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SUMMARY
The methods of a previous paper (ref. 1) are extended to permit the evaluation

of the fluid motion when'a cylinder of arbitrary symmetrical section performs simple
hannonio oscillations of small amplitude about a mean position with its axis of
symmetry level with the surface. Special attention is paid to the slow motions, for
which a method of successive approximation is developed. Applications are made
to the virtual mass in slow heaving, to the determination of the roll axis, and to
motion in a sea-way. Finally, the waves generated by the forced rolling motion are
studied. It is shown that their amplitude, and thus also the damping decrement,
depends critically on the details of the section. A section is calculated whose rolling
is undamped to the first order. Experiments are needed.

1. Introduction
IN a former paper (ref. 1) the motion of a fluid was considered when a long
circular cylinder executes vertical heaving oscillations about a mean
position in the surface. It will be shown that the method of that paper
can be extended to discuss the oscillations of a long cylinder of any section,
provided that the cylinder is symmetrical about a vertical plane and the
principal axes of the section are of the same order of magnitude. The
emphasis will be generally on skew-symmetrical (rolling) motions. In
these the length of the waves produced by the rolling is usually much
greater than the beam of the ship. Application of a method of successive
approximation outlined in ref. 1 is therefore permissible.

2. Formulation of the problem
On the assumption that the motion is two-dimensional and simple

harmonic of period ^nja, a velocity potential <f> and a stream-function ip
exist satisfying ^ ^ ^

~8&+dy*~

33-.
where the origin of coordinates is at the mean position of the centre of the
cylinder and y increases with depth, the mean free surface being y = 0, as
in ref. 1. The stream function is prescribed on the cylinder, or, to a first
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approximation, on its mean position. To the same order, the condition for
the free surface is «.

where gK = CT*. (4)

Introduce dimensionless coordinates £, rj defined by the isogonal trans-
formation

x = ccoshfsinTj+c J Atr+1e-<tr+i^an{2r+l)r), (5)
lr - l

y = csinhfcosTj—c ]T 42 r + 1e- ( 2 r + 1 )fcos(2r+l)»j. (6)
1r—1

The constants A^^ are chosen in such a way that the given cyUnder
becomes the curve £ = f0, and the region occupied by the fluid is mapped
isogonally on — \n < TJ < \n, £0 < f < oo. Equation (1) becomes

^ + ^ = 0 (7)

and the surface condition becomes

(8)
3. Skew-symmetric motions

Consider in the first place, motions in which

flfi?) = -* ( f , - i ? ) , (9)
for instance a rolling motion. It is sufficient to consider the region
0 < i) < \n- Laplace's equation (7) and the surface condition are both
satisfied by the skew-symmetric set

_ Re \e- + e
4» T 4n+4

2 2n+2r+2 J
(71=1,2,3,...). (10)

It will often be convenient to work with the conjugate stream-functions

cos(2n+2)T;

4n ' 4»+4

Z, *+1 2n+2r+2 J
( n = 1,2,3,...). (11)



ON THE ROLLING MOTION OF CYLINDERS 337

I t is not to be expected that the general skew-symmetric motion can be
expanded in terms of these sets, since at infinity the motion consists of
regular wave trains travelling away from the origin, whereas each
2̂n+i(£> v) vanishes at infinity.

The set is completed by the addition of the potential <I> and stream-
function Y describing a horizontal dipole at the origin (of. ref. 2). In
particular, the stream-funotion T is given by

= Im 2KcieiK-M+- -s

fkce-**dk]
J k+iK \

| (

(12)

4. Rolling oscillations of small amplitude about the origin
The process which is employed to determine the coefficients of flian+1(it1)),

n = 1,2,3,... in the expansion of ip is best illustrated by an example.
Consider a cylinder whose equation is $ = £0 and suppose that it is rolling
about the origin, the angular displacement at time t being

0 = 0ocos<rf, (13)
where 60 is small.

