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Interaction of a Screw Dislocation
With an Arbitrary Shaped Elastic
Inhomogeneity
In this paper, the interaction between a screw dislocation and an arbitrary shaped elastic
inhomogeneity with different material properties than the surrounding matrix is investi-
gated. The exact solution to this problem is derived by means of complex variable meth-
ods and Faber series expansion. Specifically, the conformal mapping function maps the
matrix region surrounding the inhomogeneity onto the outside of a unit circle in the
image plane, while the analytic function defined in the elastic inhomogeneity is expressed
in terms of a Faber series expansion. Once the series form solution is obtained, the stress
fields due to the screw dislocation can be obtained. Also the image force on the screw
dislocation due to its interaction with the elastic inhomogeneity is derived. Three ex-
amples of a screw dislocation interacting with (1) an equilateral triangular inhomoge-
neity, (2) a square inhomogeneity, and (3) a five-pointed star-shaped inhomogeneity are
presented to illustrate how the stiffness of the triangular, square or five-pointed star-
shaped inhomogeneity can influence the mobility of the screw dislocation.
�DOI: 10.1115/1.2073307�
1 Introduction
The interaction of dislocations with elastic inhomogeneities is

an important topic in studying the strengthening and hardening
mechanisms of materials. To simplify the analysis, most of the
researchers assumed that the inhomoneneity is of circular shape
�see, for example, �1,2��, is of elliptical shape �see �3–5� for de-
tails�, or the inhomogeneity is rigid �or a cavity� with its shear
modulus infinite �or zero� �see, for example, �6,7��.

Despite extensive study of inclusions with simple shapes, little
effort has been devoted to inclusions of arbitrary shape. For ex-
ample, Tsukrov and Novak �8� used a computational procedure to
calculate the contribution of arbitrary shaped inclusions to the
effective moduli of two-dimensional elastic solids. In �9,10�, Ru
developed a method for evaluating the stress fields of an arbitrary
shaped inclusion embedded in full and half planes of isotropic and
anisotropic elasticity, respectively. The key limitation of Ru’s
method is based on the assumption that elastic mismatch between
dissimilar materials is negligible. Recently, the Faber series
method �11� has been employed to study the problem of an arbi-
trary shaped inclusion perfectly bonded to the surrounding matrix.
In particular, Gao and Noda �12� use the Faber series method to
investigate the anti-plane problem of an arbitrary shaped piezo-
electric inclusion embedded in an infinite piezoelectric medium.

The focus of the current paper is to investigate, in detail, the
interaction problem of a screw dislocation with an arbitrary
shaped elastic inhomogeneity. The main feature of this work is
that the material properties of the inclusion and the surrounding
matrix are different. The solution, in series form, is obtained by
means of complex variable methods and Faber series expansion. A
rigid inclusion or a cavity can be treated as a special case by
letting the shear modulus of the inhomogeneity become infinite or
zero, respectively. Once the solution is obtained, the stress fields
in the inhomogeneity and in the matrix can be derived. In addi-

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received January 27, 2005; final manu-
script received May 17, 2005. Review conducted by Z. Sou. Discussion on the paper
should be addressed to the Editor, Prof. Robert M. McMeeking, Journal of Applied
Mechanics, Department of Mechanical and Environmental Engineering, University
of California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
until four months after final publication in the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.

206 / Vol. 73, MARCH 2006 Copyright © 20

ded 19 Feb 2008 to 140.121.146.174. Redistribution subject to ASM
tion, the image force on the screw dislocation due to its interaction
with the elastic inhomogeneity is also derived. In fact, we calcu-
late the image force on the screw dislocation interacting with �1�
an equilateral triangular inhomogeneity, �2� a square inhomogene-
ity, and �3� a five-pointed star-shaped inhomogeneity. It is found
that the stiffness of the inhomogeneity has a significant influence
on the nature of the image force �either attractive or repulsive� and
also on the magnitude of the image force.

