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SUMMARY
A unique constant matrix is constructed for each smooth boundary curve, which

generalizes the concept of logarithmic capacity and indicates when the Dirichlet problem
of plane elasticity cannot be solved by means of integral equations of the first kind.

LET S be a domain in R2 bounded by a closed C2-curve dS. The system of
equations of plane elasticity can be written in the form

A(dx)u(x) = q(x), xeS, (1)

where A(dx) = A(d/dxu d/dx2) is the partial differential matrix operator defined
by

u = (ut, u2)
T is the displacement vector, q is the body-force vector, x = (x,, x2)

is a generic point in R2 given in terms of its Cartesian coordinates, A and \i are
the Lame constants of the (homogeneous and isotropic) material occupying the
domain S, and A(^) = £,\ + £2. We also consider the boundary stress operator
1\dx) defined by

+ (A

where v = (v,, v2) r is the unit vector of the outward normal to dS.
In what follows we adopt some conventional notation:

(i) Greek and italic subscripts take the values 1, 2 and 1, 2, 3, respectively, and
summation over repeated indices is understood.

(ii) We write ifp M for the space of (p x q)-matrix functions; H(l) are the
columns of a matrix H e i / , , M , and En is the unit matrix in Mn^n.

(iii) If A" is a space of scalar functions and <p e ifpM , then <pe X means that
every component of q> belongs to X.

(iv) Let L be an operator defined on functions QsJ(pxX and such that
LQ e Mr*,. If 0 e JtpXq, then L 0 eJfrXq is the matrix with (L0)(O = L0 (O .
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262 CHRISTIAN CONSTANDA

A well-known method of solution of the Dirichlet problem (u prescribed on
dS) and of the Neumann problem (Tu prescribed on dS) for A in both the
interior case, when S = S+ is the finite domain enclosed by dS, and in the
exterior case, when 5 = S~ = U2\S+, is based on the use of the single-layer
and double-layer elastic potentials defined, respectively, by

(Vcp)(x) = D(x, y)<p{y) ds(y)
Ids

and
"I.

(Wcp){x)=\ P(x,y)<p(y)dsiy).
JdS

Here

D(x,y) = A*(dx)t(x,y) (3)

is a matrix of fundamental solutions for A constructed by means of Galerkin's
representation, A* is the adjoint of A,

t(x,y) = -(%nn(k + 2n))-i\x - y\2 \n\x - y\, (4)
and

Since (by using a Newtonian potential, for example) we can reduce (1) to its
homogeneous form, in what follows we assume that q = 0.

If u e C2(S+) n C'(S+) is a solution of Au = 0, then the Somigliana formula
(1) can be written in the form

(u i n S + ,

V(Tu\ds)-W{u\ds) = Uu ondS,

[o in S~,

and shows that the solution of the Dirichlet problem is found throughout 5 +

if Tu \?s can be computed. This procedure, known as the direct method, reduces
therefore to solving uniquely the Fredholm integral equation of the first kind

Vo(p = f=^u\ds+Wo(u\es), (5)

where V09 and W0Q are the direct values of V6 and WO (the latter understood
as principal value) on dS. For the two-dimensional Laplace equation there are
smooth curves dS (of logarithmic capacity 1) on which the corresponding
homogeneous equation (5) has non-zero solutions (see (2 to 4)). It is known
(5) that this problem may also be encountered in plane elasticity. Below we
show rigorously on which particular boundary contours this situation is certain
to occur.

The next assertion gathers together a few properties of the elastic potentials
(1, 6) needed in the subsequent analysis.
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WEAKLY SINGULAR INTEGRAL EQUATIONS 263

THEOREM 1. (i) If<p e C(dS), then V(p and Wq> are analytic and satisfy A(Vq>) =
A(W(p) = 0in S+ u S " .

(ii) If<pe C°'(dS), a. e (0,1), then V0<p and W0<p exist, the functions

are of class CUa(S + ) and CUa(S~) respectively, and

(p) = (W* -

where IV* is the adjoint of WQ and I is the identity operator.
(iii) Ifcpe CUx(dS), a e (0,1), then the functions

inS\

ondS, l(W0+\l)(p ondS,

are of class CUa(S + ) and Cl-*(S~) respectively.
(iv) (Wo + \I)<p = 0 if and only ifq> = Fk, where the columns F(i) of the matrix

° *
O I - x ,

form a basis for the space of rigid displacements and k e J{3,, is constant and
arbitrary. (Clearly, Fk is an arbitrary rigid displacement.) Also, A(Fk) = 0 in U2

and T(Fk) = 0 on dS.
(v) The solutions of the equation (W* + %I)<p = Oform a subspace ofCx-\dS)

of dimension 3. (For convenience, we write <p = Gl, where the columns G(f) of
G 6 M2 x 3 are linearly independent and I e Jl^ x t is constant and arbitrary.)

(vi) | is an eigenvalue of Wg2, and the corresponding eigenspace coincides with
that of W*, for the eigenvalue —\ (see (v) above).