The boundary condition is (ref. 3, Art. 72)

on the oylinder, where F(t) is a function of t only; for small 60 this con-
dition may be replaced by

<l> = \<£(xt+yt)+F(t) on £ = & (15)

(For other skew-symmetrical motions x2+j/* is replaced by some other
even function of 77, to which aJi the following considerations may be
applied.) Suppose that tp is multiplied by a constant so as to make the
coefficient of Y unity; A is a function of 0O and the period. Then,

1
r - 1

I
r - 1

$091-7
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and P2,+v <ltr+i must be determined in such a way that on f — £0 the
stream-function ip differs from a multiple of xi-\-y* by a function of t only,
that is %{i ^ ^ rf+Ytfo>

(17)

There must be no source-singularities on the cylinder, i.e. ip is continuous
in the range 0 ^ t\ < \n. I t is therefore assumed that the series (16)
converges uniformly in 77 on £ = £0.

Suppose that the beam of the cylinder is 2a and that the draught is b.
Put Tj = 7̂7 and subtract the new equation from (17), thus eliminating F(t).

bi_at j , say; (18)

that is

(19)

(20)

These equations must be solved for the infinite set of unknowns
9Wi- One approximate method is to fit a finite set of polynomials

by least squares, as was done for the case of the heaving circular cylinder
in ref. 1. However, in this paper the solution of the set of equations will
be considered only under the condition that Kcef» is small and that a and
6 are of the same order of magnitude.

The expansion in power series of Kc of the functions ^(f, -q),
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suggests that

Pfr+l = 2 Pn,tr+l(Kc)n (21)
t»-0

I ^ + 1 ) g f Qj&,+l(K8)», (22)
»-0 n-1

since the expression in square brackets on the right-hand side of (19) and
(20) involves only (Kc)° and (Kc)x. I t is therefore possible to determine the
coefficients Pnttr+1, <2£»r+i> Qnh+i recursively by equating coefficients of
(Kc)n and {Kc)nlogKc on the two sides of (19) and (20). It is assumed
that the resulting power series defining #&.+!, q^+t converge for sufficiently
small values of Kc. This is known to be true for the heaving motion of the
circular cylinder.

Now, if (Kc)*logKc is negligible,

(23)

(24)

(25)

, (26)

and ^2r+1(fo.'7)-^+i(^.^) = c^+^cos(2r+l)7,+0(i:c). (27)

It follows that P0i2r+1 = P ^ ! = Q{%+1 = 0 (28)

and Q^%+1 is given by

i-a*a\+ 2 ^Ue^+1)f'co8(2r+l)^ (29)

The amplitude of tke motion of the cylinder is determined to the first
order by Q£{, which may be found by multiplying (29) by COST; and
integrating from 0 to \n. But

_ ) = V as,,l+1e-<i!n+1tf cos(2n+l)7; (f ^ £0), (30)

from the theory of harmonic functions, where only ax is required in the
calculation of QQl-

Multiply both sides of (30) by et and let £ tend to infinity. For large £,

(31)

(32)
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In the limit the equation (30) reduces to

—(4/TT)COSIJ =

or a1= -4/TT. (33)

On carrying out the multiplication and integration,

0

On the cylinder, the stream-function is given approximately by

A+ = Q^lemat(^+yt~a%) = -1iAeoo8mot(x'+y*-a*)0, (35)
\ ° ~a /o

where A is a normalizing constant, and at positive infinity

A<l> = 2Kce-Kvooa(Kx-ot) = ^ ^ e - ^ c o s ^ - o t ) , (36)
a

where \B\ is the amph'tude at infinity. Hence

B B
 K2Ce°Q^a2) = K^^o j (a*-x*-y*)o0oai,dr,. (37)

o

As an example consider the elliptic cylinder

x = c cosh | 0 sin ij, y = c sinh £0 cos 77

a = ccosh£0, 6 = csinh£0. (38)

Here (a2—**—J/2)o = (a*—68)COS*TJ (39)
and the amplitude \B\ is

^W-fl,, J |o«-6»|co8»ij dTj = $K*0o(a+b)*\a-b\. (40)
0

It can be shown that this formula is valid whether a is greater or less
than b. The calculation shows that the error is 0(K3al), which is negligible
if Ka is small. When Q${ has been found, Q{&+1 is obtained by multiplying
(29) by co8(2r+l)77 and integrating from 0 to \n.

