A UNIQUENESS THEOREM FOR
THE REDUCED WAVE EQUATION
GOVERNING THE ACOUSTIC WAVE IN
A HETEROGENEOUS MEDIUM

By D. J. N. WALL

(Department of Mathematics, University of Canterbury, Christchurch,
New Zealand)

[Received 17 April 1986. Revise 12 March 1987]

SUMMARY

A uniqueness theorem is established for the scattering of harmonic small-
amplitude longitudinal (acoustic) waves by a body with spatially varying parameters.
The theorem in particular incorporates structures suitable for application to
problems formulated for computational solution.

1. Introduction

Many authors (see (1, 2) for bibliography) have considered uniqueness
theorems for the scattering of harmonic small-amplitude (acoustic) waves by
penetrable bodies. The majority of these papers consider homogeneous, or
at least piecewise homogeneous bodies. A few consider bodies with spatially
varying parameters with smoothness conditions placed on the parameters
for the whole region (3, 4). As explained in (2) many of these are
unsatisfactory for computational reasons. We follow the approach used by
(2), but extend the results considerably beyond the piecewise homogeneous
bodies they analyse; their uniqueness results are a special case of our result.
In particular, we have tried to produce uniqueness theorems that will cover
the cases met with, when considering computational solutions of the
equations considered here.

We stress that our interest here is for computational purposes, where it is
essential that two factors are present; these are often excluded from other
uniqueness theorems. These are that

1. the composition of the body must not have a nested restriction (4, §5),

2. the restriction on the composition of the body must allow for the

material parameters to be piecewise smooth, but spatially varying.
These factors ensure that any weak formulations of the governing equations
may be successfully tackled, via a discretization procedure. In order to
include the above two requirements, we find it necessary to restrict the
smoothness of the material parameters to be piecewise real-analytic. This
we claim, does not restrict our results in a computational setting, as then the
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material parameters of the body must always be able to be approximated by
piecewise polynomials in order to obtain any results.

Jones (4) has considered uniqueness theorems for scattering problems in
elastodynamics, with spatially varying parameters, but his proofs make
extensive use of the properties of the spherical harmonics. In contrast, our
proofs are straightforward and we produce results which allow for the two
factors mentioned earlier. As only finite-degree piecewise polynomials lie
within the piecewise real analytic class, the Stone—Weierstrass theorem is
not applicable to give uniform approximation to any piecewise continuous
function. However, from within this polynomial class, approximation theory
shows that we may approximate, with an accuracy bounded away from zero,
any continuous function. It is for this reason that we imply that the
uniqueness theorem has wide computational application.

In section 2 we introduce the equations we produce the uniqueness
theorems for, and describe the geometry of the problem.

Throughout, we subsume the standard uniqueness argument for linear
operators, that of assuming the possibility of two solutions satisfying the
same partial differential equation and boundary data. It then suffices, by
taking the difference of the two assumed solutions, to show that the only
possible solution to the homogeneous equation, with zero boundary data, is
the zero solution. As Jones (4) points out, the proof of uniqueness for the
exterior problem revolves about the proof for the interior body. In section
3, we prove uniqueness for the interior problem, by use of the Holmgren
uniqueness corollary to the Cauchy-Kovalevskaia theorem. For exterior
problems, we must utilise this result, and the Rellich lemma, together with
analyticity arguments, to show uniqueness for the exterior problem. This is
carried out in section 4. The interior proof in section 3 is the only part which
utilizes the piecewise analyticity of the material parameters; if this restric-
tion could be relaxed then the same weakening would be carried through
immediately for the exterior problem.

