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SUMMARY

We consider the motion of a fluid of infinite depth which arises when a horizontal
cylinder of circular cross-section oscillates with small amplitude about a mean
position, in which the axis of the oylinder is assumed to lie in the mean surface. It
is further assumed that the resulting motion is two-dimensional; this assumption is
justified when the cylinder is long compared with a wave-length, or when the fluid
is contained between vertical walls at right angles to the axis of the cylinder.
Expressions are obtained for the wave motion at a distance from the cylinder, and
for the increase in the inertia of the cyUnder due to the presence of the fluid.

Introduction

A OYIJNDEB of circular section is immersed in a fluid with its axis in the
free surface. If the cylinder is given a forced simple harmonic motion of
small amplitude about its initial position, a surface disturbance is set up
in which waves travel away from the cylinder, and a stationary state is
rapidly attained. When the oylinder is very long or when the fluid is
contained between vertical walls at right angles to the axis of the cylinder,
the velocity component parallel to the axis of the cylinder vanishes and
the moj-ion is two-dimensional. It is well known that at a distance of a
few wave-lengths from the cylinder the motion on each side is described
by a single regular wave-train travelling away from the oylinder, and
that the wave-amplitude is proportional to the amplitude of oscillation
of the cylinder, provided that the latter is sufficiently small compared
with the radius of the cylinder, and that the wave-length is not much
smaller than the diameter of the cylinder.

In this paper it will be shown how the fluid motion can be calculated
when the oylinder is oscillating vertically. The foregoing assumptions
will be made, and viscosity and surface tension will be neglected. Then
a velocity potontial and a conjugate stream function exist, and it will be
assumed that terms involving their squares may be neglected. From the
potential or the stream function it is easy to deduce the wave-amplitude
at a distance from the cylinder and the added mass of the oylinder due
to the fluid motion.

[Quart. Jonrn. Mech. and Applied Math., Vol. II, Pt. 2 (1949)]
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Formulation of the problem
Take the origin of rectangular Cartesian coordinates at the mean

position of the axis of the cylinder. The x-axis is horizontal and per-
pendicular to the axis of the cylinder, the j/-axis is vertical, y increasing
with depth. Define polar coordinates by the equations

x = r sin 0, # = r cos 0.

Since the motion is symmetrical about the y-axis, it is sufficient to con-
sider the quadrant 0 ^ 0 ^ far. The velocity potential <f> satisfies

the stream function i/> satisfies

On the free surface the pressure is constant, whence to the first order

, O = fr, r>a, (. ,= 0, O fr,
where K = a%\g and 2TT/<T is the period (cf. ref. 1). Also, by symmetry,

8<f>/d9 = 0, 0 = 0. (D)

I t remains to express the boundary condition on the cylinder. This is
tha t the velocity component normal to the boundary just insiilr -lio fluid
is equal to the corresponding component of the velocity of tin- cylinder.
Suppose that the ordinate of the axis of the cylinder is

y = lcos(ot-\-e).

Then at (osina, ooosa+Zcos(a<+e)), the normal velooity is

1 dih dy
/ = -£ oos at,

a da at

and to the first order this condition holds at (osina, a cos a), whence

\p = laaeiix(at+e)saD.d on r = a. (E)

I t is required to find a velocity potential and a stream function satisfying
the boundary conditions (C), (D), and (E), and representing a diverging
wave-train at infinity. To this end a series of non-orthogonal harmonic
polynomials will be constructed satisfying (C) and (D); these will be
superposed to satisfy (E) for values of Ka less than 3ir/2 by a numerical
process. It is shown that when Ka is less than 1-5, this is permissible, and
it will be supposed that the process is permitted in the wider range.
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Construction of polynomial set
It is easily verified that the set of stream functions

..rsn^mfl , K sin(2m—1)01 cos , . . _ „ .
° —s=—\-n «- i . °t (m = 1,2,3,...)

L r*" 2m—1 r1"-1 J sin
is suoh that the conjugate velocity potentials satisfy (C) and (D), while
on r = a it takes the values

sin 2m0+—-—- sin(2m—1)0.
2m—1

It is dear on physical grounds that this set is not closed on r = o, since
the sum of functions of the set tends to zero as r tends to infinity, whereas
in fact the stream function for large r must represent a diverging wave-
train. It is therefore necessary to add a function satisfying (C) and (D)
and representing such a train of waves, e.g. the function describing a^ource
at the origin (of. ref. 3)

^-[%(Kr; 6)coa <rt+%(Kr; 0)sin at],
1T0

[
1T0

where b is the amplitude at infinity and

Y,(Kr;d)= ( e-—-^{kBin{kr ooad)+Koos{krcosd)} dk-
o

—Tre-Krooee c o s ^ gin 0).