5. The boundary condition ty/dy = 0 (y = 0)
There is another way of approaching the problem, which is suggested

by the boundary condition

Ki + Q=0 (y = 0). (41)

As K tends to zero, the boundary condition tends formally to

g = 0 (y = 0). (42)
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It is not unreasonable to expect a close relationship between the first
approximation to the wave problem and the complete solution ifiR of the
problem with boundary condition (42). (Cf. ref. 10.) One way of solving
the latter is to expand the stream-function in terms of the set

^tn+uj = e-«»+1)fooB(2n+1)1,, (43)

to which is added the dipole function

^ = Im(|). (44)

Then the determination of the coefficients in this expansion is clearly
the same as the determination of Qftlr+i. Expansion of Im(2c/wz) leads to
the following

THEOREM 1. Suppose that in the skew-symmetric wave-problem tp is pre-
scribed (except for an additive constant) on the cylinder £ = £„, and that at
the mean free surface y = 0 -i

To obtain the wave amplitude at infinity when Ka is small, solve the simpler
problem, in which \f> is prescribed as before on £ = £0, but the free surface is
replaced by a rigid plane and

| = 0 fr-o).

/ / the solution to this latter problem is written in the form

r-0

where -B&+1e^+^» = o [ I ] . (45)

Then for the original problem the waves at infinity are described by

t/j= — frBiKce-^co^KW-ot). (46)

The error imp is small of order EWB-y when By ^ 0.

A similar investigation for symmetrical motions, using a source function
and a set of polynomials $&($, ij) (cf. ref. 1), leads to

THEOBEM 2. / / the solution of the problem modified as in Theorem 1 is
written in the form

[ f * ] (47)
where Co is adjusted to make
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then for the original problem the waves at infinity are described by

tfi = vC0e-KVfnn(K\x\—ot), (48)

the error in ip being of order Kh^C^ogKa, when Co =£ 0.

6. The pressure on the cylinder
The pressure at any point in the fluid is connected with the velocity

potential by the relation

r at
where F(t) is a function of time to be determined from the condition that
at the free surface the pressure is zero. In the skew-symmetric motion <f>
is considered as the superposition of the non-orthogonal polynomials,
defined by equation (10), and the dipole potential taken in the form

<D = Real part of 2KcieiK*-iai+-sin at
L w o

The non-orthogonal set tends to zero as \z\ tends to infinity, (49) reduoes
to the potential describing a regular wave train for which the pressure is
given by ^

p = gpy—p— = o on the surface. (50)
at

Hence without loss of generality F(t) may be taken as zero. A simple
calculation gives

THEOREM 3. / / in the modified skew-symmetrical motion

[ctyxJdy = 0, y = 0]

"A«= f i?S!,+1e-(i!r+1rfcos(2r+l)7j8incrf,
r-0

where B^e^+vt. = o(±\ (51)

then in the original motion the hydrodynamic pressure — p-? near the
dt

cylinder can be obtained approximately from

ie^2r+1)f sin(2r+l)7?sina«. (52)R 1
r-0

The error in the pressure is of order Kcp d^jjdt. A rather more complicated
calculation shows that if the modified symmetrical motion is given by

<f>R= [Cor)+ f <72,e-2'*8in2nj]coscr<, where C^ er^* = 0 / i \ (53)
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'hen the hydrodynamic pressure —p—is obtained from
at

f Ctre-*tco82rn\coa<rt+iTC0mi\<jt. (54)