2. The governing equations and the problem geometry

We make the usual assumption; that we are considering a small-amplitude
linear acoustic wave propagating in a static elastic fluid and the wave motion
is adiabatic and isentropic. Then, if the fluid has static density p(x), x € R?,
the velocity potential u(x) is related to the velocity of the fluid particles

v(x) by

Vu = pv. (1)
The equation of motion for a driving-force potential F can then be written
as
82u _ _ du oF
?—czpv.(p lVu)~0V.(p IVE)=T9?' ()
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where c(x) and o(x) are, respectively, the wave speed and the coefficient of
the expansive friction in the fluid. Note that the bulk modulus « is related to
the wave speed through x =pc®>. We are considering time-harmonic
problems so, with a time dependence exp (iwt), (2) can be written as

PV . (p7'Vu) + ku =0, 3)

where the wave number is k =[w?/(c*+iwo/p)]}, and for the reason
mentioned in the introduction we are only interested in the homogeneous
equation, that is, F =0. We note that u now denotes the complex velocity
potential. . )

In most practical applications p and o are real and are required to be
positive, while ¢* can be complex in some problems, for example visco-
elastic media. We assume in the sequel that p,c, 0 eR. The fluid
parameters p, ¢, o characterize the properties of the fluid for wave
propagation; however, when considering equation (3), p and k suffice. In
most problems these parameters take on constant values as [x|— o; we shall
assume that this is the case in the sequel. Regions in which the material
parameters differ from these constant values constitute scattering centres for
wave-propagation problems, and as such can be considered as wave-
scattering bodies.

When solutions of (3) are to be found with x € R? it is sufficient to specify
that p and k be piecewise continuous and u satisfies the radiation condition

J’ cu
Sr

2ds=o(1) as Row €))

_+ ;
3y tku

on the sphere Sg = {x € R*: |x| = R} in order to fully specify the problem. In
(4), 3/3v denotes the directional derivative in the direction of the outward
normal to Sk and ds is the surface measure.

When considering problems involving edges or corners, to ensure
uniqueness it will be necessary to require that the field satisfy the edge
condition (6, 7). An edge condition that will give sufficiency conditions for a
unique solution is that the acoustic energy density is integrable over any
finite region, even if this domain contains singularities of the field. Another
equivalent form of this condition, which will be utilized in proving Lemma
2, is that the surface integral of the complex energy-flux density over a small
surface S, enclosing the edge reduces to zero, as S, contracts to the edge in
the limit with € — 0. Stated mathematically,

o
lim | p"'u=—ds=0, 5
e—0 slp av ( )

where the directional derivative is along a normal to §,.
The specification of the problem just given requires (3) to be interpreted
in the weak sense and leads to the modern weak-solution formulation; see
for example (8). This is the approach that is used in most computational
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examinations of the problem, and is our aim here, in obtaining uniqueness
theorems for (3) with as weak restrictions on k and p as possible.

However, we must also examine how the classical formulation of the
problem proceeds; then u is required to be second-partial-derivative
continuous, that is, u € C*. We now require p to be piecewise differentiable
and k to be piecewise continuous; then equation (3) holds only on open
regions Q, where p € C' and k, 0, c € C. On the surfaces of these open
regions, that is, 9Q, where these restrictions to p and k do not apply, (3)
and (4) must be supplemented by the jump conditions

1 8u
[p av] =0, [u]=0. 6)
We now define the notation used in equation (6); if ¥ is a unit normal vector
on a surface 2, the difference between the values taken by the field ¢ on the
sides of £ towards which and away from which ¥ is directed is called the
jump of ¢ on Z; it is denoted by [¢]. The conditions (6) constitute just the
usual continuum-mechanical specification of a bonded material, that is, the
velocity vector and the traction vector are continuous, respectively.

We must now define more precisely the geometry of the problem which
(3) to (6) describe. Let D,eR? denote an unbounded, open region, and
assume that there is one bounded open region D; such that DyN D, =,
DyUD;=D,UD, =R> We note that D, connected (respectively non-
connected) will allow for one (respectively many) scattering regions. We
assume in the sequel that D, is connected for simplicity, without restricting
our final result. The interface boundary S, = oD, is assumed to be a closed,
sufficiently smooth surface (regular (9, p. 100)), so that an application of
Green’s first theorem at every finite part of Dy and D, is valid.

We begin with some definitions on the term ‘piecewise real-analytic’, and
from this point on, we drop the prefix real and use the term analytic as a
synonym for real analytic.

