L

< >-
= B
Z O
%
=
Q.
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INTRODUCTION

The notion of capacity as a fundamental quantity associated with a smooth sur-
face was treated exhaustively by Polya and Szego in a series of papers over more than
twenty years following earlier work by Fekete (1923) and many others who considered
the problem of determining the charge accumulated on an electrostatic condenser main-

tained at a constant potential. See Polya and Szego (1951) and Payne (1967) for exten-
sive references,

In three dimensions, the capacity, C, of a surface 9 can be defined in terms
of the conduictor potential. That is, if €, denotes the exterior of 0%, p is the po-
sition vector of a point and u is a function for which V2 y =0 in Q., u=1on

u . )
dQ and u = 0( 0 I) then C T a'L o ds. Alternatively capacity may be
defined in terms of the solution of the Helmholtz resonator problem, that is, if Bj (0)
is a ball of radius R with center at the origin of a coordinate system centered in £,
dQ is contained in  Bp(0), and wy is a function for which
Viu;=0 in Q, r\é?R(O) , ;=0 on 9Q and u;=1 on 9BR(0) then
)
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These characterizations of capacity are equivalent in R? since in general the
solutions of the conductor potential and the Helmholtz resonator problems are related
by u=1- Rlirn uy. For example if dQ is a sphere of radius a then the conductor

. . - g
potential is simply
1 2n b3 3
i A L d PR
and C = = gdq)gdﬁ ar(r)**’a sinf =a.
In this case the solution of the Helmholtz resonator problem is
1

.Hence C = llm —— =g
R e 1 1
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Unfortunately neither of these problems leads to nontrivial characterizations of
capacity in R? because of the behavior of regular solutions of Laplace’s equation.
That is, if we ascribe to regular solutions of Laplace’s equation in exterior domains in
R? the same behavior at infinity as the fundamental solution then the conductor poten-
tial problem V?u =0 in Q. ,u=1on 9Q and u =0(n Ip|) does not always
have a unique solution (A In Ip | is a solution for any A when 0Q is a circle of
radius 1) and while the Helmholtz resonator problem is uniquely golvablc, the quantity

Uy

comparable to capacity in R3 always vanishes, i.e. lim _[ ds = 0. For ex-

o= o anln r—Ina
ample if 0Q is a circle of radius a then uy = R Iz and
au, nk -Ina

§ = ——————— which obviously vanishes when R —es,
InR —Ina

One might try to alter the condition at infinity in an effort to arrive at a
definition of capacity consistent with those in R>. But the obvious changes are not
helpful. The problem V% u =0 in Q. cw=1 on aaQ and u =0(1) as Ip|—eo
has the unique solution # =1 in which case C = j -5’1 ds =0 while if we change

go on

the condition at infinity to u = 0(13), then the problem has no solution. In either case
one cannot define capacity as in R>,

Polya and Szego were, of course, aware of this behavior and as early as 1931
defined two dimensional calpacity in terms of the solution of the problem V24 = 0 in

O g =n B +0(| J) and u = constant on 0Q. The constant boundary
value could not ge prcscriléoed but was part of the solution and they called this constant
In = with C being the capacity constant. In 1945 they changed the definition
slightly bif formulating the gotential problem V2u =0 in Q.,u=0 on 3Q and

@ =1In ST In i + 0(——|) where as before C could not be prescribed but ap-

peared asppart of the solutioﬁ‘ They termed C  the outer radius or transfinite diameter
(following Fekete) because of its interpretation as the diameter of the circle whose ex-
terior is the image of Q, under a conformal transformation that preserves the point at
infinity. However they refrained from referring to C as the capacity constant despite
their earlier designation. This may have stemmed from the apparent inconsistency
with the definition of capacity in R>®, One may infer from their repeated and varied
treatments of this capacity question that, in addition to the study of isoperimetric ine-
qualities, they hoped to achieve a uniform characterization of capacity in terms of the
solution of a potential problem in all dimensions and remove the annoying necessity of
using one definition in two dimensions and another in three.