2 Basic Formulations
As shown in Fig. 1, we consider a domain in R2, infinite in

extent, containing an arbitrary shaped elastic inhomogeneity with
elastic properties different from those of the surrounding matrix.
The linearly elastic materials occupying the inhomogeneity and
matrix are assumed to be homogeneous and isotropic with shear
moduli �1 and �2, respectively. We represent the matrix by the
domain S2 and assume that the inhomogeneity occupies the region
S1. The interface L separating the inhomogeneity and the sur-
rounding matrix is assumed to be perfect �i.e., both the displace-
ment and traction vectors are continuous across L�. In addition, a
screw dislocation with Burgers vector b is located at the point z
=z0 in the matrix.

For the anti-plane problem discussed in this paper, the displace-
ment u3, the stresses �31,�32, and resultant the force R3 along any
arc can be expressed in terms of a single analytic function f�z� as

u3 = Im�f�z�� ,

�32 + i�31 = �f��z� , �1�

R3 = − �Re�f�z�� .

We consider the following conformal mapping function

z = m��� = R�� + �
n=1

+�

mn� −n	 , �2�

which maps the region occupied by the matrix to 
�
�1 in the
mapped � plane.

Let the analytic functions in the inhomogeneity and the matrix
be denoted by f1�z� and f2�z�, respectively. For convenience, we

write f i�z�= f i�m����= f i���.
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3 Determination of f1„z… and f2„�…

The analytic function f1�z�, defined within the inhomogeneity,
can be expanded as a Faber series and expressed as follows:

f1�z� = �
n=1

+�

anPn�z� , �3�

where an�n=1,2 ,3 , ¯ , +�� are unknown complex constants to
be determined, and Pk�z� is the kth degree Faber polynomial
which can be explicitly expressed as

Pk�z� = Pk„m���… = �k + �
n=1

+�

�k,n� −n�k = 1,2,3, . . . , + �� , �4�

where the coefficients �k,n are determined by the following recur-
rence relations �12�

�1,n = mn,
�5�

�k+1,n = mk+n + �k,n+1 + �
i=1

n

mn−i�k,i,

− �
i=1

k

mk−i�i,n �k,n = 1,2,3, . . . , + �� .

Hence, f1��� can be expressed as follows:

f1��� = �
n=1

+� �an�n + ��
k=1

+�

ak�k,n	� −n� . �6�

The continuity condition of displacement and traction across
the interface 
�
=1 can be expressed as

f2
−��� − f̄2

+�1/�� = f1
+��� − f̄1

−�1/�� ,

f2
−��� + f̄2

+�1/�� = ��f1
+��� + f̄1

−�1/���,�
�
 = 1� , �7�

where �=�1 /�2.

Fig. 1 A screw dislocation interaction with an arbitrarily
shaped inhomogeneity
Inserting �6� into �7� yields the following:
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f2
−��� − f̄2

+�1/�� = �
n=1

+� ��an − �
k=1

+�

āk�̄k,n	�n

− �ān − �
k=1

+�

ak�k,n	� −n� ,

�8�

f2
−��� + f̄2

+�1/�� = ��
n=1

+� ��an + �
k=1

+�

āk�̄k,n	�n

+ �ān + �
k=1

+�

ak�k,n	� −n�, �
�
 = 1� .

Applying Liouville’s theorem, we obtain two expressions for
f2���

f2��� = − �
n=1

+� �ān − �
k=1

+�

ak�k,n	� −n +
b

2�
ln

� − 1/�̄0

�
+

b

2�
ln�� − �0� ,

f2��� = ��
n=1

+� �ān + �
k=1

+�

ak�k,n	� −n −
b

2�
ln

� − 1/�̄0

�
+

b

2�
ln��

− �0�, �
�
 � 1� , �9�

where �=�0=m−1�z0��
�0
�1� is the location of the screw dislo-
cation.

In view of the fact that the two expressions for f2��� must be
compatible with each other, then we arrive at the following set of
algebraic equations:

�� + 1�an + �� − 1��
k=1

+�

�̄k,nāk = −
b�0

−n

n�
�n = 1,2,3,¼, + �� .