Let Q be an open set in R>. We recall that a function f : Q— R is analytic
in Q (see (8, p. 24)) if it is infinitely-often differentiable, that is, in C™(2),
and for every compact set K = Q there exists a positive constant ry for
which

1
sup = rif! IDF() <<=,

the supremum being over all points x € K, and all triples a of non-negative
integers. Then f € C“(Q).
A finite family {Q;}}L, with N members is a disjoint piecewise cover of
the closed set € if
_ N
1. Q= U QI"
j=1

2. Q,NQ; =0 for i #].
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Then a function f:Q— R is piecewise analytic on Q (relative to the cover
{Q;}) if its restriction to Q; is analytic for Q;, for each j. Notice that we have
not excluded the possibility of some Q; having a non-smooth surface
9Q; = Q;\Q;; we simply make the assumption that the surface is from the
regular class (piecewise smooth).

Within §; the material parameters are assumed to be piecewise analytic;
so that p, ¢, and o, and hence k, are piecewise analytic on D, relative to
separate covers. We denote by {Q;}, the smallest finite cover of D, such that
p, ¢ and o are each analytic on Q;, for each j, that is, p, ¢, 0 € C*(Q;). The
cover {Q;} has therefore been ‘aligned’ with the material properties so that
they are analytic except possibly across the interfaces Q;, where they may
change discontinuously. We note that the aforementioned assumptions
ensure that regions in which the material parameters are not analytic are of
measure zero in R>. This implies that the solution u of the elliptic partial
differential equation (3) is analytic within each Q; (10, Chapter 5), except at
points of Q on an edge, and those are of measure zero.

It is now convenient to provide further description of the cover of D,.
Within §; the material parameters are C, except on a finite number of
surfaces. We see from the previous discussion that the region D, can be
further subdivided into open regions, not necessarily simply connected, on
which the material parameters are analytic, and these regions themselves
permit further subdivision, and so on. Thus the cover of D, has a tree-like
structure to handle any nested regions, and we divide D, further, so as to
represent the support of each Q; by a particular region. Figure 1 illustrates -
this structure for a typical problem geometry. In this figure D, has been

Dy3, Dl.2.3.l

Fic. 1. Cross-section of a typical region, showing the tree-like structure
and surfaces across which parameters are not analytic
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further sub-divided into regions. These are

at level one, D;, where 1<i=<15,

at level two, D34, Dy 31, Dy g,

at level three, D; , 31,
within which p, ¢, 0 € C®. The subscript notation is such that the first
index denotes the scatterer number in the particular embedding region, and
the remaining indices denote in which region the scatterer is embedded.
This figure illustrates the type of structure that might occur in a typical
computational problem. It incorporates structure inside S; which is both
nested and non-nested, having the finite-element type structure common to
modern computational problems.

A consistent notation is used for the scattering surfaces across which the
material parameters change discontinuously or are not C®. Thus 8, is the
interior closure of D, and all other surfaces are the exterior closure of a
particular region, for example, S; ;= D, ,\D, ;. The level of the scatterer
can be readily determined as

& = number of tuples —1,
with level O being the embedding region D,. The aforementioned subscript
notation soon becomes very cumbersome, so we abbreviate it by using a
multi-index to represent the subscript tuples.

We choose to develop uniqueness theorems for the reduced wave
equation (3) rather than the Helmholtz equation, because thereby our
results are more general. The results we obtain can be applied directly to
the Helmholtz equation with spatially varying wave number by taking p = 1.
We point out that (3) can be converted to a Helmholtz equation, if p is
smooth enough, via the dependent variable transformation

w=(p) "t
But then, spatial rate restrictions must be placed on the variation of p, in
order to prove uniqueness results in the resulting Helmholtz equation.
For use in the sequel, we modify the jump conditions (6) to read

[r2]=0.  [wa=o, 7

where u(x), y(x) € C can be spatially varying along the interface. This is a
slightly more general jump condition than is necessary for equation (3),
wherein it suffices to take u = 1. When this is the case, it is not possible by
renormalization of (3) to reduce one of the jump conditions to have either u
or y identically unity (as carried out in (2) for the piecewise homogeneous
problem). We specifically exclude a non-penetrable boundary condition, of
Dirichlet or Neumann type, from consideration here, although our results
can be modified to handle these.
In section 4 the jump conditions appear in the form

oii; o, ;

al;,k'l= Bij.k.ithi jie,t a'ck'l ) (8)