More recently, Fichera (1961), applied integral equations of the first kind to a
variety of elliptic problems. This was further developed by Hsiao and MacCamy
(1973) in some specific cases including Laplace’s equation where they showed how
logarithmic capacity (essentially the logarithm of the transfinite diameter) could be ob-
tained as part of a solution of a system of first kind integral equations in R?. Symm
(1967) and Jaswon and Symm (1977) also used first kind integral equations to charac-
terize capacity in both R? and R® but not in a uniform manner.

In the present paper we show that the concept of outer radius, C, may be gen-
eralized to n dimensions through

W= _gn(c)

where g, is the fundamental solution of Laplace’s equation (c.f. Eq. (2) below) and

w is a constant which appears as part of the solution of a uniquely solvable system of
integral equations which coincide, for n =2, to that studied by Hsiao and MacCamy




(1973). We also formulate a uniquely solvable exterior boundary value problem for
the Laplacian in R”, which generalizes that defined by Polya and Szego (1931) for
n =2, and contains as part of the solution the constant .

NOTATION, DEFINITIONS AND REPRESENTATION FORMULA

Let € be a bounded simply connected domain in " with smooth
(Lyapunoff) boundary Q. Denote the complement of the closure by €. and the
unit exterior normal at each point ¢ € 9Q by fiy. Let S, denote the surface area
of a unit ball in R” i.e.,

21{"‘“2

d.';q = m (1

S =
g i=1
where I'(") is the usual gamma function and |1 is the Euclidian distance. Denote
the fundamental solution of Laplace’s equation for p and ¢ in R” by

——l—In——I—— 3 Hi= 2
52 fp—q]
gallp=q 1) = | B
———lp—q 17" p 52
=23, * 2 :

The normal derivative of g, is seen to be
agn(ip_q]) = ﬁq (Q“P)
anq S, lp—g 1"

Let B.(p) denote a ball of radius € and center p and define

-

1 wped
u:)t(p)zc!i_)n:7 _[ gi—-gn(ip—q Dds, = <172 , p e 3Q
QraBe(p) “q 0.7 piE KL
in terms of which Gauss’ integral may be written

g, (1p—q |
Mdsq = o) . (5)

J0 an,

It is convenient to have the following forms of Green’s theorem for interior and exte-
rior domains:

fueCQNCQ) and V2u =0 in Q then

[ 4@ =2 8,004 1) = g, (Ip=q 1) 2 () ds, = apu@); (6
30 anq anq

and

ig u eaci‘((s}c)ncl(ﬁc) , VZu=0in Q. u =Ag,(r)+ o+ 0(1) and
u En ¥

— =4 22 D= S

5 5 +0(;«[ r) as r [p| — e, where A and @ are constants but

otherwise arbitrary, then

ou(q) 0
> (| pebiints BN i = = [1— =
a£ & (lp—q 1) e u(q) 7 &:llp=q 1) rds, = [l~0()lu(p)-w . (7)




A function u e Q. is said to be regular at infinity if
1 Ju 1
u~0(;~_—2~) and -a—r—-O(rn_I) as r —

Thus when Green’s theorem is applied to harmonic functions regular at infinity the
constant @ will be absent in (7) for n > 2.

PREVIOUS DEFINITIONS OF CAPACITY AND RELATED QUANTITIES

In this section we present some of the existing definitions of capacity and
related quantities.

If Q, is a bounded simply connected domain in R3 with - smooth
(Lyapunoff) boundary 0, which contains € in its interior then the capacity of aQ
with respect to 9Q, is defined to be (see, e.g. Szego (1945) and Protter and Wein-
berger (1965))

0
oo f————uo(Q)ds

— 8
i 47[ a0 aﬂq q ( )

where u, is the capacitory potential of 9Q with respect to 0Q2, defined through
V2 =0 98 oG
8y ©
on dQ,

If Q.= B,(0) then as p — oo, U4, becomes the solution of the conductor potential
problem,

V2u120 in Q{.‘
up=1 on 3Q (10)
i =o0(l) as r — oo

and the capacity of 9Q is

ou(q)
C=limC, =- - | 24 4
pyen 4T 50 anq

)

In R? one may define the capacity of 9Q with respect to d€2, analogously
du,(q)
Co=- [ B (12)
27{ a0 aﬂq

where u, is as before with Q and Q, in R? rather than R3. However, in contrast
with the three dimensional case it is not possible to define the capacity of dQ simply
by letting Q, — R? as was pointed out in the introduction.