7. Applications
The theory which has been given in the previous sections may be

applied to a variety of problems concerning the motion of cylinders, and
under suitable conditions to the discussion of the motion of ships of long
parallel middle body. If numerical computation is to be avoided, the
parameter Ka must be so small that the first approximation is valid.
This condition is usually fulfilled when a long ship is given a slow
forced rolling motion, but not for a heaving motion. Also, the error in
the calculation of a symmetrical motion is of order KalogKa, and is
larger than for a skew-symmetrical one. For these reasons most, of the
calculations will be made for cases of rolling motions. The section of the
cylinder will first be taken as elliptical, so that direct comparison with
experiments on ships will not be possible. The extension to other sections
involves rather tiresome calculations which, though simple in principle,
would obscure the ideas underlying the work. However, the calculation of
the amplitude of waves generated by the railing of a cylinder of nearly
rectangular section will be given in detail.

For convenience the modified motion in which the free surface is supposed

to be replaced by a rigid plate I— = 0, y = 0] will be described as the

iJ-motion set up by the motion of the cylinder.

(A) The roU axis of a cylinder of elliptic section

When a ship executes a slow rolling motion in still water, there is a
point of least movement, called the tranquil point, about which the railing
motion may be supposed to take place. The position of the roll axis in
the corresponding two-dimensional motion will now be investigated.

Consider a ship the immersed part of which is a cylinder of semi-elliptic
section with its centre in the mean free surface, and consider the skew-
symmetrical forced rolling motion about any axis parallel to the axis of
the cylinder and lying in the plane of symmetry. For slow rolling the
first approximation is adequate; also, the damping is so small that during
a roll period there is little difference between free and forced rolling. To
maintain a motion at constant amplitude a small amount of energy must
be supplied per unit time, most conveniently by a couple. In general
there will be an oscillatory reaction on the roll axis, but when this axis
coincides with the axis of free rolling, the reaction will be small. For small
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angles of roll, the rolling motion about a fixed axis can be considered aa
made up of a rolling motion about the centre, together with an oscillatory
horizontal displacement of the centre in phase with the rolling motion.
Aa the cylinder rolls, the fluid exerts a varying pressure on the cylinder,
given by ^

p = gpy-p^, (65)

the first term representing the hydrostatic, the second the hydrodynamic
pressure. The potential is adjusted in accordance with Theorem 3. By
the principle of Archimedes the total hydrostatic force is vertical and
depends only on the displacement, which is constant (to the first order
in d0) during the rolling motion and equal to the weight of the ship.

The horizontal forces acting on the cylinder are:
(1) the resultant force due to the hydrodynamio pressure;
(2) the reaction of the roll axis.
The resultant of these two forces is equal to the product of the ship's

mass and the horizontal acceleration of the centre of gravity. When the
roll axis is the axis of the free rolling motion, the second force will be
neglected. An equation is thus obtained to determine the roll axis.

Let d be the depth of the centre of gravity and I that of the roll axis
below the water-line. It is assumed that the horizontal axis is the major
axis. Suppose that the inclination of the ship at time t is

6 = 60anat, (66)
then the horizontal displacement of the centre of the ellipse is

—16 = —Wosin<rf.
It follows, as in ref. (3), that on the ellipse £ = Jo

<p = — ±60oci(l-+-coa2r))coaoi—Z0O oc sinh £0 cos ij cos <rf

—W0ocsinhf0oosijco8<rf. (57)
The solution for the corresponding JR-motion is clearly

+* = - I ' . * * " * 2 {2r-
r-0

—W0ocsinh£0e-(f-&)cos 170080*. (58)
By Theorem 3, the corresponding potential function is

o 0 j (59)
near the oylinder.
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The horizontal force per unit length opposing the motion is

-in 0

= pcomrhgjffl0(TCt+frTd0ocl8inh£0]BW.crt. (60)

The horizontal displacement of the centre of gravity is

Now the horizontal force per unit length is equal to the product of the
mass M per unit length and the horizontal acceleration of the centre
of gravity:

Mo*(i—l)6QtnD.at = pco sink {0tsinoi{$60oc*+±iT80oclBii)h{0] (61)

i.e. (with ccosh£0 = a, cainhf0 = 6),

But the cylinder is in equilibrium in its mean position, so that

My= \npob,

tca«j-Htf-y). ( 6 3 )

a-\-b
To this approximation the position of the roll axis is independent of the

frequency. I t follows that (63) also gives the position of the roll axis for
the case of free slow rolling, which can be expressed as the superposition
of a number of undamped forced oscillations with periods lying in a
narrow band near the mean rolling period. Equation (62) was first derived
by R. Brard (ref. 10), who compared it with experiments and found
satisfactory agreement.