The functions of the dosed set must be superposed so as to satisfy (E),
and sinoe there are no singularities on the cylinder, ip must be continuous
on r = a when 0 < 0 < \n.

Suppose, then, that the stream function ip is expressed in the form

^ = YJKr; d)co8
9°

K sin(2m—1)0
[2^

/ ^ x ^ ,rs in2m^ , K 8in(2ni—

—1)01

—1)01

where the coefficients p^Ka), q^Ka) are assumed to be of order l/«is.
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This series converges uniformly outside and on r = a. On r = a the
function ^ is a multiple of sin 9, by condition (E), i.e. putting r = a,

i; 0)cos at+%(Ka; 9)mn ot+

+ cos at V PtaXKa) sin 2m9 + _ sin(2m-1)9 +

[ Ka . "I

sin 2tnu -| sin(2tn— 1)^ I
2m—1 J

To determine C(Ka;t), put B = \n (say); then

Ka
+ 008 at

00

+sincr<
l

whence it follows that p^Ka), q^Ka) are the coefficients in the ex-
pansions

00

1
where

2m-V
Write

a) = A(Ka),

= B(Ka).
I

Then the stream function on the cylinder is given by

if, = i^.[A(Ka)cosat+B{Ka)anat]mi9,

whence by comparison with condition (E) the ratio
wave-amplitude

amplitude of forced oscillation

•nKa
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Calculation of the coefficients A{Ka) and B{Ka)
The coefficient* pSm, qtm are the roots of an infinite number of equations

in an infinite number of unknowns. For purposes of calculation, the system
of equations was replaced by a system involving only a finite number of
the polynomials /^(Ka; 6). The functions

were evaluated at = 0°(10°)90° by quadrature, with
Ka/n = I i, I f, | , 1,11

and the polynomials ft(Ka; 6),...,fiN(Ka; 8) were fitted at these values by
least squares, the corresponding coefficients being

P**
Him

(Ka;N) (m=

The least squares condition provides a set of N simultaneous linear
equations for p^Ka; N) and similarly for q^Ka; N). The matrix of the
equations is symmetrical and the terms on the principal diagonal are
larger than any other terms in the same row (except for the first row).
The system could therefore be solved conveniently by relaxation methods.
Trial calculations were carried out and it was found that an expansion
in terms of six polynomials was adequate, giving a close fit at the chosen
values of Ka and 9. Table 1 shows various functions of Ka to three signi-
ficant figures.

TABLE 1

Kajn

o
i / 6

i / 4
1/2

*/3
3/4

I

5/4
3/2

A(Ka)

o

i-75
a-75
564
6-17

5-55
- O - 8 8

— 12-6

— 22-O

B(Ka)

- i - 5 7
- 2 - 2 3
- 2 0 6
+0-65

4'39
6-62

12-33
II-2

- 1 1 7

i-57
2-83

3'44
5-68

7-57
8-64

12-4
16-9
22-O

tan~\BIA)

- 9 0 °
-5 '°
- 3 7 °
+ 7°
35°
5o°
94°

183°

vKa
J(A*+B*)

0

0-58
0-72
0-87
0-87
0-86
0-80

O-73
0-67

m(Ko)

0 0
0-78

o-73
0-83
0-91

°-94
I-OI
1 06
1 0 9

These calculations are based on six polynomials. The values of
\-B*) and tan-1(.B/.4) are given for convenience in interpolation,

each of these functions being monotone increasing in the range; in fact the
angle varies nearly linearly except near Ka = 0; when Ka = 0

-jL-ta.n-1(BIA) = 2 radians,
d(Ka)

as can be shown by expanding in a power series in Ka.
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Virtual mass due to the fluid
It is well known that when a long cylinder completely immersed in an

ideal fluid is moving in any way perpendicular to its axis, the reaction
of the fluid may be expressed in the form

M't per unit length

where M' = npa% is the mass of fluid displaced by unit length of the
cylinder and f is the acceleration vector (ref. 1, Art. 68). This expression
shows that the motion is unaltered if the fluid is supposed to be removed
and a mass M' per unit length is added to the cylinder. The mass M' is
called the virtual mass due to the fluid.

When the cylinder is in the free surface, the reaction of the fluid is no
longer in phase with the acceleration. There is a component in quadrature
whioh does a positive amount of work in each cycle and is thus simply
related to the wave-amplitude. The component in phase with the accelera-
tion does no work: it consists partly of a hydrostatio force which dominates
the motion for small values of Ka, and which is easily seen to be

where y is the displacement of the cylinder. More interesting is the part
due to the wave motion which will now be calculated. The velocity
potential <f> is easily derived from the stream function. I t is given by

^ = Oc{Kr; 0)cos ot+Q>s(Kr; 0)sin at +

K cos(2m—1)01 .

