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Simulation of surface plasmon resonance of
metallic nanoparticles by

the boundary-element method

Jiunn-Woei Liaw

Materials Research Laboratories, Industrial Technology Research Institute, Building 52, 195 Chung-Hsing Road,
Section 4, Chutung, Hsinchu 310, Taiwan, China
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A set of new surface integral equations (Fredholm equations of the second kind) has been systematically de-
rived from the Stratton–Chu formulation of Maxwell’s equations for a two-dimensional TM mode to investigate
the interactions of an incident electromagnetic wave with nanostructures, especially metals. With these equa-
tions, the surface components (the tangential magnetic field, the normal displacement, and the tangential elec-
tric field) on the boundary are solved simultaneously by the boundary-element method numerically. For
nanometer-sized structures (e.g., dimension of 10 nm), our numerical results show that surface plasmon reso-
nance causes a strong near-field enhancement of the electric field within a shallow region close to the interface
of metal and dielectric. In addition, the corresponding pattern of the far-field scattering cross section is like a
dipole. For the submicrometer-sized cases (dimension of several hundreds of nanometers), the numerical re-
sults indicate the existence of a standing wave on the backside surface of metals. This phenomenon could be
caused by two surface plasmon waves that creep along the contour of metals clockwise and counterclockwise,
respectively, and interfere with each other. © 2006 Optical Society of America

OCIS codes: 050.1950, 050.1960, 240.6680, 260.2110, 290.5850.
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. INTRODUCTION
ecause of the free electrons of metals, the real part of the
ermittivity (dielectric constant) of metals normally ex-
ibits a negative value in a certain range of UV to near
R. This unique property causes a surface plasmon reso-
ance (SPR), a collective electron oscillation in the sur-

ace of metals, by illuminating light upon the metals if
ertain conditions are satisfied. Because of the significant
ear-field enhancement of the electric field, SPR has re-
ently drawn more attention on the applications of near-
eld optics1 and the enhancement of spontaneous
mission.2 Numerous new research topics on plasmons
ave been raised during the past decade. A typical topic is
ocused on the interaction of light with metallic nanopar-
icles and its near-field enhancement.3 An important ap-
lication is in surface-enhanced Raman spectroscopy. An-
ther interesting topic is the study of metallic film with
rrays of subwavelength holes or corrugations that can
anipulate the transmission of light.1,4,5 Other research

as investigated plasmonic waveguides, including the
anowire6–8 and nanoparticle array.9 Utilizing the
anometer-scaled metal–dielectric composite, the plas-
on mode can be used to implement left-handed
aterials.10 To simulate the behavior of plasmons and to

esign plasmonic devices, several numerical methods
ere developed and adopted. The finite-difference time-
omain method (FDTD) has usually been used for SPR
nalysis.9 The discrete-dipole approximation, employing
ntersecting effective spheres, was utilized to analyze the
urface plasmon polariton of a nanoneedle.10 Volume-
ntegral equations in terms of a dyadic Green’s tensor
ere developed for SPR calculation.7,11–13 The other tech-
1084-7529/06/010108-9/$0.00 © 20
ique, the multiple multipole method, was also utilized to
alculate SPR.14 Recently, the boundary-element method
BEM) was adopted for two-dimensional (2D)15 and three-
imensional (3D)4,16 plasmon modeling because of its ad-
antage of meshing only the boundary. Moreover, the
EM was used to study the second-harmonic generation
f 2D problems by consideration of the nonlinear polariza-
ion from the fundamental frequency.17

In this paper, a set of new formulations of surface inte-
ral equations (Fredholm equations of the second kind) is
eveloped for the 2D simulation of light interacting with
etallic nanoparticles and are solved by the BEM. These

oupled surface integral equations are derived from the
tratton–Chu formula18 for a 2D TM mode (p polariza-
ion). The advantage of the surface integral equations is
o reduce the spatial dimension of the problem by one.
ith these equations, the normal displacement, the tan-

ential electric field, and the tangential magnetic field on
he boundary are solved simultaneously. As compared
ith other BEM studies15,17,19–21 of the TM mode, our ap-
roach calculates these physical components directly, in-
tead of the tangential magnetic field and its normal gra-
ient. In addition, this approach, based on the Stratton–
hu formulation, can be extended straightforward to a 3D
roblem, unlike the other BEM that uses Debye
otentials.22 Since only the boundaries enclosing different
ediums are discretized, fewer meshes are needed than

