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On Bonded Circular Inclusions in 
Plane Thermoelasticity 

C. K. C h a o  1 a n d  M .  H.  S h e n  2 

A general solution to the thermoelastic problem of  a circular 
inhomogeneity in an infinite matrix is provided. The thermal 
loadings considered in this note include a point heat source 
located either in the matrix or in the inclusion and a uniform 
heat flow applied at infinity. The proposed analysis is based 
upon the use of  Laurent series expansion of  the corresponding 
complex potentials and the method of  analytical continuation. 
The general expressions of  the temperature and stress functions 
are derived explicitly in both the inclusion and the surrounding 
matrix. Comparison is made with some special cases such as 
a circular hole under remote uniform heatflow and a circular 
disk under a point heat source, which shows that the results 
presented here are exact and general. 

1 Introduction 
The thermal stresses induced by an insulated hole in an isotropic 

medium was studied by Florence and Goodier ( 1959, 1960). The 
same problem was solved by Chert (1967) for an orthotropic 
medium containing a circular or elliptic hole. Hwu (1990) studied 
the thermal stresses in an anisotropic body under uniform heat 
flow disturbed by an insulated elliptic hole using the Stroh formal- 
ism (Stroh, 1958). Following the Lekhnitskii complex potential 
approach, Tarn and Wang (1993) found the thermal stresses in 
anisotropic bodies with a hole or a rigid inclusion. Recently, Kattis 
and Meguid (1995) gave a solution of thermoelastic problems of 
an elastic curvilinear inclusion embedded in an elastic matrix 
where all singularities are located in the matrix. In this note, we 
aim to provide a general solution to the elastic inclusion problem 
subjected to a point heat source or a uniform heat flow. A point 
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heat source considered in this note resides either outside or inside 
the circular inclusion. The analysis is based upon the complex 
variable theory and the method of analytical continuation which 
allows us to express the general solutions of the temperature and 
stress functions in a compact form. Some special examples are 
solved in closed form and are compared with existing analytical 
solutions, such as a point heat source in the circular disk and an 
infinite matrix with a circular elastic inclusion under a remote 
uniform heat flow. 

2 Problem Formulation 
Consider a circular elastic inclusion perfectly bonded to an 

infinite matrix subjected to a point heat source located either in 
the matrix (including infinity) or in the inclusion and a uniform 
heat flow applied at infinity. The regions occupied by the elastic 
matrix (Izl > a) and the inclusion (Izl < a) will be referred 
to as regions Si and $2, respectively, and the quantities associ- 
ated with these regions will be denoted by the corresponding 
subscripts (see Fig. 1 ). A point heat source in the system or a 
uniform heat flow at infinity causes a thermal stress distribution 
as a result of the different thermoelastic properties of the two 
phases. For a two-dimensional heat conduction problem, the 
resultant heat flow Q~ and the temperature Tj can be expressed 

in terms of a single complex potential g f ( z )  as 

Qj : f (qxjdy - qyflx) = - k j  Im[gJ(z)] (1) 

Tj = Re[g}(z)] (2) 

where Re and Im denote the real part and imaginary part of the 
bracketed expression, respectively. The quantities qxj, qyj in 
(1) are the components of heat flux in the x and y-direction, 
respectively, and kj stands for the heat conductivity with j = 1 
for S~ and j = 2 for $2. Once the heat conduction problem is 
solved, the temperature function g~(z) is determined. For a 
two-dimensional theory of thermoelasticity, the components of 
the displacement and traction force can be expressed in terms 
of two stress functions ~bi(z), ~j(z) and a temperature function 
g j ( z )  as (Bogdanoff, 1954) 

2Gj(uj + ivj) 

= Kjqbi(z) - zqbj(z) - ~bj(z) + 2Gflj  f g](z)dz (3) 

-I'~ + iXj = qbj(z) + zqSj(z) + ~lD(z) (4) 

where Gj is the shear modulus, and Kj = (3 - vj)/(1 + vj), flj 
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Fig. 1 A bonded circular inclusion subjected to a point heat source 
outside the inclusion 