�10�

Truncating the above infinite system of linear algebraic equations
at a sufficiently large integer N, we obtain

Ax + Bx̄ = f , �11�

where

A = �� + 1�diag�1 1 ¯ 1� ,
�12a�

Fig. 2 The equilateral triangle described by Eq. „18…
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B = �� − 1�

�̄1,1 �̄2,1 ¯ �̄N,1

�̄1,2 �̄2,2 ¯ �̄N,2

] ] � ]

�̄1,N �̄2,N ¯ �̄N,N

� ,

x = 

a1

a2

�
aN

�, f = −
b

�

1

�0

1

2�0
2

�
1

N�0
N

� . �12b�

The above set of algebraic equations can be resolved to give

�x

x̄
� = �A B

B̄ A �−1� f

f̄
� . �13�

Remark: The two analytic functions f1�z� and f2��� have now

Fig. 3 The normalized image force on a screw dislocation lo-
cated on the positive x axis interacting with the equilateral tri-
angular inhomogeneity
been uniquely determined.

where Fx and Fy are respectively the x and y components of the mat
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4 Stress Field
Once the analytic function f1�z� for the inhomogeneity is ob-

tained, the stress field within the arbitrary shaped inhomogeneity
can be expressed as

�32 + i�31 = �1�
n=1

+�

anPn��z� . �14�

Particularly, the stresses within the inhomogeneity are distributed
along the interface L as follows:

�32 + i�31 = �1

�
n=1

+�

n�an�n−1 − ��
k=1

+�

ak�k,n	� −n−1�
R�1 − �

n=1

+�

mnn� −n−1	 �
�
 = 1� .

�15�

Similarly, once the analytic function f2��� for the matrix is ob-

Fig. 4 The square described by Eq. „20…
tained, the stresses in the matrix are calculated to be
�32 + i�31 = �2

�
n=1

+�

n�ān − �
k=1

+�

ak�k,n	� −n−1 + �b/2����1/���̄0� − 1�� + �1/�� − �0���

R�1 − �
n=1

+�

mnn� −n−1	 ,�
�
 � 1� . �16�

5 Image Force on the Screw Dislocation
The image force acting on the screw dislocation due to its interaction with the arbitrary shaped elastic inhomogeneity is derived and

takes the following form:

Fx − iFy =

�2b��
n=1

+�

n�ān − �
k=1

+�

ak�k,n	�0
−n−1 − ��b/4����

n=1

+�

mnn�n + 1��0
−n−2/�1 − �

n=1

+�

mnn�0
−n−1��� + ��b/2���1/�0�
�0
2 − 1����

R�1 − �
n=1

+�

mnn�0
−n−1	 �
�0
�1�,

�17�
erial force.
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6 Examples

6.1 An Equilateral Triangular Inhomogeneity. First, let us consider a screw dislocation interacting with an equilateral triangular
inhomogeneity. The specific conformal mapping function is taken to be the following �see, for example, �13,14��:

z = m��� = R�� +
1

3
� −2 +

1

45
� −5 + ¯ +

�− 1�k

�1 − 3k�
C2/3

k�1−3k + ¯	 �R � 0� . �18�

In this paper, the above mapping function is truncated at k=50 and we take N=150 to ensure that the obtained results are sufficiently
accurate. The equilateral triangle described by the above mapping function is illustrated in Fig. 2. The calculated coefficients
�k,n �k ,n=1,2 ,3 ,¼ ,10� are given by

��� = 

0 0.3333 0 0 0.0222 0 0 0.0062 0 0

0.6667 0 0 0.1556 0 0 0.0272 0 0 0.0098

0 0 0.4000 0 0 0.1000 0 0 0.0291 0

0 0.3111 0 0 0.2321 0 0 0.0719 0 0

0.1111 0 0 0.2901 0 0 0.1497 0 0 0.0567

0 0 0.2000 0 0 0.2182 0 0 0.1055 0

0 0.0951 0 0 0.2096 0 0 0.1599 0 0

0.0494 0 0 0.1437 0 0 0.1827 0 0 0.1199

0 0 0.0873 0 0 0.1582 0 0 0.1493 0

0 0.0492 0 0 0.1135 0 0 0.1499 0 0

� . �19�
Figure 3 demonstrates the normalized image force, F*

=RFx /�2b2, on the screw dislocation which is located on the posi-
tive x axis in the matrix. It is observed that the screw dislocation
will be attracted to the triangular inhomogeneity �i.e. Fx	0� when
the inhomogeneity is softer than the surrounding matrix ��	1�
and the magnitude of the attractive force will be higher when
� ��	1� becomes smaller and the dislocation is closer to the tip
of the inhomogeneity. On the other hand, the triangular inhomo-
geneity will repel the screw dislocation �i.e. Fx�0� when the
inhomogeneity is stiffer than the surrounding matrix ���1� and
the magnitude of the repulsive force will be higher when ���
�1� becomes larger and the dislocation is closer to the tip of the

inhomogeneity.