When the semi-axes a and b are nearly equal,

I = ±d. (64)

This formula is in agreement with the experimental results mentioned
by Sir William White (ref. 8, p. 169) for rolling without bilge keels. I t
appears that the position of the roll-axis depends critically on the differ-
ence (a—b) of the semi-axes. When higher terms are included in the
calculation, it is no longer permissible to assume that the two skew-
symmetrical motions are in phase. Under these conditions, i.e. when the
diameter of the ellipse is not small compared with the wave-length, there
is no roll-axis; the instantaneous centre of rotation is not confined to a
small region.
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(B) The added mass in a slow heaving motion

Suppose that an elliptio cylinder is given a forced heaving motion

y = I sin at.

Then on the cylinder £ = f 0

\fi = —lac cosh £0 sin 77 cos at

(65)

It follows that in the corresponding .R-motion

= -Zac cosh £0[-77+- V - ^ 4 ^ e-^^«toi2r7,lco8<rf. (66)
|_w 7T £-t r(4ra—1) J

By Theorem 3, the corresponding potential function <f> is

(+\oS\Kc+t)+ V (~1)f"1e-**-tocoB2r] coBot-
TT

—2Zoc cosh £0 sin at. (67)

The vertical hydrodynamic force opposing the motion of the cyhnder is

- J I T 0

2 r
-(y+log$Kc+£0) cosijdijsincrf—

oJ

V4—5^—r cos2njcosijdij sinot+2 j cos rtdri COB ot\
TT •*-! r(±r*—l) J J I

1 o o J

(69)

(log^ / ,v771 A(a+6)
+ 0-23|aingf+2cos(rfl, . (70)J J

where the numerical constant 0-23 = 1-5—log 2—y approximately, and y
is Euler's constant.

Here the first term is 180 degrees out of phase with the acceleration and
so represents the effect of added mass. The second term is in quadrature
with the acceleration; the work done by it is accounted for by wave
damping.
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Let M' be the mass per unit length of a semicircular cylinder of radius

°» ie- M' = fapa*.
Then the inertia force per unit length represented by the first term can

be written in the form

whence the added mass per unit length is to the first order

( 7 2 )

It may be noted that the ratio of the inertia force (71) to the hydrostatic
restoring force per unit length 2palg is of order KalogKa, which is
assumed to be ffmn.ll

(C) Motion of a ship in a sea-way
Suppose that a ship of the typo described in (A) is placed in a progressive

train of waves advancing from positive infinity

( ) = ^ ^ (x cos at-y sin at) + Q(t) (73)
a a

(near the origin to the first order); and suppose that as a result the
coordinates of the centre of the cylinder at time t are

_ x = i cos^+a) , y = lsin(ot-\-f!),
and that the inclination of the minor axis at time t is

d = 0ocos((rf+8).
Then, on the ellipse £ = £0,

ifi = — Zoc cosh ̂ 0 sin 7jcos(at+^3)—.Lac 8inh£0 cos 17 sin((rf+a)+
+i#0oci!sin(crf+8)[l+co3277]. (74)

The stream-function satisfying this condition is

\TT it £—1 r(4r*—1)