= aj for plane stress and Kj = 3 - 4uj, 3j = (1 + uj)aj for 
plane strain with uj being the Poisson's ratio and aj the thermal 
expansion coefficients. Primes denote differentiation with re- 
spect to z and a superimposed bar denotes the complex conju- 
gate. For the condition that both the stresses and displacements 
are single-valued either in the matrix or in the inclusion, the 
stress functions cks(z), ~Oj(z) must take the form 

~)j(Z) = AjZ In z + B) In z + ~b~(z) (5) 

q/j(z) = Cj In z + q/j*(z) (6) 

where Aj is a real constant and B s, Cj are complex constants 
which are related by the following equations 

(Kj + 1)Asz + KjB s + ~ = 2 7 r i  gj( t )dt  (7) 

B~ - ~ = 0 (8) 

where cj is any surrounding contour within the region Sj (j = 
I, 2). Note that the singularity of the term z In z appeared 
in the stress functions, Eq. (5), results from the logarithmic 
singularity of the temperature function induced by a point heat 
source. The two holomorphic functions q~j*(z) and @~(z) in 
(5) and (6), respectively, can be expressed in a series form as 

qbl* = ~ L,,z -m, qsj* = ~ Mmz -m (9) 
m=} m = l  

d)* = ~ N.,z m, ~02" = ~ P,,,z"' (10) 
m = l  m = l  

where the constant coefficients L,,, M,,, N,,, and P,, may be 
determined from the interface continuity conditions. 

3 T e m p e r a t u r e  Field 

3.1 A Point Heat Source in the Matrix. Consider a point 
heat source is located outside the inclusion (see Fig. I ), the 
temperature functions in the matrix and in the inclusion, respec- 
tively, can be written as 

g;(z) = g~(z) + g;(z) (11) 

g;(z)  = g ; (z )  (12) 

where g~(z) represents the function associated with the unper- 
turbed field which is related to the solutions of homogeneous 
media and is holomorphic in the entire domain except a singular 
point under a point heat source, and the points at zero or infinity. 
gI (z) (or g~(z)) is the function corresponding to the perturbed 
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field of matrix (or inclusion) and is holomorphic in region S, 
(or $2) except some singular points. In the present study, the 
temperature function g~(z) is given as (Ozisik, 1980) 

g ~ ( z ) = -  q I n ( z - z 0 )  (13) 
2~k, 

for a point heat source with the strength q located at the point 
z = z0 in the matrix, and 

g~(z) = ~e-i~z (14) 

for a remote uniform heat flow with the constant temperature 
gradient ~- directed at an angle k with respect to the positive x- 
axis (see Fig. 2). g ; (z )  and g ; (z )  in (11) and (12), respec- 
tively, will be determined from the interface continuity condi- 
tions, i.e., T, = T2 and Q1 = Q2 along the interface z = ~r = 
ad  o . Using the above boundary conditions and applying the 
method of analytical continuation (Chao and Lee, 1996), we 
obtain the final results as 

g~(z) = g~(z) + ~ki o~ z ) (15) 

2k, 
g~(z) = - - g ~ ( z )  (16) 

k~ + k2 

3.2 A Point Heat Source in the Inclusion. If a point 
heat source is located inside the inclusion (see Fig. 3), the 
temperature functions can be written as 

g~(z) = - q  ln-Z + g~(z) 17) 
27rkl a 

g~(z) = ~q In z + g~(z) + g~(z) 18) 
27rkz a 

where g~(z) is given by 

g~(z) = - q  l n ( a - a ~ z ! ~ .  19) 
27rk2 \ z /  

Using the interface continuity conditions as mentioned above 
and the method of analytical continuation (Chao and Lee, 
1996). the final expression for the temperature functions be- 
comes 

Y 

Sl (matrix) 

 oZ, 
+ 

P 

X 

Tk~ 

Fig. 2 A bonded circular inclusion subjected to a remote uniform heat 
flow 

Journa l  of  Appl ied  M e c h a n i c s  D E C E M B E R  1997,  Vol. 64 / 1001 

Downloaded 19 Feb 2008 to 140.121.146.141. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

S~ (matrix) 

heat source 

X 

Fig. 3 A bonded circular inclusion subjected to a point heat source 
inside the inclusion 