p=1 k=0
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6.2 A Square Inhomogeneity. Next, we address a screw dis-
location interacting with a square inhomogeneity. The specific
conformal mapping function is taken to be the following �see, for
example, �13,14��

z = m��� = R�� +
1

6
� −3 +

1

57
� −7 + ¯ +

�− 1�k

�1 − 4k�
C1/2

k�1−4k

+ ¯� �R � 0� . �20�

The above mapping function is truncated at k=50 and we take
N=200. The square described by the above mapping function is
illustrated in Fig. 4. The calculated coefficients �k,n �k ,n

=1,2 ,3 ,¼ ,10� are given by
��� = 

0 0 0.1667 0 0 0 0.0179 0 0 0

0 0.3333 0 0 0 0.0635 0 0 0 0.0173

0.5000 0 0 0 0.1369 0 0 0 0.0395 0

0 0 0 0.2381 0 0 0 0.0770 0 0

0 0 0.2282 0 0 0 0.1193 0 0 0

0 0.1905 0 0 0 0.1525 0 0 0 0.0728

0.1250 0 0 0 0.1671 0 0 0 0.0977 0

0 0 0 0.1539 0 0 0 0.1175 0 0

0 0 0.1186 0 0 0 0.1256 0 0 0

0 0.0866 0 0 0 0.1214 0 0 0 0.0943

� . �21�

Figure 5 demonstrates the normalized image force, F*=RFx /�2b2, on the screw dislocation located on the positive x axis in the matrix.
The phenomenon observed for the square inhomogeneity is identical to that for an equilateral triangular inhomogeneity.

6.3 A Five-Pointed Star-Shaped Inhomogeneity. Finally, we investigate a screw dislocation interacting with a five-pointed
star-shaped inhomogeneity. The specific conformal mapping function is taken to be the following �13�:

z = m��� = R�� + �
+� ��p

�− 1�kC4/5
kC−2/5

p−k	 1

1 − 5p
�1−5p� �R � 0� . �22�
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Notice that there is a misprint in Eq. �27� of Ref. �13�. “2 /n” should read “−2/n.” The above mapping function is truncated at p
=500 and we take N=250. The five-pointed star described by the mapping function Eq. �22� is illustrated in Fig. 6. The calculated
coefficients �k,n �k ,n=1,2 ,3 ,¼ ,10� are given by

��� = 

0 0 0 0.3 0 0 0 0 − 0.0578 0

0 0 0.6 0 0 0 0 − 0.0256 0 0

0 0.9 0 0 0 0 0.0967 0 0 0

1.2 0 0 0 0 0.3089 0 0 0 0

0 0 0 0 0.6111 0 0 0 0 0.0833

0 0 0 0.4633 0 0 0 0 0.3160 0

0 0 0.2256 0 0 0 0 0.4947 0 0

0 − 0.1022 0 0 0 0 0.5653 0 0 0

− 0.52 0 0 0 0 0.4740 0 0 0 0

0 0 0 0 0.1667 0 0 0 0 0.4130

� . �23�

Fig. 5 The normalized image force on a screw dislocation located on the positive x
axis interacting with the square inhomogeneity

Fig. 7 The normalized image force on a screw dislocation lo-
cated on the negative x axis interacting with the five-pointed
Fig. 6 The five-pointed star described by Eq. „22…
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star-shaped inhomogeneity
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Figure 7 demonstrates the normalized image force, F*

=RFx /�2b2, on the screw dislocation located on the negative x
axis in the matrix. By noting that the dislocation will be attracted
to the inhomogeneity when Fx�0, and the dislocation will be
repelled from the inhomogeneity when Fx	0, then the phenom-
enon observed here is similar to that observed for an equilateral
triangular or a square inhomogeneity, respectively.