n the other methods that are implemented by the domain
esh, e.g., FDTD, finite-element method, the volume-

ntegral equations method with a dyadic Green’s tensor,
tc. Because most of the energy of the plasmon is confined
ithin a shallow area close to the interface of metals and
06 Optical Society of America
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ielectrics, the BEM has the advantage in that it calcu-
ates the predominant field components along the bound-
ry instead of the domain fields. This unique feature al-
ows the BEM to consume less CPU time and memory for
alculation.

. INTEGRAL PRESENTATIONS
or a 2D TM-mode problem, the electric field is E=Exex
Eyey and the magnetic field is H=Hzez. The configura-

ion of an incident p-polarized electromagnetic (EM) wave
lluminating upon a scatterer with an incident angle �i is
epicted in Fig. 1, where the domain �1 (exterior) is an
nfinite dielectric material with boundary S�S� and the
omain �2 (interior) is a metal with boundary S. The per-
ittivity (dielectric constant) of the material is denoted

y � and the permeability is denoted by �. On the basis of
he Stratton–Chu formulation, the surface integral repre-
entations of the electric field and magnetic field in the in-
erior �2 for a 2D TM-mode problem are derived as

Hz�x� =�
S

Hz�x��n� · ��G2dl�

+ i��
S

�2Et�x��G2dl�, x � �2, �1�

E�x� = i��
S

�2G2Hzdl� +
1

�2
�

S

Dn��G2dl�

−�
S

Etez � ��G2dl�, x � �2, �2�

here

G2 =
i

4
H0

�1��k2r�. �3�

Since for the TM-mode problem Hz satisfies the scalar
elmholtz equation, Eq. (1) can also be directly derived
y Green’s theorem.15,17,19–21 The Green’s functions G2,
he singular solution of the Helmholtz equation of me-
ium 2, satisfies

�2G2 + �2�2�2G2 = − ��x − x��, �4�

here ��x−x�� denotes the Dirac delta function. In Eq.
3), H0

�1� is the Hankel function of the first kind of order

ig. 1. Configuration of a plane p-polarized EM wave illuminat-
ng on a scatterer �2 in an infinite domain �1 with an incident
ngle �
i
ero for the Green’s function G2. The above representa-
ions, Eqs. (1) and (2), in terms of the boundary compo-
ents (the tangential magnetic field Hz, the normal elec-
rical displacement Dn, and the tangential electrical field
t) can be used to calculate the field in domain �2, once

hese boundary components are solved. At the boundary
, the values of �Hz ,Dn ,Et� satisfy the continuity condi-

ions for the interior and exterior materials, where ez is
he unit vector of the z direction, the unit normal vector n
s in the inner direction, and the unit tangential vector is
efined as t=n�ez. The wavenumbers kj , j=1,2, are of
edium 1 and 2, respectively. For the exterior field, the

olution can be decomposed of two parts: one is the inci-
ent part and the other is the scattering part. The total
elds in domain �1 are the sum of the incident field and
he scattering field: E=Ei+Es, Hz=Hz

i +Hz
s. The super-

cript i represents the incident part and the superscript s
epresents the scattering part. The incident part satisfies
axwell’s equations of medium 1 in an infinite homoge-

eous domain without the obstacle. However, the scatter-
ng field, regarded as a secondary source radiating from
he boundary S, also satisfies Maxwell’s equations of me-
ium 1 in domain �1. Since the scattering field must sat-
sfy the Sommerfeld radiation condition at S�, the surface
ntegral representations of the electric field and magnetic
eld of the scattering part in exterior �1 are expressed as

Hz
s�x� = −�

S

Hz
s�x��n� · ��G1dl�

− i��
S

�1Et
s�x��G1dl�, x � �1, �5�

Es�x� = − i��
S

�1G1Hz
sdl� −

1

�1
�

S

Dn
s ��G1dl�

+�
S

Et
sez � ��G1dl�, x � �1, �6�

here

G1 =
i

4
H0

�1��k1r�. �7�

In Eq. (7), H0
�1� is the Hankel functions of the first kind

f order zero for the Green’s function G1 to satisfy the out-
oing wave behavior in the far field because of the time-
armonic factor exp�−i�t�. The Green’s function G1, the
ingular solution of the Helmholtz equation of medium 1,
atisfies