/ \  

- q  in z q in / a  _ a_z~] g~(z) = (20) 
27rkl a 7r(k~ + k2) \ z /  

g ~ ( z )  = - q  l n ( z - z o )  
27rkz 

( k 2 - k , ) q  in ( a -  ~ ) .  
27r(k~ + k2)k2 

(21) 

4 T h e r m a l  Stress  Fie ld  

Having the temperature functions as derived previously, the 
general solutions for the stress and displacement fields can be 
obtained in terms of the complex potentials given in Eqs. (5) 
and (6) in which the constant coefficients A~, B~, and C~ may 
be determined from (7) and (8) while the two holomorphic 
functions t h ~* (z) and q//* (z) will be obtained from the interface 
continuity conditions. 

4.1 A Point Heat Source in the Matrix. We now con- 
sider a heat source located in the matrix for which the tempera- 
ture functions g l ( z ) ,  g ~ ( z )  have been given in (15) and (16), 
respectively. Substituting (15) and (16) into (7) and using (8),  
one obtains 

Gd31q - G t f l t q z o  
AI ~kl(1 + K1) B1 7rkl(l @ K1) 

for Izl > Izol (22) 

A~ = B~ = 0, for a < Izl < [zol (23) 

and 

A2 = B2 = 0, for Izl < a. (24) 

Since the inclusion and the matrix are assumed to be perfectly 
bonded along the interface, the displacements and surface trac- 
tions at the interface must be continuous, i.e., u~ + iv~ = u2 + 
iv2 and - Y ~  + iXj = - Y 2  + iX2 along the interface z = cr = 
ae i°. Using the above boundary conditions and applying the 
method of analytical continuations (Chao and Lee, 1996), the 
constant coefficients appeared in (9) and (10) are obtained as 

L m -  2G1G2~i bm (25) 
Gl + G2K1 

-2GiG2(132c l  - 31a l )  
N~ = (26) 

(K2Gi + 2G2 - G1) 

2G1G2 
Nm - (/32Cm - /31am), for m -> 2 (27) 

G2 + GiKz 

Ml = [2N1 - Ai(1 + In a2)]a  2 (28) 

M2 = ~2a 4 - B la  2 (29) 

M,. = (m - 2)a2L,._2 + a2"~7,,,, for m ~ 3 (30) 

P., = a-2mEm - ( m  + 2)a2N.,+2. (31) 

Having the solutions in ( 2 5 ) -  (31 ), the final expression of 
the stress functions can then be determined by substituting (9) - 
(10) and ( 2 2 ) - ( 2 4 )  into (5) and (6). 

4.2 A Point Heat Source in the Inclusion. If a heat 
source is located in the inclusion, the constant coefficients in 
(5) and (6) can be determined by substituting (20) and (21) 
into (7) and (8) as 

G1/~lq --Gl[31qZO 
Ai 7rk~(1 + K1) Bi 7r(kl + k2)(1 + K1) 

for Izl > a  (32) 

Gd32q -G2/32qzo 
A2 7rk2(1 @ /(2) B2 = 7rk2(1 + K2) 

for Iz01 < Iz[ < a (33) 

and 

A2 : B2 = 0, for Iz[ < Izol. (34) 

By using the interface continuity conditions and the method of 
analytical continuation (Chao and Lee, 1996), we finally obtain 

2G1G2 
Lm = (13~em - 132h,,) (35) 

G1 + G2Ki 

-(G2A2 - GiA2)(I + In a 2) - 2 G i G 2 ( f l f f l  - ~ l d l )  
Ni = 

(~c2G1 + 2G2 - Ga) 

(36) 

2G1G2 G2t~2 - Git~2 
N2 - GE + Girt2/32f2 - (G2 + GiK2)a 2 (37) 

2GiG2 
N,. = t i f f . , ,  for m -> 3 

G2 "t- GIK2 

M1 = [2Ni + (A2 - Al)(1 + In a2)]a  2 

M2 =/V2a 4 + (B2 - B , ) a  2 

M,,, = ( m  - 2)a2Lm_2 + a2m]v,,,, for m -> 3 

P m =  a-2"'E,,  - ( m  + 2)a2Nm+z. 