K cos(2ro-l)01

from which the pressure — p 8<f>/di can be derived.
Here <be(Kr;9), <b,{Kr;Q) are the harmonic conjugates of T.(.K>;0),

Oe{Kr;d) = 7re-J&OO89cos(.K>8in0),

fi-krBiB9

{
f fi-krBiB9

<t>,(Kr;6) = - ——-{Jfccos^cos^-Zsin^cos^)} dk+
J K -{-k

It is seen that the pressure on the cylinder is of the form

M cos at-\-N sin at,
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while the displacement of the cylinder is of the form

Pcos<rf+<3sinai.

The component of the pressure in phase with the displacement is therefore

The force per unit length acting on the cylinder is

— I pa^COB6 d8 (r = a), i.e. -£™k (Account—Noanai),
J dt IT

-in

where

Mo = J Q,(Ka; 0)cos0 dfl+ j
o

i _

jtfo= JQc(Ka;6)cosed0+ J
0 *

The displacement is

—— (A sin at—B cos erf),
TTAO

where -4(^To), £(Zo) are the functions shown in Table 1.
It follows that the force component in phase with the acceleration is

while the acceleration is

=- (A sin at—B cos at).
nKa

The virtual mass is their ratio

2pa%

The values of the non-dimensional quantity

m(Ka) =

Avhich may be describe€l-»s an inertia coefficient, are given in the last
column of Table 1.
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It can be shown that as Ka -> 0,

* i 2 1 o g 2 - y = -0-46,

where y is Euler's constant. Hence the hydrodynamio inertia ooefficient
tends to infinity like log{l/(.Ko)}, while the hydrostatio coefficient tends to
infinity like ir/(2Ka).

The work done by the cylinder in a cycle must be equal to the energy
transmitted by the waves at a distance from the cylinder in the same time.
In terms of the various parameters, M$ A—No B = T̂T8. This relation may
be used to ohedk the computations.

Discussion of results
The computations show that the amplitude ratio

•uKa

is small for small values of Ka/n and increases as Kajn increases, until
Kafir is approximately 0-6. As Ka/ir increases beyond this value, the
amplitude ratio decreases steadily throughout the range of computation.
This effect may be ascribed to interference between waves originating
from different parts of the cylinder surface. Qualitatively similar behaviour
is exhibited by oylinders of various other sections. As Kafir tends to zero,
the amplitude ratio tends to 2Ka. It may be shown that this result, which
is in agreement with Holstein's approximate theory (ref. 4), is still valid
for oylinders of section other than circular, provided that 2o denotes the
horizontal diameter in the surface (beam).

The inertia coefficient is of order 1 through the greater part of the
range, except near Ka = 0, where it tends to infinity. On the other hand,
the hydrostatic inertia coefficient tends to infinity even more rapidly,
whence it may be concluded that in very slow heaving the deformation
of the surface does not cause a significant change in the force on the
cylinder. These results-may be compared with the measurements made
by Holstein (ref. 5) on a cylinder of rectangular section. Holstein measured
the amplitude of the waves for various mean depths of immersion of the
lower edge. When the depth is equal to about half the beam the amplitude
should be comparable to that due to a circular cylinder. It is found that
theory and experiment are consistent in the range of measurement
(0-5 < Kafir < 0-8). Holstein's experiments on virtual mass (ref. 6) are
too rough for comparison with theory.
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Note on the magnitude of p^Ka),
It has been shown that the calculation of the wave-motion requires the

expansion of a function 0(6), where

0 < 8 < \n, O(0) = Ofr) = 0,
in a series of non-orthogonal polynomials

ftm(x\6) = — |sin2TO0+—^— {sin(2m—1)0—
|_ 2m— 1

(«i =1,2,3,. . .) ,
where x is a numerical parameter which is usually less than 5.

Let the coefficients be denoted by p^x) so that

= Z *>*.(*)/•»(*; *).
m-l

This expansion must converge uniformly throughout the range 0 ^ 6 ^ \n\
it has been assumed in the text that functions p^x) exist such that

Ptm(x) = 0(1/m?) for fixed x.
A proof that, in fact,

P«»(*) = 0(l/»i») (1)
will now be given when a; is assumed small (\x\ < 1*5).

THEOREM. Let 0(6) be defined in the range 0 < 8 < \n and let its second
differential coefficient be of bounded variation. Then if\x\ < 1-5 there exists
an expansion

0(6)= I Psm(x)fam(x;8), (2)
m—1

(3)1 < .

We first prove the following

LEMMA 1. (Limiting case x = 0.)
Consider the expansion of 0(8) in terms of the orthogonal polynomials

f*m(0;8)= -an2md.