(vii) Let No be the operator defined on Cu\dS) by Noq> = T1V + ((p). If
Noq> = 0, then q> = Fk, where k e J(2 x l is constant and arbitrary.

(viii) N0V0 = W%2 - {I on C°'"(dS).
(ix) Let sd be the class of functions u e J(2v. i which, as r = |x| -> oo, admit

an asymptotic expansion of the form

U[(r, 9) = r" ' (am0 sin 9 + m^ cos 9 + m0 sin 39 + m2 cos 39) + O(r~2),

u2(r, 9) = r~ l(m3 sin 9 + am0 cos 9 + m4 sin 39 — m0 cos 39) + O(r~2),

where m0,... ,m4 are arbitrary constants and a = (A + 3u)/(k + fj.). Also, let
be the class of functions of the form u = Fk + <rc/, with a^ e sf. Then Wcp e
and

V<p = Mco(p<p) + a-*,
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264 CHRISTIAN CONSTANDA

where p is the operator defined on continuous functions cp e J(2 «i on dS by

pep = \ FT<p ds
JdS

and

l)M°°(r, 0)

-2cc(lnr + 1) +cos 20 sin 20 r'l(a+l)sin9

sin 20 -2a ( l n r + 1) - cos 20 -r~\a + 1) cos i

with AMn = 0 in R2.
(x) The interior Dirichlet problem has at most one solution u e C2(S + ) n C\S+).
(xi) The exterior Dirichlet problem has at most one solution ueC2(S~) n

Cl(S~) n jtf*. lfu\gseCUll(dS) and G can be chosen so that the sets {F(0} and
{GU)} are biorthonormal, that is, j 3 s FTG ds = E3, then this problem does, in fact,
have a unique such solution, which can be expressed as the sum of a double-layer
potential and a specific rigid displacement Fk, with k = Jas GTu\Ss ds.

The concept of logarithmic capacity is discussed thoroughly in (7), where it
is shown that this number occurs naturally in problems involving the Laplace
operator and the single-layer potential. Analogues of such statements can also
be proved in plane elasticity. In this case, however, Robin's constant associated
with logarithmic capacity is replaced by a constant (3 x 3)-matrix, and the
construction techniques have to be modified, since differentiation along dS and
a Somigliana formula for functions with logarithmic growth at infinity, essential
to the considerations in (7), are inappropriate in two-dimensional elasticity.

We introduce this generalization in two different ways.

THEOREM 2. For any closed C'-curve dS and any a e (0,1), there are a unique
O 6 J 2 « 3 r i Cu'(dS) and a unique constant ft eJ/ixi

linearly independent and

Proof. By Theorem l(v), (vi), (viii), we can write

and from Theorem l(vii) we deduce that V0G = FK for some constant
KeJlf3x3.

Let H = pG = \esF
TG ds, and suppose that det H = 0. Then there is a

constant non-zero h e J(3x l such that Hh = 0. In view of Theorem l(i), (v),
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WEAKLY SINGULAR INTEGRAL EQUATIONS 265

(ix), the function U = V{Gh) - FKh satisfies

U = (V0G- FK)h = 0 ondS,

U = M°°(pG)/i + 0" - FKh = Mm(Hh) + 0* - FKh

= -FKh + a^ a s | x | - o o .

By Theorem l(x), (xi), U = V(Gh) - FKh = 0 in S+ vS~. Since FKh is a rigid
displacement and U = 0 on dS, it follows that FKh = 0, hence, V(Gh) = 0 in
S+(jS~. Theorem l(ii) now yields Gh = 0, which contradicts the linear
independence of the G(0. Consequently, det H ^ 0, and, since H is constant, we
see that

p(GH~x) = (pG)H~' = HH'1 = £ 3 ,

so we can take O = GH'1 and # = KH~l as a solution pair for our problem.
To prove uniqueness, let <J>lt #, and <P2, # 2 be two such solutions. Writing

O = O, — O2 and # = #, — #2, and taking into account the fact that p<t> = 0,
we use Theorem l(i), (iv), (ix) again to see that

A(V<t> - F<€) = 0 i n S + u S - ,

V0<t> - F<€ = 0 (on dS),

VQ>-F(g = Y.s/ a s | x | - > o o .

As above, this yields V<$> - F'tf = 0 in S+ u S " , which in turn leads to FW = 0.
Since the F(l) are linearly independent, we conclude that <€ = 0 and, by means
of the usual argument involving Theorem l(ii), also that <t> = 0.

REMARK 1. The cl)(i) = (GH~l)w form a basis for the eigenspace of W% corre-
sponding to the eigenvalue — 2-. Theorem 2 shows that the sets {F{i)} and {<t>(0}
are biorthonormal.