Alternatively the capacity of 9Q with respect to dQ, has been defined as
Szego (1945), Polya and Szego (1945)

CO=-§1— IV ey pena. (13)
AR




Moreover, it has been shown Kellogg (1953), Stakgold (1968), that i, minimizes the
Dirichlet integral over the class of admissable functions

[ueCl(Qo\-ﬁ),
|

Ugg:= fu | u=1 on 00, (14)
I =0 on 09Q,

and C, is the minimum value of the Dirichlet integral (13). As before the capacity
of 90 may be obtained as a limiting value of C, as £, grows to fill the entire
space in R¥ but not in RZ,

Another characterization of capacity in R® was given by Szego (1943),
Riemann-Weber (1930), Stakgold (1968) where by C, also called the outer radius of

dQ, is given by
1 . o(p)o(q)
- = ds, d 15
C ™ oeva aJQ aL gl B ()

ceC*o) ,0<a<1

a); olq) ds, =1

[
Vadz 0:
|

Or, more appropriately in view of modern boundary element analyses Hsiao and
Wendland (1977) and Nedelec (1977), the Holder continuous function space C*@<Q)
can be replaced by the Sobolev space H~V2(9Q). We will subsequently show that
this definition may be extended to R" for any n 2 2.

In R?% the dilter radius or transfinite diameter has been characterized as the
constant ' occurring in the solution of the following problem (see Szego (1945))

=0 on 99 (17)

uzlog%—log-éf+o(l) as r —» oo

Alternatively, Symm (1967) introduced the Robin constant 7y as a part of the solution
of the coupled set of boundary integral equations

[ log Ip—q 1 oy(g) ds, + y=—1log Ip|
30

| oig)ds, =0

510

The outer radius of transfinite diameter is given in terms of 7y as
C el (19)

The outer radius is also related Szego (1945), Symm (1967) the conformal mapping,
[, of the domain €. to exterior of the unit circle which preserves the point at

infinity by

C = lim 20y

gush i
1 1f(2)]




Other characterizations of transfinite diameter have been given by Fekete (1923) and
Polya and Szego (1931). Symm has extended the definition implicitly in (18) to R?
by introducing capacity through the solution of the integral equation

j‘ 01(9)

dsg =1 (21)
o lp—ql

in which case

C=[oq)as, . 22)
30

In the next sections we will demonstrate how the characterization of outer
radius or capacity in terms of the solution of a minimization problem in R3 (15), or a
boundary value problem in R? (17), or an integral equation in R? or R® (21) or
(18) may be extended to R" so that a fundamental constant associated with the sur-
face emerges as the solution of problems which are formulated in exactly the same
way for all dimensions.

A UNIFORM CHARACTERIZATION

We will generalize the characterization of outer radius in terms of the solution
of a boundary value problem given by Szego (1945) in R? to R”, then show that
there is an equivalent characterization in terms of solutions of a system of boundary
integral equations slightly different from those given by Symm (1967) and Jaswon and
Symm (1977). In the next section we will show that the weak formulations of the
boundary value problem and the integral equations give rise to the generalization to
R™ of the characterization of outer radius as the minimum of a functional given by
Szego (1945) and Riemann-Weber (1930).