-Zaccosh£0cos(<rf+i3) [ - , ,+- y ( ~ 1 ) r " 1 e -
\_TT TT 4—1 T\iT — 1 ) J

+—Kc sinh £0 e-tf-^cos 77 sin erf—Lac sinh £0 e-^^oos rj mn(at-\-a.)+
a

(75)
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Whence the potential function is to the first order

at+loa cos(<rf+/3)l \ -!(y+log^

g sin crf+Ioa sin(o<4-j3) —

° J
- g c~tf " •̂)8in tj sin ot-\-Labe-^-i^in ij sin(a<+a)-

° (76)
From this velocity potential valid near the cylinder the force and the
couple acting on the cylinder can be found, the expression for the pressure
being H

p = ^

When the forces are equated to the product of mass and acceleration in
the direction of the force, these equations, with a similar equation for the
couple, are sufficient to determine the quantities I, L, 90; a, j3, 8. For
example, consider the heaving motion which is independent of the skew-
symmetrical motions.

The force opposing the motion is (correct to the second order)

2pgAa sin crt[l—

[log—L^+ 0-23 j [4 sin crf+i sin(erf+i3)]+

cos <rf+1 cos(oi+0)]+2pgla sin(o<+j3),

which is to be equated to frrplabo*sin(ot+fi) (77)

since the mass of the ship is equal to \npab by the principle of Archimedes.
I t follows that to the second order

/3 = 0, l+A = 0 (78)

(taking account of the equation gK = a*), so that the ship moves with
the wave.

The reflection from the ship's side due to heaving can be shown to be
zero, to this order.



ON THE ROLLING MOTION OF CYLINDERS 349

8. The problem of roll resistance In still water
The damping of the rolling motion is known to be mainly due to three

different causes: (1) skin friction, (2) wave-making, (3) eddy-making by
keels. I t is agreed that skin friction does not account for more than a
small fraction of the rolling decrement (ref. 2). The waves generated in
the rolling motion of a ship are of the order of one inch in height and
rather difficult to measure. Nevertheless, naval architects have arrived
at tentative conclusions about the relative importance of (2) and (3).
For instance, G. S. Baker has developed an approximate theory (ref. 4)
from which he deduces that wave-making should account in some cases
for more than half the energy lost by the ship. According to Baker, (2)
and (3) should make comparable contributions to the damping for any
section of rectangular shape with rounded corners. The contribution from
eddies is increased when the ship is under way.

The mechanism of wave-damping is independent of the viscosity of the
fluid. A reasonable estimate of its magnitude may probably be obtained
by assuming that the fluid is frictionless. If the ship has a long parallel
middle body of length at least as great as the wave-length set up by the
rolling motion, the two-dimensional theory worked out in this paper may
be applied. Moreover, the parameter Ka is small; in most cases its value
is about 0-1 (ref. 2). It is therefore sufficient to consider the first approxi-
mation. The calculation is unchanged when a uniform flow parallel to
the axis of the cylinder is superposed.

It will now be shown that hydrodynamical theory does not support the
empirical formulae hitherto put forward. In the next section the waves
generated by a cylinder rolling about a point in the mean surface will be
calculated. (The tranquil point is usually near the mean surface.) It will
be shown that there is at least one nearly rectangular section for which
the wave amplitude is zero, so that the damping may be overestimated
by Baker'8 formulae. I t is hoped to arrange experiments to check the
theory.

9. Determination of the waves made by a conventional section
The formula (37) for the-wave amplitude requires that x and y should

be of the form (5, 6), with £ = f0.
Transformations are known expressing a rectangle with rounded corners

in this form (ref. 5), but for practical purposes it is necessary to use finite
expressions

*v(e, £o) = c cosh £0 sin 77+c J Atr+ltXe-^+^»B\n(2r+l)ii, (79)J
= csinh£0co87;—c J Air+UNe~<iT+1*cos(2r-\-l)r), (80)

1
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for which x%-\-y\j can be found without a prohibitive amount of computa-
tion. Equations (79, 80) will represent a roughly rectangular curve if
contact with its tangents at ij = 0 and i\ = \rr is of the highest order
possible:

= 0 (a= 1,2,...,N), (81)

•q = fr (s = 1,2,...,N). (82)