Uj ke,
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where

ﬁ kl_:l"ljkIYI]kl (9)
“ B ke, 1Y j k1

for all points x€ S, ; ., Although equation (8) is a weaker statement than
(7), the latter are required for the interior result, so we shall assume that (7)
holds in the sequel. Here we are using the aforementioned scatterer-
embedding notation, so for example i; ; , , denotes the complex conjugate of
the field at scatterer level 3, in the ith scatterer embedded in the region
J» k, 1 with the associated jump parameters as given in (7). With the use of
the multi-index notation, m can take the value of i, j, k, [ and by defining
m_; to mean the multi-index m with the first tuple removed, that is in this
case m_, =j, k, [, equation (8) can be much more simply written as

Up_ %—‘—ﬂmm v' (10)

As a further example of the use of the multi-index notation, with m
denoting the same tuple as previously used, D,,_, denotes the embedding
region D;,, at level 2 and D, _, denotes D, or the overall embedding
medium. In a similar manner we define m ., to mean multi-index m with an
extra first tuple added, that is, it denotes a level one deeper. This notation is
used extensively in the next two sections. Note that each D, is a member of
the cover {Q;}; we have just introduced a hierarchical labelling. The
boundary S, is the exterior boundary of the open set D,,,.

3. The interior problem for piecewise analytic inhomogeneity

In this section we examine what can be said about the field inside S; when
u=0, 3u/3v=0on §,, that is, when the normal component of velocity and
the pressure vanish on S;.

THEOREM 1. If the velocity potential satisfying (3) and its normal derivative
vanish on the closed bounded surface S, of a bonded body D,, in which the
material parameters are piecewise analytic, then the velocity potential is
identically zero in D,.

Proof. The proof proceeds by use of the Cauchy-Kovalevskaia theorem,
which asserts the existence of a unique analytic solution to the non-
characteristic Cauchy problem, for an analytic partial differential equation
in the neighbourhood of the smooth surface, on which the analytic Cauchy
data are prescribed. Also necessary is the Holmgren extension to this
theorem, which assures us that when the equation is linear this is the only
solution (even among non-analytic solutions).

By virtue of these results, specification of zero Cauchy data on S, means
that only the solution u=0 holds throughout any of the €2; such that
Q;N S, #J, and the solution u belongs to C*(R;). The zero solution can
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then be continued, via the jump conditions, to prescribe zero Cauchy data
on the Q; which border the aforementioned ones. Proceeding in this manner
D, is covered. Even though the 3€; may not be smooth the requirement
that they be regular ensures that we can use analytic continuation to ensure
that u =0 is the only solution.

We remark, again, that it is not required that the cover {Q;} be nested as
in the previous proofs for piecewise homogeneous material domains (4; 5,
p. 67) which utilize integral representations. This is an important extension,
as many practical problems do not fit into the nested class. However the
cost of this extension is the requirement of piecewise analyticity of the
material parameters.

4. The exterior problem for piecewise analytic inhomogeneity

We now pose the problem of uniqueness when the region D, is embedded
in the region D, by bonding the material across §;,. Now, instead of
specifying « and its normal derivative on S;, the behaviour at infinity
through the radiation condition (4) is prescribed. It will be supposed that R
is the radius of the circle which circumscribes the surface $; from an origin
assumed for convenience to lie within D,. Then, as discussed in section 1 we
can always assume for the scattering problem under consideration that k
and p have constant values outside D;. We call these constant values k, and
po respectively, where k€ C, po € R.

We cannot expect the solutions of (3) to (7) to be unique for all values of
the material parameters and associated jump conditions—see (2) for an
example of non-uniqueness in the piecewise homogeneous case. We must,
therefore, impose some restrictions to obtain a uniqueness theorem; these
are as follows.

1. p.. €R, p,, >0 for each m.