We define _ the following  classical boundary  value problem for
ueCX Q) N C™@,) and weR
Viu =0 in £,
=0 on 9O : 23)

U :gn(r)+m+0(rl“") as r — oo

where g, is defined in (2). The constant ® which appears as part of the solution
pair (u,) is related to the outer radius C through

@=-g,(C) (24)

which constitutes an implicit definition of C, the capacity of dQ for n >2 (when
n =2 this is also called logarithmic capacity or transfinite diameter, The quantity @
is called the Robin constant in RZ%) Explicitly for n = 2,

1
W = =g 2 — a—2Tm
= 0gC = C=¢

and for n = 3,

W= ( Z)Sl Cn_?' == @ = {1/[(;2-—-2)Sn w]}lm_g
= n

The boundary value problem (23) will be shown to be equivalent to the system
of boundary integral equations for (o, e C*OQ) xR
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| o@)n(lp—q 1 dsy =- o
Q2

[ otg) ds, =1
d2

The unique solvability of (23) and (25) and the relation between the two formulations
are established in the following theorems. ;

Theorem 1 —The boundary value problem (23) has a unique solution pair (u,w) for
all n 2727 0f n>2 then o #0.

Theorem 2 —The system of integral equations (25) has a unique solution pair (o,w)
Joralln 22, If n >2 then w# 0.

Theorem 3=1If (u 1) s the solution of (23) and (0,00,) is the solution of (25) then

cs=—a—ul on JQ,w;=0,:=0
on 55

and  u@)= [ o(g)g.(lp-glyds, +o in Q.
o0

Proof of Theorem 1

If n>2 and @w=0 then the boundary value problem (23) admits only the
trivial solution since the homogeneous exterior Dirichlet problem for functions regular
at infinity has no nontrivial solution from, for example, the maximum principle.
Hence we assume o # 0 and define

v:1~—% (26)

in which case v solves the boundary value problem

Viy=0 i O,
v=] on @@

1 e
b St g,,(r)+0(rn_1)—0(rn_2)

But this has a unique solution v e CXQ,) N CH*Q,), since the boundary data is
CH(0Q). Now define

e gn(r)
v(p)

oy = lirh and  u(p):=w- ovp) (28)

which establishes existence of at least one solution pair of (23) for n > 2.

For n = 2, we define
v=u —golpl)

in which case v solves the boundary value problem




v =10 in Q,
v==gs(lpl) on aQ (30)
v=o+0rH=01) as r — oo

This problem has a unique solution v e CXG ) CHYS. Tn: Bt following

Mikhlin (1970), the solution can be constructed by taking it to be of the form

vp) = | ¢(q>a—a*gz<lp-q'>dsq + [ o, , pe Q. Gh
a0 g a0

Here the density function ¢ satisfies the integral equation

~ - 9p) + j[igz(lp—qfﬂ 11 6g)ds, == gollpl) , p e 3Q  (32)
2 o ong

which is always solvable (see Mikhlin (1970), p. 387).

Now define

w:= lim vp)= | Olq)ds, . (33)
it aQ

This together with (29) establishes existence of at least one solution pair of (23) for
n =i

Now for the uniqueness, assume there exist two solution pairs (1 , @) and
(uy, ;) of (23). As usual, let u = uy—uy and O=w; - 0w, Then (u,w)
solves the boundary value problem

Viu =0 n -
u=0 on 9Q : (34)
U=0+0r"") as 7 — oo

Since the Dirichlet integral

_[ IV 12 dg = lim
o b= ey

it follows that Vu =0 in Q. and hence u = constant in Q.. From the boundary
condition u =0 on 9<, this implies u =0 in Q. and consequently ® = 0. This
establishes uniqueness and completes the proof of Theorem 1.

Proof of Theorem 2

For n >2 the exterior problem
=0
uf =1 “pp- g (35)
#® regular at oo

is uniquely solvable. From Green’s Theorem (7) the boundary conditions and Gauss’
integral (5), it follows that

| gn(lp—ql)a—“—dsq =1 for pedQ . (36)
a0 anq




Ju®
o ) of

| 8@)g.(lp-q1)ds, =1 . (37)
dQ

Now there exists a solution (& =

To show that (37) is uniquely solvable, assume two solutions G) and &, and let
6 =& - &, in which case