(38) 

(39) 

(40) 

(41) 

(42) 

With the results in ( 3 5 ) - ( 4 2 )  the general solutions for the 
stress functions can then be obtained by substituting (32) - ( 34 ) 
and ( 9 ) - ( 1 0 )  into (5) and (6).  

5 E x a m p l e s  

5.1 Elastic Circular Inclusion under Remote Heat Flow. 
As our first example, we consider a circular elastic inclusion 
perfectly bonded to a matrix which is subjected to a uniform 
heat flux with the temperature gradient T directed at an angle 
k with respect to the positive x-axis (see Fig. 2). The solution 
of temperature functions can be easily obtained by substituting 
(14) into (15) and (16) as 
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g ; ( z )  r e  ik z + r (k ,  - ks) a z = e i× - -  (43) 
(k, + ks) z 

g~(z )  = 2kl-----'L- e-iXz. (44) 
(k] + k2) 

Applying the formulae given in Section 4.1, the final solutions 
for the stress field can be given by 

qb](z) = -2G]/31r  (kj - k2) aSei x In z (45) 
(1 + /~1) (kl + k2) 

~b~(z) = -2G~[3]_______~ (k~ - k2) a2 e_i× In z 
( l  + KI) (kl + ks) 

(GiKs + G2) (kt + ks) /31 a4e 'x 

4,2(z) - 

2Gl/31r (kl -- k2) a4ei ~ 1 
+ (1 + K~---------) (k~ 7 k2) ~ (46) 

2G1G2r ( 2ki/32 ~ _i~z2 
G, K2 + G2 \ ( /q  ~ k2) /3]/e (47) 

Ss(z) = 0. (48) 

The interfacial stresses along the inclusion boundary can be 
performed by using field solutions of the matrix or inclusion as 

GiGsr  ( 2k],3s ) 
O'rr = (GIK2 + G2) \ (k7  ~ k s )  /3, a cos (0 - k) 

_ ( 2 ¢ &  
crr° (Gd<2 + G2) \ (kl  + ks) /31j a sin (0 - k) 

= [ - 2c,c   
(~eo)] I_(1 + K~)(k~ 7 k2) + (G~K2 + G2) 

× (\(k72k'/3S+k2) / 3 0 ] a c ° s ( 0 - k )  

(ace)2 = 12G,G2r ( 2kd3s 
(G,K2 + G2) \ (k ;  +k2)  /3, /a cos (O - k). 

When the inclusion is assumed to be an insulated and traction- 
free hole, the hoop stress along the hole boundary can be ob- 
tained by letting k2 = 0 and G2 = 0 as 

8G/3r 
~roo- - -  a cos (0 - X) 

(1 + K )  

which is in agreement with the result of Florence and Goodier 
(1959). For a special case of ks = ks, G] = Gs and/3~ = /32, 
the solutions of the corresponding homogeneous problem is 
trivially given as 

~(z) = ~(z) = 0. (49) 

This is expected that there is no thermal stresses induced by a 
homogeneous body under the condition of free expansion. 

5.2 A Point Heat Source at the Center of the Inclusion. 
As a second example we consider the inclusion subjected to a 
point beat source acting at the origin. The temperature functions 
can be obtained by putting z0 = 0 into (20) and (21) as 

g~(z )  = - q lnZ q l na  (50) 
27rkl a 7r(kl + ks) 

g r ( z )  = -  q ln z -  ( k s - k l ) q  ln a. (51) 
27rks 27r(kj + k2)k2 

A direct application of the formulae given in Section 4.2, the 
stress functions can be obtained as 

qbt(z) = Gd3iq "z In z (52) 
7rkl(1 + Kj) 

e l ( z )  = M i / z  (53) 

thz(Z) = G2/32q z In z + Nlz  (54) 
7rks(1 + K2) 

q,2(z) = 0 (55) 

where N1 and M1 are 

q r G2/~2(G] - G2)(1 + In a s) 
N, = ~sG, + 2G2 - GI " L 7k~(1 7 72i 

G,G2 [/3_~22 + ( k t - k 2 ) / 3 2 1 n a  

7r (k] + k2)k2 

_ ft._2 (1 + in a ) + 2 / 3 ,  ln________a_l} 
kl (k, + k2) 

M, = 2Nla z + q [ Gaff2 Gi,3] ] (1 + In a2)a  2. 
7r Lks(1 + Ks) k](1 + Ki) J 

Note that, the stresses would not be bounded either at zero 
or at infinity due to the presence of the singular term z In z 
appeared in the stress functions induced by a point heat source. 
Nevertheless, the solutions are useful as the outer boundary of 
a body remains finite. 