Then

Proof. By Fourier's theorem,

= - - f O(8)an2m8d8
TT J

0

= —- j Q'(0)tan 2m8 d6, by integration by parts.
7Tffl* J
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Since O"(6) is of bounded variation, the last integral is of order 1/m (ref. 6,
§ 9.41), whence the lemma follows.

Suppose now that each coefficient iJtol(x) can be expanded in a power-
series in x

I 4& {m = 1, 2,3,...). (4)
n-0

Substitute in equation (2) and equate coefficients of xn; then

a$>sin2m0= —0(6) (5)f

2 -^22—{8in(2m—1)9—sin0sin|(2m— l)n} = 0
2wi—1

(»>!)• (6)

Suppose further that the infinite series in equations (5) and (6) converge
uniformly throughout the range. It is then permissible to multiply each
equation by sin 2r9 and to integrate term by term.

From equation (5),

= - J G(6)mn2r6d6. (7)
o

From equation (6),

2f X" "*m i i \ _ i . \"n» 3.) x , _ .

2 m - 1
m-%

I t must now be shown that equation (8) defines a double array a$; that
the corresponding power-series defined by equation (4) are convergent for
small x; that these power-series satisfy (3), and that

f/tato) I
m-l n-0

LEMMA 2. To show that

Proof. From equation (7) a$ = 2>&.(0), so that the result follows from
Lemma 1. It also follows that equation (5) holds.

LEMMA 3. To show that

l«&>l< 7 ^ 7 3 - w h e r e ^» = (f)M(0). (10)
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Proof by induction on n

From Lemma 2, equation (10) holds when n is zero. Suppose that
equation (10) holds for n = 0, 1, 2,..., N— 1. From equation (8),

2r
Z, 2ro-lv

8
(2m-l) 8 - (2r) 8

2r
— 1 Z , (2ro-l)|(2m—1)*—(2r)»|

1
4r»-l A,%(2m-l)%\{2m-\)t-{2r)i\

fy
- 1 [Z,a(2»n-l)t{(2r)s-(2»7i-l)1}

1 } " r

m-r+l
Now

f —1_+V
ZV (2m-l)*^ ^ (2r)»-(2m-l)\

The second series may be. written

(2r+5)8(2Or+25)
+

N o w

(2r+3)»(12r+9) 400

r8 1
(2r+6)«(20r+5) 1000

^ ( r = 1,2,3,...),

( r = 1,2,3,...),
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f I < f *»
Z,- (2m-l)«{(2Bi-l)«-(2r)«} ^ J (2u-l)»{(2u-l)»-(2r)*}m-r+4 - r+3

J F du
r+25) J (2u—]

<2(20r+25) J (2u—I)3

r+3

14(20r+25)(2r+5) 160r*'

I
Hence

Xn 1000^160 31^'
m-r+l

"(2r— I)3 (2r— I)3 '
This proves Lemma 3.

I t follows immediately that

2 ^2—r {Bin(2m—1)6—smdan\(2m— 1)TT} (11)

is uniformly convergent. Its associated Fourier sine series is

- f o£>sin2m0 (n > 1),
m - l

where a§^ is denned by (8). It follows from Lemma 3 that the. last series
converges throughout the range, and so its sum is equal to (11); that is,
equation (6) holds.

It also follows from Lemma 3 that

n-0

is defined for \x\ < 1-5; again

( 2 m - 1 ) 3

00

21x1, £
m - l

It only remains to be shown that

A{x) ' |*| < 1-5), (12)

00

and since l/^fofl)! < 1+21x1, £ Psmix)fim(x'>s) converges.
m - l

'2
m-3.
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LEMMA 4. To show that

I ftJx-M f <*») = | p2m(x)ftm(x;d). (13)
- l *»-0 ' m-1

For
n-0 (2m—l)a

\'y— ' converges, the senes converges uniformly with
[Ztn—l)s

respect to N, by Weieretrass's Jf-test (ref. 2, § 3.34); hence equation
(13) holds.

Proof of the theorem. Consider the expression

From (5) and (6)

eo N

2/*»(*; 0) 2
m-l »-0

oo . N >

m — 1 ' n — 0 '

(JV)

m-2

= -3A+1 V - ^ - { 8 i n ( 2 m - l ) 0 - s i

but

| f
V [_ (from Lemm ,̂ 3),

- l K m '

which tends to zero, as N tends to infinity provided that |x| < 1*5; so

Jf-w m—1 n-0

oo

From Lemma 4, the left-hand side is 2 P&nO'O/amfo )̂; a^so from (12),
m - l

•whioh proves the theorem.

Note. The foregoing proof applies only when \x\ < 1-5, but it has been
assumed that the theorem is valid in a larger range including | i | < 1-5.

I am indebted to the Mathematics Division of the National Physical
Laboratory for the computations in this paper, and to the Admiralty for
permission to publish.
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