2. k(x) = |k,,(x)| exp (i¢,,), where ¢,,€(—mx, 0] is constant in each
D,, for each m. This assumption means that the wave number has a
constant phase angle in each region, and is made to ensure that
assumption 4 is possible.

3. If u, y € C and we define the ratio

ﬂ pm - “m?mpm
" Pmy MmooV Py
we then require that §,, defined by
Prm
Em = Bm 11
B o (11)

on each interface S, is a complex constant. We note that this is not
the same as stating that the material parameters are constant on an
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interface. This assumption is necessary for the technical reason of
being able to take the ratio § outside the integral sign in Lemma 2.
4. We define a spatially varying function y,,(x) as

Ion(X) = "i‘(")H&m_,, xeD,, £>1, (12)
=0

where m is a multi-index at level &, and the multi-index m_; moves up
the tree from the interface S,, to the tree-top interface S, _,,, =S;.
Given assumption 3, the requirement that y,, € R is seen to be possible
only with assumption 2.

5. xm =0 (respectively <0) if Re (k;), Re (k,,) =0 (respectively <0).

We should note that the results of (2) will be included as a special case of
our result here simply by allowing only a one-level scattering body and
restricting k and p not to be spatially varying within D,.

Before proving our main theorem we need the following four lemmas.

LemMa 1. Let the field u satisfy (3) in the region Dyg = DyN {|x| <R} with
k= ko. Then

1 ou 1 on 1
i) = Zas)-tm ([ o7t vurax).
Im (kzjslp uavds) Im(kOLRp uavds) m 2 Dmp IVu|® dx
(13)

Proof. We first note that the subscript zero has been left off all occurrences
of the symbols u and p in (13) for simplicity. Apply the divergence theorem
to V. (up~'Vi) on the region Dy to yield

au an
o~V dx = — -1 -1 __j -1 2 4y
J;)ORuV (p™'Vi) dx SIp uavds + st u—-avds DORp IVu | dx
The use of (3), and dividing through by k3 yields the desired result.

LemMA 2. Let the field u satisfy equation (3) in a region D,,, with outer
surface S,,, having regions D,  with surfaces S, embedded in it, together
with jump conditions

Olt,y,_ oo 7}
Uy, _ ,_— ﬁm Un— v (14)

on the surface S,,. Then

aum Xn(®) [
im (g [t 2o 11 ) =t (5 [ ot 9
mk2 Pt U dsl_lg_ll kfn(X)D,,,p |Vu,,|”dx ) +

F£-1
+1m(k2f P v"’m]’[.f;,,,_,), £=1. (15)
j=0
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Remark. Here, £,,_ with m corresponding to level 1 is replaced by unity.
We note the multi-index m_; traces the jump parameter &,,_, up the tree
from surface §,, to S, as j varies from 0 to £ — 1. We should also point out
that x,.(x)/k2%,(x) is a complex constant, as is seen from examination of
assumption 4.

Proof. With assumption 3 and (14) we can write

o oi
-1 m—, m -1 m
me Ailtm o 3 smp Un—

_ ou
~&| [ o W Pax— [ B lnldxt [ prun G2 as),
D Dn v

Smiy
where the divergence theorem has been used on the region D,,. If both sides
are the multiplied by the complex constant (ko) *[[%>&,,_,, and the
imaginary part is taken, then by

£-=-2 £-1
Em UO En = l:!) Em.,

the lemma is proved.

We should note that if any of the surfaces S,, have edges the divergence
theorem cannot be directly applied to the region. Then the standard method
of surrounding the edge by a small sphere with surface S, is followed. In the
limit as this surface contracts to the edge, the edge condition (5) ensures
that the contribution from this edge is zero, so that the lemma result
follows.

The following lemma is just an extension of the radiation condition and
Rellich’s lemma (11, p. 86).