Jﬁ(q)gn(lp—qudsq=0 on 9Q . (38)
a2

Now define

ve pch

w7 a'!) 8(q)g.(Ip—q l)ds, for e Q @

Then v¢ is a solution of the homogeneous Dirichlet problem regular at infinity and
v is a solution of the homogeneous interior Dirichlet problem. Hence both v¢ and
v' vanish identically as do their normal derivatives in which case the usual jump con-
ditions for the single layer imply that

Sg)=0 on 9Q

and therefore (37) has a unique solution. Next we show that if G solves (37) then
[ &) ds, #0 .. (40)
a0

Again define
Vi) = [ 8@)g.(lp-g ) ds, ,p e G,
ac

Then vé(p) is regular at infinity and Green’s theorem implies that

v 1 9g.(lp—q 1)
I 2,(lp—q i)aLdsq =— v‘"(p)+_[ vé(q) 5 for p € 9Q
a0 g 2 JQ g
1

(42)

where the fact that & satisfies (37) and Gauss’ integral (5) have been employed.

But since we have established the unique solvability of (37) it follows that

ove
S5p) = —
anp

v vt
Glglds;, = | ——ds, = [ vo(g) = s
a!z 5 a’:[z a”q ¢ a!z a”q g
== [ 1Vv(g) 12dq . (44)
Qc

Thus if J' &(g) a’sq =0 it follows that Vv€ =0 in €. which, with the boundary
Q

)
condition implies that v®(p) = 1. However this contradicts the fact that v® is regu-
lar at co. Therefore (40) is satisfied. We therefore define, for the uniquely defined




solution of (37) satisfying (40)

T e R

| 8(g) as,
a2
Rt 7. ] (46)

| slq) as,
19!

0=

Clearly (o, w) satisfies the system (25). To establish uniqueness assume there exist
two solution pairs (6,,0;) and (o, , m,) and let

G =0, -0y
Uj=ml—m2

[ o@en(p—q 1yas, = - (47)
a0

[ otgyas, =0 . (48)
a0

If ®+0 then &: =~ % satisfies (37) and since (40) is satisfied it follows that

_[E@-dsqatﬂ
o O

which contradicts (48). Thus we conclude that o = 0 or ®; = m,. Hence
| 0(g)8.(Ip~q 1)ds, =0 , p e 0Q , (49)
aQ

and using the same argument following (38) we find that 6 =0 or Oy = G, This
concludes the proof of Theorem 2 for n > 2.

For n =2 the above analysis is not directly applicable because of the loga-
rithmic growth of the fundamental solution. To establish the theorem in this case we
follow the work of Hsiao and MacCamy (1973) based on results of Muskhelishvili
(1953) and Fichera (1961). The desired result is contained in Theorem 3 of Hsiao
and MacCamy (1973) and the main points of the proof specialized to the present case
are included here for completeness.

The system which we wish to show uniquely solvable takes the form
f alg) log lp—g | ds, = - 21
d02

I olg) dsq =
a0

Every o which is part of a solution pair (¢, ®) of (46) will satisfy

d
= I o(g) log Ip—g | ds; =0
P90




where S, denotes arc length in 9Q. As shown in Muskhelishvili (1953),
differentiation and integration may be interchanged yielding a singular integral equa-
tion with Cauchy kernel. Moreover the singular integral operator has index zero hence
the operator and its adjoint have null spaces of the same dimension. Since it is easy to
sec that constants are solutions of the homogeneous adjoint equation, the dimension of
the null space is at least one. To show that the dimension is exactly one, that is, that
(50) has exactly one linearly independent solution we proceed as follows.