5.2.1. Circular Disk. Consider a circular disk where the 
boundary surface is assumed to be free of traction and remain 
zero temperature. The corresponding temperature function and 
stress functions, respectively, can be obtained by letting kl = 
co in (51) and G1 = 0 in (54) as 

g ' ( z )  q In z (56) 
27rk a 

ok(z) = G/3q z In z G/3q z (57) 
7rk(1 + K) a 27rk(1 + K) 

4,(z) = o. (58)  

Accordingly, the stress components are given by 

2G/3q r 
O'rr = in 

7rk(1 + K) a 

2G/3q r 2G/3q 
aoe = I n -  + 

rrk(1 + t<) a 7rk(1 + to) 

O'rO = 0 

which is the same as the results obtained by Parkus (1968) 
essentially by guessing. 
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Influence of  the Interface Periodic  
Array  of  Coplanar  Cracks  on the 
Free-Surface  Osci l lat ions 

M. Ciarletta 3 and M. A. Sumbatyan 4 

Let on the boundary surface between two elastic media be 
a periodic array of  coplanar cracks. The distance between 
two neighbour cracks is 2b, the step of  the array is 2a.  The 
thickness of  the upper medium is d the lower medium is a 
half-space. 

For both the media we apply the Lame representation for 
displacements and the wave potentials satisfy the wave equa- 
tions: 

The works of Angel and Achenbach (1985a, b) and Mikata 
and Achenbach (1988) are devoted to a scattering by the periodic 
array of cracks in an infinite homogeneous elastic plane for copla- 
nar/inclined cracks with a normal/oblique incidence of a longitudi- 
nal/transverse wave. The method developed in the recent work of 
Mikata (1993) has considerable merits since it permits for the 
coplanar cracks derivation of integral equations with the kernels 
where there is no need for numerical integrations. 

England (1965),  Erdogan (1965),  Comninou (1977),  and 
some other authors aimed at development of analytical tech- 
niques in the static problems when there is a single finite-length 
interface crack on a boundary between two different elastic 
half-planes. This problem can be reduced to a system of two 
integral equations of  the second kind with the singular kernels 
of Cauchy type, which can be explicitly solved. 

A~o + k~o = 0 ,  A ~  +k~qO = 0 ,  (1) 

with the velocity components in this two-dimensional problem 
being 

u~ = O~o/Ox + O0/Oy,  Uy = Oqo/Oy - O0/Ox,  u~ = 0. (2) 

At last, the boundary conditions must be taken into consider- 
ation: 

or,n= a ~ y = 0 ,  x =  ±0,  y E  cracks, (3a)  

cr,~ = axy = 0, x = d, -oo < y  < oo. (3b)  

Let ~o0 be an amplitude of the incident longitudinal wave. 
Then due to a symmetry of the problem with respect to the axis 
y, we have the following representation for the lower and the 
upper medium, respectively: 

n ~ l  

n=l 

- ~ < x ~ 0  

(4a)  

(4b) 

~o2= W s i n k p 2 ( x - d )  + C, ch q2,(x - d) × D, sh q2,(x - d) cos y 
.=1 2 7r..._n q2n 

a 

2 k,~ (~ Y) 
02 = n_~l D. c h r 2 . ( x -  d) ~ - -  × C , , s h r 2 . ( x -  d) sin 

2-~- r2. 

O ~ x ~ d  

(Sa)  

(5b) 

We study here the problem that is contiguous to that consid- 
ered by Yang and Bogy (1985).  
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(sh and ch = hyperbolic sine and cosine).  
Here 

q i , =  [ ( ~ ) 2 - k ~ , ) ]  I/2, r ~ , =  [ ( ~ ) 2 - k ~ , l  1/2, (6a)  

q2. = - k~ , r 2 . =  - k  , (6b) 

kp,, ks, are  the wave numbers for the first ( lower)  medium and 
kp2, k.~ for the second (upper) one. 
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