7 Conclusions
In this paper, we present the problem of a screw dislocation

interacting with an arbitrary shaped elastic inhomogeneity. The
key feature of this work is that the material properties of the
inhomogeneity and the surrounding matrix are different. Through
the introduction of a conformal mapping function, the region oc-
cupied by the matrix can be mapped to the outside of a unit circle
in the �-plane. In addition, the analytic function defined in the
elastic inhomogeneity is expanded into a Faber series. Once the
series form solution is obtained, the stress fields due to the screw
dislocation can be obtained. Also the image force on the screw
dislocation due to its interaction with the elastic inhomogeneity is
derived. Several examples of practical importance are presented to
demonstrate the feasibility of the obtained solution and to illus-
trate the influence of the stiffness of the elastic inhomogeneity on
the mobility of the screw dislocation. The case where the screw
dislocation lies in the arbitrary shaped elastic inhomogeneity can
also be similarly addressed. As well, the obtained solution can be
easily applied to investigate a matrix crack interacting with an
arbitrary shaped elastic inhomogeneity.

Acknowledgment
This work is supported by the Natural Sciences and Engineer-

ing Research Council of Canada through grand NSERC No.

249516.

Journal of Applied Mechanics

ded 19 Feb 2008 to 140.121.146.174. Redistribution subject to ASM
References
�1� Dundurs, J., and Mura, T., 1964, “Interaction Between an Edge Dislocation

and a Circular Inclusion,” J. Mech. Phys. Solids 12, pp. 177–189.
�2� Dundurs, J., 1967, “On the Interaction of a Screw Dislocation With Inhomo-

geneities,” Recent Adv. Eng. Sci., 2, pp. 223–233.
�3� Sendeckyj, G. P., 1970, “Fundamental Aspects of Dislocation Theory”. J. A.

Summons, Wit R. De, and R. Bulouch, eds., National Bureau of Standards
�U.S.�, Special Publication 317, Vol. I, p. 57.

�4� Stagni, L., and Lizzio, R., 1983, “Shape Effects in the Interaction Between an
Edge Dislocation and an Elliptical Inhomogeneity,” Appl. Phys. A: Solids
Surf. A30, pp. 217–221.

�5� Chen, D. H., 1994, “Interference Between an Elliptical Inclusion and Point
Force or Dislocation,” J. Jpn. Soci. Mech. Engi., 60, pp. 2796–2801.

�6� Wu, K. C., 1992, “Interaction of a Dislocation With an Elliptic Hole or Rigid
Inclusion in an Anisotropic Material,” J. Appl. Phys. 72, pp. 2156–2163.

�7� Santare, M. H., and Keer, L. M., 1986, “Interaction Between an Edge Dislo-
cation and a Rigid Elliptic Inclusion,” ASME J. Appl. Mech. 53, pp. 382–385.

�8� Tsukrov, I., and Novak, J., 2004, “Effective Elastic Properties of Solids With
Two-dimensional Inclusions of Irregular Shapes,” Int. J. Solids Struct. 41, pp.
6905–6924.

�9� Ru, C. Q., 1999, “Analytic Solution for Eshelby’s Problem of an Inclusion of
Arbitrary Shape in a Plane or Half-plane,” ASME J. Appl. Mech. 66, pp.
315–322.

�10� Ru, C. Q., 2003, “Eshelby Inclusion of Arbitrary Shape in an Anisotropic
Plane or Half-plane,” Acta Mech. 160, pp. 219–234.

�11� Curtiss, J. H., 1971, “Faber Polynomials and Faber Series,” Am. Math.
Monthly 78, pp. 577–596.

�12� Gao, C. F., and Noda, N., 2004, “Faber Series Method for Two-dimensional
Problems of Arbitrarily Shaped Inclusion in Piezoelectric Materials,” Acta
Mech. 171, pp. 1–13.

�13� Chen, T., and Chiang, S. C., 1997, “Electroelastic Fields and Effective Moduli
of a Medium Containing Cavities or Rigid Inclusions of Arbitrary Shape Un-
der Anti-plane Mechanical and In-plane Electric Fields,” Acta Mech. 121, pp.
79–96.

�14� Thorpe, M. F., 1992, “The Conductivity of a Sheet Containing a few Polygonal
Holes or Superconducting Inclusions,” Proc. R. Soc. London, Ser. A 437, pp.

215–227.

MARCH 2006, Vol. 73 / 211

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