Assume that there exists two non-trivial solutions o; , i =12, of (51). Then,
integrating (51), we define two constants o; , i = 1,2, by

1 .
) ajs; o;(g) loglp—qlds, , pedQ , i=12 . (52)

Furthermore define

and choose constants o, not both zero, such that
Oy Al = Oy Ag = ()

Next define
G::al 01+a202

and the single layer potential

u(p)= [ ol@log Ip—q 1 ds, , p R (56)
; a0

It is easy to see with (52)-(54) that u is a solution of the exterior Dirichlet
.problem

Vou =0 0,

u =—2n(0; o) + oy wy)) on 0Q (57)

u O(-l) as r — eo
r
But this problem is solvable only if
Otl Wy + Oy Wy = 0

in which case u defined by (56) vanishes identically in Q. In addition u van-
ishes in € since it is a solution of the homogencous interior Dirichlet problem.
Using standard arguments of potential theory, the vanishing of the normal derivatives

and the jump conditions for derivatives of single layer potentials allow us to conclude
that

o=0

in which case, with (55), Oy and G, are seen to be linearly dependent. Moreover it

has been shown Muskhelsihvili (1953) that every non-trivial solution ¢, of (51) has
the property that

jco(q)dsq =0,
Q2




Let o be the unique solution of (51) such that

[ ot@yds, =1,
a$d

and define

1
W:=—-— o] loglp—g | ds
21:3);) (@) loglp—q | ds,

Then (o, ) is a solution pair of the system (50).
To prove uniqueness, assume the existence of two  solution pairs,
G;,0;) i =12 Set 6=0,.~0, and @ = ®; — 0, in which case

_[ o(g loglp—g | ds, =- 21w
a2

[ otqyds, =0
a0

Then by the same argument as before (since differentiation of (39) with respect to arc
length leads to (51)), we conclude that ¢ =0 and ® =0 hence the system (50) is
uniquely solvable. This completes the proof of Theorem 2.

Proof of Theorem 3

If (1, ) is the solution of (23) then Green’s Theorem (7) implies that

[ 8n(lp-a )2 as, = (-0 u) -y . p e, | (60)
o) nq

For p £ 0Q we have
du

]L 8.(Ip=q 1) 5 2 = O (1)

The asymptotic form of &, together with the behaviour of u as 7 — oo and the
representation (60) leads to

du : 1
e e T AR O(——) . 62
J0 on, LR (r“‘l) o9

(63)

Thus (;—” » 1) i a solution of the system (61), (63) which coincides with (25).
n
q

Conversely if (o, w,) is the unique solution of (25) define
u@):= | o(g)8.(lp—q ) ds, +©, in Q, . (64)
2}

Then (u(p), w,) is a solution of the boundary value problem (23) and Because of

uniqueness, is the only solution. Hence by the first part of the proof (—a% , ) must

114




be a solution of the system of integral equations (25). Because this system admits only
one solution pair, it follows that
Ju

G—an.

VARIATIONAL FORMULATION

In the previous section we showed how the Robin constant © appeared as part
of the solution of neither the boundary value problem (23) or the system of integral
equations (25). In the case of the boundary value problem one may show that for
n 23 the weak formulation constitutes the necessary conditions for minimizing the

functional
Jul:= [ 1Vul?dg -2 (65)

over the space of functions

Moreover the functional assumes its minimum when «  satisfies (23) and
min Jlul=-0 . (67)

o EU‘“]'

One may show that this is only a slight change of the standard variational treatment of
the Dirichlet integral (see e.g. Kellogg (1929)).

Unfortunately there does not appear to be an analogue of this characterization
for n =2 because the Dirichlet integral does not exist for functions with logarithmic
growth. However the variational formulation of the system of integral equations (25)
isvalid for n =2 as well as n =3 and these results are presented here.

Consider the following functional of ¢ & U,; where

Uy = [0' loe H2@Q) , [ olg)ds, =1} ; (68)
19 ’

JIo):== [ [ o(p)o@)g.(1p-q 1) ds, ds, . (69)
d2 a0

We will show that the Robin constant is intimately connected with the minimum of
this functional for all 1 > 2. Further we show that the weak solution of the system of
integral - equations (25) minimizes this functional. To this end note that if
6 and O +en are both in U,, then

[ n(g)ds, =0 (70)
e

Jlo+enl=Jlol -2& [ [ n(p) o(@)g.(Ip—q Dds, ds,
90 a0

—& [ [ nem@),(Ip-q s, ds,
a0 90

i




The necessary condition for J[o] to have an extreme value at o gdl 5 s

[ L @) 0@)g.(1p=q s, ds, =0 (72)
IO NY: 0]

for all m e H71290) satisfying (70). Furthermore if (72) is satisfied then J[o] is
a minimum since

Imi== | [ n0)n@) g.(lp-glyds, ds, > 0 forall 1 e H12Q0) (73)
a0 aQ
satisfying (70).