�2G1 + �2�1�1G1 = − ��x − x��. �8�

Consider an incident wave propagating in a homoge-
eous medium of material 1; the incident parts in the
rea of interior �2 satisfy

Hz
i �x� =�

S

Hz
i �x��n� · ��G1dl�

+ i��
S

�1Et
i�x��G1dl�, x � �2, �9�



T
e
e

3
A
t
x

T
t
p
t

T
t
p
w
t

T
t
(
f
x
t
g
f

i
n

E
fi

110 J. Opt. Soc. Am. A/Vol. 23, No. 1 /January 2006 Jiunn-Woei Liaw
Ei�x� = i��
S

�1G1Hz
idl� +

1

�1
�

S

Dn
i ��G1dl�

−�
S

Et
iez � ��G1dl�, x � �2. �10�

he above equations are identities, which are auxiliary
quations for the following derivation of the integral
quations of the total field of exterior �1.

. SURFACE INTEGRAL EQUATIONS
governing equation of the unknowns �Hz ,Dn ,Et� is fur-

her derived from Eq. (1) by letting the observation point
approach x0 of the surface S�x0�S�.

1

2
Hz�x0� =�

S

Hz�x��n� · ��G2dl�

+ i��
S

Et�x���2G2dl�, x0 � S. �11�

he first integral on the right-hand side of Eq. (11) is in
he sense of a Cauchy principal value. By taking the inner
roduct of Eq. (2) with �2n�x0�, where x0�S, and then let-
ing x→x0, we can obtain another integral equation as

1

2
Dn�x0� = i��

S

�2�2G2Hzn�x0� · dl� +�
S

Dnn�x0� · ��G2dl�

−�
S

�2Etn�x0� · ez � ��G2dl�, x0 � S. �12�

he second integral on the right-hand side of Eq. (12) is in
he sense of a Cauchy principal value. Using the same ap-
roach but taking the inner product of Eq. (2) with t�x0�,
here x0�S, and letting x→x0, the other integral equa-

ion is also obtained as

1

2
Et�x0� = i��

S

�2G2Hzt · dl� +
1

�2
�

S

Dnt · ��G2dl�

−�
S

Ett · ez � ��G2dl�, x0 � S. �13�

he third integral on the right-hand side of Eq. (13) is in
he sense of a Cauchy principal value. Equations
11)–(13), derived from the aspect of interior �2, are valid
or ∀x0�S. For the sake of simplicity, we use x to replace
0 in the following. Using the same procedure of obtaining
he integral equations for interior �2, we derive the inte-
ral equations of the scattering part of the exterior �1
rom Eqs. (5) and (6) as

1

2
Hz

s�x� = −�
S

Hz
s�x��n� · ��G1dl�

− i��
S

Et
s�x���1G1dl�, x � S, �14�
1

2
Dn

s = − i��
S

Hz
s�1�1G1n · dl�

−�
S

Dn
s n · ��G1dl� +�

S

�1Et
sn · ez

� ��G1dl�, x � S, �15�

1

2
Et

s = − i��
S

�1G1Hz
st · dl�

−
1

�1
�

S

Dn
s t · ��G1dl� +�

S

Et
st · ez

� ��G1dl�, x � S. �16�

Furthermore, taking into account the incident part, the
dentity formulas are also obtained through the same ma-
ipulations:

1

2
Hz

i �x� =�
S

Hz
i �x��n� · ��G1dl�

+ i��
S

Et
i�x���1G1dl�, x � S, �17�

1

2
Dn

i = i��
S

Hz
i�1�1G1n · dl�

+�
S

Dn
i n · ��G1dl� −�

S

�1Et
in · ez

� ��G1dl�, x � S, �18�

1

2
Et

i = i��
S

�1G1Hz
it · dl� +

1

�1
�

S

Dn
i t · ��G1dl�

−�
S

Et
it · ez � ��G1dl�, x � S. �19�

Combining Eq. (14) with (17), Eq. (15) with (18), and
q. (16) with (19), a set of integral equations of the total
eld of the exterior �1 is obtained as

