the more disordered is the array, the less wavy is the
curve. In the limit s ¼ 0:9, the curve is practically flat about Kth i ¼ 0:6, considering
the noise introduced by the small number of cases Eq. (5) taken to compute the
average. It seems that the same behavior holds when the disorder parameter
decreases down to s ¼ 0:5. After that, the wavy behavior of the regular array is
progressively recovered.
This effect of disorder on wave transmission across the array could found some

practical applications in coastal engineering, especially in the design of pile
supported structures if one wants to limit, to enhance or to regularize wave
ransmission coefficient Kth i versus reduced wavenumber jd/p for fo
Fig. 15. Average t ur different levels

of disorder.
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transmission depending on the frequency. In that case, s ¼ 0:5 seems to be a
reasonable threshold value for the disorder level.
4. Conclusion

Two aspects of the effect of uneven spacing on wave transmission through cylin-
ders arrays have been investigated in the paper.
In the first part, we have shown on an example that a small level of disorder,

beyond a certain threshold (5� 10�3 of the maximum permissible displacement, in
the present case) is sufficient to destroy the phenomenon of near-trapped modes,
avoiding the very large forces associated to it.
In the second part, we have defined and computed an average transmission coef-

ficient for a four pile rows group. This coefficient which is a wavy function of the
wavenumber for evenly ordered arrays appears to be less and less oscillating as the
level of disorder is increased.
These two properties of wave–array interaction, not well studied up to now,

could have some interest for ocean engineers concerned with pile supported marine
structures.
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