REMARK 2. If det # # 0 and V0<p = Fc with a constant c e Jl3 x,, then c = '#h
and <p = O/i for some constant /i e J/3x,. For det ̂  / 0 implies that {tf(0} is
a basis for the space of constant elements in Jlz „,, so c = <#7i for some constant
/ i6, / /3 J < 1 . Then, by Theorem 2, K0<p = (F#)/i, therefore, V0(q> - <D/J) = 0. Since
det "if # 0, we conclude that <p = <bh (6).

THEOREM 3. For every closed C2-curve dS, there are a unique function 4* e Jlz y 3

and a unique constant # e V/3 * 3 suc/i t/iat

= 0 inS~,

= 0 OM 5S,

^ + Z0' fls|x|-»«.
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266 CHRISTIAN CONSTANDA

Proof. We set 4> = T - M°°. Since /lAf °° = 0 in S" (see Theorem l(ix)), the
given problem becomes

= Q in S~,

V = -M°° on dS,

4> = - / • # + X t / as |x| -+ co.

This is an exterior Dirichlet problem (for each "f"), which, according to
Theorem l(xi) and Remark 1, has a unique solution

where O e ^Hly 3 n <#"•"( dS) and # e ^ 3 x 3 is constant and uniquely defined by

dS

with 0 given by Theorem 2. Consequently, by Theorem l(ix), the function

completes a solution pair for the given problem.
The uniqueness of this solution pair is shown in the usual way. Let *P,, ^

and T2 , (€1 be two such solutions. Then the pair T = f, - T2 , ^ = <̂ , - <f2
satisfies

/14/ = 0 in S",

T = 0 on 3S,

vp= - F < ^ + Z v as |x| -» co,

and, by Theorem l(xi), 4̂  = 0 in S~. This implies that FW = 0, which, in turn,
since the Fm are linearly independent, leads to # = 0.

THEOREM 4. 77ie pairs O, "if and 4*, *<? i« Theorems 2 and 3 are connected by the
relations

<g = # , >F = KO - Ftf, <D = - F T . (6)

Proo/ By Theorems 1 (i), (ix) and 2, T = K<D - F<6 satisfies

/ l ( f = 0 i n S " ,

't' = 0 on dS,

T = M x ( p c t ) + T^ - F<8 = ATJ - F<(f + S'0 ' as |x| -* cc,
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WEAKLY SINGULAR INTEGRAL EQUATIONS 267

which is the problem in Theorem 3. Since the latter has a unique solution, it
follows that

<g = <g, T = y = V<t> - FV.

According to Remark 1, {W*. + \1)<& = 0, or W$<t> = - ^ D . Hence, from (6)2

and Theorem l(ii) we find that

= - ^ > - $o> = - o ,
as required.

THEOREM 5. The equation V0(p = 0 has non-zero solutions if and only if dS is
such that det tg = 0.

Proof If det <<? = 0, then <£h = 0 for some constant non-zero h e Mix,. By
Theorem 2, there is O e Jl2 x 3 such that the <D(" are linearly independent and
K0<D = F<#. Therefore,

V0(Oh) = (K0O)/i = (FV)h = F(Vh) = 0,

with <t>h # 0, since the O(i) are linearly independent.
If det <g # 0, then, by Theorem 2, V<p + (FW - V<&)p(p is a solution in si*

of the homogeneous exterior Dirichlet problem since, as |x| -> oo,

Vcp + (FW - V<D)pcp =

Hence, by Theorem l(xi), Vcp + (F<£ - V<t>)pcp = 0 in S~, which means that
FWpcp = 0. In view of the linear independence of the F ( 0 and the assumption
that det # # 0, this yields pep = 0. Consequently, by Theorem l(ix), Vcp e -s/.
We now use the fact that Vcp is a solution of both the interior and exterior
Dirichlet problems to conclude that Vcp = 0 in R2, which, in turn, leads to
cp = 0. Thus, if the equation Vocp = 0 has non-zero solutions, then we must
necessarily have det # = 0.

EXAMPLE. From (3), (2) and (4) we find that

where <5a/r is Kronecker's symbol. Let dS be the circle with the centre at the
origin and radius R. Since for this choice

\nR, f (*
Jds

ln\x-y\ds(y) = 2nR\nR, f (*J y J ( X < ) y'} ds(y) =
J \x - y\2
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268 CHRISTIAN CONSTANDA

we see that

I D(x, y) ds(y) = ''+ 3fi R(\n R + 1)£2.

This implies that if R = e~\ then every constant <p e J(2 x i satisfies Voq> = 0.
In fact, the full calculation yields

'0 0

0 0 0 |.

As expected, <€ is singular. These results coincide with those in (8).

The question of non-zero solutions of the equation V0(p = 0 was also
mentioned in (9), where their existence for certain boundary curves seems to
have been overlooked. The matrix of fundamental solutions used there is
somewhat different, namely

DaP(x, y) = 5lf \n\x-y\ • '- *-.
a \x- y\2

For the same choice of dS as above, this yields

D(x,y)ds(y) = nR( 2 In R - - )£2,
is V /

which means that if

then every constant (p 6 J/2 x , is a solution of V0<p = 0.
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