1

2
Hz�x� = Hz

i −�
S

Hz�x��n� · ��G1dl�

− i��
S

Et�x���1G1dl�, x � S, �20�

1

2
Dn = Dn

i − i��
S

Hz�1�1G1n · dl�

−�
S

Dnn · ��G1dl� +�
S

�1Etn · ez

� � G dl , x � S, �21�
� 1 �
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1

2
Et = Et

i − i��
S

�1G1Hzt · dl�

−
1

�1
�

S

Dnt · ��G1dl� +�
S

Ett · ez

� ��G1dl�, x � S. �22�

Now we have two sets of integral equations, one set,
qs. (11)–(13), is for the exterior �1, and the other, Eqs.

20)–(22), is for the interior �2. Although the values of
Hz ,Dn ,Et� of boundary S satisfy the continuity condi-
ions for the interior and exterior materials, these equa-
ions are not independent. We have to choose appropriate
quations from them as the governing equations. Since
he scattering phenomena result from the nonhomogene-
ty of materials, we can recombine the two sets of integral
quations to exhibit the coupled forms. First, by taking a
ummation of Eq. (11) with (20), Eq. (12) with (21), and
q. (13) with (22), we derive a new set of three coupled

ntegral equations with a Cauchy principal value as fol-
ows:

Hz�x� = Hz
i �x� −�

S

Hz�x��n� · ���G1 − G2�dl� − i��
S

Et�x��

���1G1 − �2G2�dl�, x � S, �23�

Dn = Dn
i − i��

S

Hz��1�1G1 − �2�2G2�n · dl�

−�
S

Dnn · ���G1 − G2�dl�

+�
S

Etn · ez � ����1G1 − �2G2�dl�, �24�

Et = Et
i − i��

S

Hz��1G1 − �2G2�t · dl� −�
S

Dnt · ���G1

�1

−
G2

�2
�dl� +�

S

Ett · ez � ���G1 − G2�dl�. �25�

quations (23)–(25) are Fredholm equations of the second
ind because the unknowns �Hz ,Dn ,Et� exist inside and
utside the integrals. Since these integral equations con-
ain only the surface integrals but without the domain in-
egral, they are called the surface integral equations and
an be dealt with numerically by the BEM. On the other
and, we can also subtract Eq. (11) from Eq. (20), Eq. (12)
rom Eq. (21), and Eq. (13) from Eq. (22) to obtain the
ther set of integral equations of the total field:

0 = Hz
i �x� −�

S

Hz�x��n� · ���G1 + G2�dl� − i��
S

Et�x����1G1

+ � G �dl , x � S, �26�
2 2 �
0 = Dn
i − i��

S

Hz��1�1G1 + �2�2G2�n · dl� −�
S

Dnn · ���G1

+ G2�dl� +�
S

Etn · ez � ����1G1 + �2G2�dl�, �27�

0 = Et
i − i��

S

Hz��1G1 + �2G2�t · dl� −�
S

Dnt · ���G1

�1

+
G2

�2
�dl� +�

S

Ett · ez � ���G1 + G2�dl�. �28�

Equations (26)–(28) belong to the Fredholm equations
f the first kind because the unknowns �Hz ,Dn ,Et� exist
nly inside the integrals. Although the formulations of
qs. (26)–(28) are correct theoretically, they are not rec-
mmended to be used as the governing equations due to
he poor numerical stability of Fredholm’s first kind.

hen the problem is dealt with by discretization, the in-
egral equations are transformed into a set of linear alge-
ra equations. Because the diagonal terms of the matrix
re small for the first kind, its numerical results are sen-
itive to the error caused by the discretization, i.e., the
atrix is ill-conditioned. In contrast, the diagonal terms

f the matrix for the second kind are more dominant than
he nondiagonal terms, so its numerical stability is supe-
ior to the first kind. Therefore a set of integral equations
f Fredholm’s second kind, Eqs. (23)–(25), is used as the
overning equation for the numerical calculation
hroughout the paper, in terms of three unknowns
Hz ,Dn ,Et�. Instead of our solving the three coupled inte-
ral equations, an alternative way is to choose a set of
urface integral equations, Eqs. (11) and (20), as the gov-
rning equations for the two unknowns �Hz ,Et� on the en-
losed surface S; this method has been used in some
tudies.15,17,19–21 In principle, the two methods should be
quivalent. However, for the numerical viewpoint, using
qs. (11) and (20) has an advantage in that we can con-
truct a smaller matrix of 2n�2n than the matrix of 3n
3n by using Eqs. (23)–(25), if the boundary of the scat-