The equations for Air+ltN are

( « = 1,2,...,N), (83)
r - l

r - l

By addition and subtraction,
N

lei• = T A^^e-^-^'^r— I)2* (« = 1,2,...,^), (85)
r - l

—\e-i» = X ^4 , + 1 e -<* -+« f« (4 r+ l )** ( « = 1 , 2 N). (86)
r - l

Each of these systems is of the form

r—1

the solution of which is

BrJf = fl fci-). (88)
*-i * • "

The equations (83, 84) thus have the solutions
N

(89)

8 - 1

] • (90)

As N tends to infinity each coefficient tends to a limit corresponding to
the limiting rectangle. Small values of N give satisfactory sections, some
of which are shown in Fig. 1. The parameter f0 determines the shape,
the parameter c the scale. I t is necessary to verify in each case that there
is a (1,1) correspondence between points on the boundary and the
coordinates f or rj.

In the subsequent calculation N will be taken as unity. Then the
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parametric equations of the cylinder are

y == ̂ (a+6)cosij—|§(a—6)cos»j—ife(a-j-6)cos3i}+i(a—6)008677, (92)

also cef» = |(o+6).

The amplitude at infinity has been shown to be, by (37),

K?dQce?' I (a*—x*—y*)cosrj dt].
o

In this case

! = —$&(°J—6f)(l-|-co8 2ij)+

whence

o
O.Ofi

= ~ — (a-l-26b)(a+l-05b) (94)

•77

and the amplitude at infinity is, to the first order,

O-63Za0o(a+&)(a+l-O5&)|a-l-266|. (95)

When a and b are equal the amplitude is

W%<>3- (96)
This may be compared with §JT20oa

3 for a thin plate (ref. 9). But when
a = 1-266, the first order amplitude vanishes. I t may be deduced that
for this ratio of a to b, the amplitude, and therefore also the wave-damping,
is very small. The corresponding section is shown in Fig. 1.

For reference the amplitude is given for the same class of cylinders
turning about an axis at height H above the water surface. It is

0-63K%(a+b)[(l-26b-a)(l-05b+a)+0-015H(a+26b)]. (97)
10. Discussion

That wave-making might account for the damping of the rolling motion
of ships was first suggested by W. Froude (ref. 7). Assuming that the
angular displacement satisfied a differential equation of the second degree
with constant coefficients, he was able to give the damping decrement
in terms of the characteristics of the ship and the wave height at infinity
(see also ref. 2). A considerable advance was made by Havelock (ref. 2),
who not only corrected an error in Froude's calculation but also attempted
to find the wave height at infinity in terms of the characteristics of the
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ship. For this purpose he considered the motion as two-dimensional and
evaluated the waves made by the rolling about a vertical mean position
of a completely submerged thin plate whose width was small compared
with the length of surface waves it generated. Comparison with Baker's
experiments showed that the calculated amplitude was too small. This
was to be expected, since there is a flow between the surface and a sub-
merged cylinder, which tends to reduce the amplitude, and which cannot

i E nr
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where a •=- 1-286. When this seotioa is foroed to roll about the origin the wave amplitude
of the resulting fluid motion vanishes to the first order.

take place when the cylinder is in the surface. This effect was calculated
by the present writer, who gave an explicit expression for the waves
generated by a thin plate oscillating about the vertical and not completely
submerged. Comparison with experiment showed excellent agreement
(ref. 9).
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In those calculations it was assumed that it would be sufficiently
accurate to replace a cylinder by a thin plate of width equal to tho
draught of the ship. When the finite section of the cylinder is taken into
account, formula (95) is obtained. Baker's experimental resulte, as quoted
by Havelock, belong to a ship in which a = 1-316 in the centre section
(ref. 4), so that the good agreement with the earlier formula cunnot be
explained on any two-dimensional theory. Dr. Baker has informed the
present writer that the model ship on which he made experiments did not
possess a long parallel middle body, so that two-dimensional theory could
not be expected to apply. No detailed comparison of theory and experi-
ment is possible until experiments are made on suitable models.
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