LEMMA 3. If u satisfies the homogeneous equation (3), (4) and

Im (ko f u@ds) <0, (16)
Sr v

. then u=0in D,.
Proof. From the radiation condition (4), with k = k; it follows that

L[ du

Since all terms on the left-hand side are non-negative it follows that

on
2 20,12 _ —
3y + kol |ul* —2Im (kou _av)] ds =o0(1).

|ul?ds = o(1).
Sgr

Now equation (3) reduces to the Helmholtz equation in the region R3\ Dyg.
Therefore by Rellich’s lemma and analytic continuation, u =0 in D,.
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LemMa 4. If u satisfies the homogeneous equation (3) and the radiation
condition (4) for Im (k) <0, then

3 ds o(R7P)
as R— o« for all p, that is, the left-hand side approaches zero exponentially as
R—x,

Proof. Equation (3) becomes the Helmholtz equation for |x| >R, and u is
continuous, so we may utilize Muller’s result (11, Lemma 35) which asserts
that there exists a continuous function F(x/r), where r = [x|, such that

0= ve(}).

The result now follows readily on noting Im (k) <O.

We can now prove the theorem.

THEOREM 2. With the previous assumptions 1 to 5, the only solution of the
exterior problem is the trivial solution, u=0.

Proof. Atlevel 1, that is, £ =1 (see Fig. 1), Lemma 2 gives

ou
<k2f pO uO uO ) Im <%f P;ul |vum‘2 dX) +
m “ D,

+Im (i'z"f ot ds) 17)
where m =i, 0, and where i is at least 1 but no greater than the number of
first-level scatterers. Then considering Lemma 1, equation (17) can be used
to replace the left-hand side of (13) if the surfaces S,,,, are of measure zero.
If there are further levels, that is, nested domains, then Lemma 2 is used
recursively to keep replacing the second term on the right-hand side of (17)
until the tree is exhausted; that is, down all ¥ branches to the bottom levels
Z,. Then the first term in the left-hand side of (13) is replaced by the
right-hand side of (17), which yields after rearrangement

1 oit 1
m (5 [ p5tuo °ds)-lm(k%)—4 [ o5t v ax+
l* Lo

& ls
Xm(X) -1y, P
+3 mz_olm W) S [ ot VunPax, (1)

where the overbar on the second summation sign signifies that no term is to
be duplicated in the summation.
Since the integrals on the right-hand side are clearly real we only need
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consider the complex nature of k3, k2,, and the sign of the real number x,,.
Specifically we distinguish between the two cases in which Im (k¢) =0 and
Im (ko) < 0.

1. Im (ko) = 0. In this case, from assumption 2 Re (k,) > 0 and the sign of
the second term on the right-hand side of (18) is determined by
xm Re (k,,) Im (k,,,). We immediately see that because of assumption 5 and
Im (k,,) <0 (part of assumption 2),

Im (kof uoéu—ods> 0.
Sk v
Hence, by Lemma 3, uy=0 in D,. It follows that the region inside $,
corresponds ‘to an interior problem with zero Cauchy data; by Theorem 1
the result follows.

2. Im(kg)<0. Now we work in the opposite direction to 1. Our
assumptions, in particular 5, assure us that both terms on the right-hand
side of (18) have the same sign, but Lemma 4 indicates that the left-hand
side tends to zero as R — », It follows u, =0 in D, and the proof follows as
in the later part of case 1.

When all the wave numbers involved in the scatterer are real the
assumptions necessary to prove Theorem 2 can be considerably reduced;
this is indicated by the following.

CoroLLARY 1. When the velocity potential satisfies equations (3) to (7), and
p, ¢, k, u, y€R, 0 =0 throughout R* and &, is a constant, with the material
parameters in the bonded body D, piecewise analytic, then the velocity
potential is identically zero in R>.

5. Conclusions

We have demonstrated a uniqueness theorem which has practical
application for computational solution of the reduced wave equation. In a
later paper we shall illustrate its usefulness in providing regularity results,
for wave-propagation problems. The techniques illustrated here can be
readily applied to consider the elastodynamic problem.

We note that assumption 2, which is that the wave number in each region
should have a constant-loss phase angle, is a sufficient condition for our
proof. We conjecture that it is not a necessary one.

Corollary 1 is the important result of this paper as it asserts that the
wave-scattering problem, with p, k& being spatially varying piecewise
real-analytic functions, is unique.
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