erer is discretized by n points. This is to say that the new
ethod, with Eqs. (23)–(25), takes more CPU time and
emory to obtain and solve the matrix than the method
ith Eqs. (11) and (20). On the other hand, the new
ethod has the advantage in that we can calculate the

urface information �Hz ,Dn ,Et� directly, where the nor-
al displacement field Dn, as well as the tangential elec-

ric field Et, are of importance to study plasmon behavior.
n contrast, it is difficult to obtain the surface information
f Dn by the method of Eqs. (11) and (20); an additional
quation is needed from the derivative of Eq. (1), and a
umerical difficulty of the hypersingularity of the kernel
unction needs to be overcome. In addition, Eqs. (11) and
20) are Fredholm’s second kind for Hz but Fredholm’s
rst kind for Et, while Eqs. (23)–(25) are Fredholm’s sec-
nd kind for �Hz ,Dn ,Et�. Since Fredholm’s second kind
as better numerical stability than the first kind, it is
easonable to say that the accuracy of the new method
ould be superior to the method of Eqs. (11) and (20).
oreover, after solving the unknowns �H ,D ,E � by the
z n t
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ew proposed method, we can calculate the field values of
=Ei+Es, Hz=Hz

i +Hz
s (e.g., the near-field distribution)

traightforwardly by substituting �Hz ,Dn ,Et� into Eqs.
1)–(4).

. SCATTERING CROSS SECTION
he far-field scattering cross section (SCS) of the TM
ode is defined as

	��;�i� = lim
�x�→�

2
�x�
�Es � H̄s · er�

	Ei � H̄i	

= lim
�x�→�

2
�x�
	Es · er	2

	Ei	2 = lim
�x�→�

2
�x�
�Hz

s�2

�Hz
i �2

, �29�

here H̄s�x� is the complex conjugate of Hs�x�, � is the ob-
erving angle, and �i is the incident angle. The unit vector
r=x / �x� is �cos � ,sin ��. Using the asymptotic form of
ankel’s function,

Hn
�1��z� 
� 2


z
exp�i�z − n
/2 − 
/4��, as �z� � 1;

�30�

nd using r= �x−x��
�x�−x� ·er ��x�� �x�� ,x��S�, the
symptotic form of Green’s function is expressed as

G1�k1r� 
� 1

8
k1�x�
exp�i�k1�x� + 
/4 − k1x� · er��,

as �x� → �. �31�

Substituting approximation (31) into the integral rep-
esentations of Es ,Hz

s and then into Eq. (29), the SCS can
e expressed, in terms of the surface components Hz

s ,Et
s,

s

	��;�i� =
k1

4
��

S
�− n� · er

�Hz
s�

�Hz
i �

+
�Et

s�

	Ei	�
exp�− ik1x� · er�dl��2

. �32�

ccording to Eq. (32), the SCS can be calculated, once the
urface components Hz

s ,Et
s are solved. Furthermore, the

ean SCS, 	̄, is defined as

	̄��i� =
1

2

�

0

2


	d�, �33�

hich is a function of the incident angle �i.

. NUMERICAL RESULTS AND DISCUSSION
he surface integral equations of Eqs. (23)–(25) are
dopted and dealt with by the BEM because of the supe-
ior numerical stability of the Fredholm equations of the
econd kind. To implement the BEM, a three-node, isopa-
ameter, quadratic element is used to discretize the geo-
etric boundary and the physical unknowns to solve the

ntegral equations of 2D problems. First, the boundary S
s divided into several segments, the so-called boundary
lements. Each segment is composed of three nodes. The
osition vector xj of any point in the jth element and the
orresponding field values �Hz ,Dn ,Et� of the point de-
oted by Fj are interpolated by the nodal values as

xj��� = 

i=1

3

Ni���xi
j , �34�

Fj��� = 

i=1

3

Ni���