To show that (73) holds we follow the argument of Nedelec (1977) for n = 3
ang Hsiao and Wendland (1977) for n =2. For n e H2QQ) satisfying (70)
define

u@):= [ N@)g.(Ip~g ) ds, , p &R
a0

The standard jump conditions for the single layer potential yield

R e n@)
ont dn~ .

du du
! o e B £ p ) dy
m) aJr‘z N up) ds, aL e up)ds,

= j | Vu |2dp - J' -a—:'iudsq-{hsjzf,Vu 12 dp

QA B (0) 8B (0y oF

The growth of the Green’s function is sufficient, for n >3, to guarantee that

-aﬁ U ds= O(—l-) ;
3B, (0) or R

However for n =2 it is necessary to employ condition (70) to achieve this same
result. Thus for n > 2, the Dirichlet integral always exists thus
Im= [ 1 Vu 12dp 20
R*

which guarantees that (73) holds.

Observe that (72) constitutes the weak formulation of the system of integral
equations (25). Since we have shown that there exists a unique solution pair (o, )
of equation (25) it is easy to see that o will satisfy (72). Moreover the minimum
value of J is seen to be, with (25),

Jlol=~ [ | o()o(a)g,(Ip—q )ds, ds,
dQ 90

o [op)ds, = ,
30




min J[o]=w .
GE Uy

This coincides with the characterization given Szego (1945) for n = 3.

CONCLUDING REMARKS

In summary we have characterized the capacity or outer radius implicitly by
®=-g,(c) (24)

where g, is the fundamental solution of the n- dimensional Laplacian, (2), and ®
emerges in the unique solution of the boundary value problem (23)

Véu=0 5 Q.
u=0 on 2Q (23)

u =g,1(r)+m+0(_$:) as r —» oo
r

or the system of boundary integral equations (25)

[ o@)g.(Ip-q 1) ds, + ©=0
a0

| otq)ds, =1
aQ

or the optimization problem

o= _inf = [ [ op)o@g.(lp=q1)ds, ds,
G Vas aQ dQ

where U, is defined in (68).

We conclude by showing how these characterizations encompass existing
definitions summarized in section 3.

The definition of capacity (11) in terms of the solution of the conductor poten-
tial problem (10) for n =3, uy, is easily seen to coincide with -, through (24), by
substituting

i
u1=1'—'a

in equation (11).

We already noted at the beginning of section 5 that the characterization of
capacity as the minimum of the Dirichlet integral when »n =3 is essentially
equivalent to the weak form of (23). The generalization of (15) for n # 3 has been
treated in section 5.

The relations between the system ot boundary integral equations (25) and those
given by Symm are as follows. For n =2, (o), ¥) appearing in (18) are related to
(6, ) of (25) by

Y=21n®
auo ag 2(r)

=0+ -—

dn on




where uq is the solution of the interior Dirichlet problem for the Laplacian with
boundary values

p=go(r) on IQ

For n =3 the relation between solutions of (21) and (25) is simply

O, =
. 4m

Finally to establish the connection between the conformal mapping (c.f. Eq.
(20)) and the boundary value problem (23) for n =2, we let S (z) be the conformal
mapping of © " o tha exisor of the unit circle such that

lf(z) I =1 when 2z e 9Q and )
plex representation z for the point p. Then
f@2)=z ety

=0(1) when 2z — o We lise the com-

where ¢ and  are harmonic conjugates regular at infinity (ie. ¢ = 0(1)). Then it is
easy to see that ¢ is related to the solution of (23) by

1 1
Sk == locy | po=a
s 2:rt¢ 21 &

Moreover, a simple computation shows that
lim | f(z) | = lim 9 = g2

Z —poa 2 oo

from which equation (20) follows.
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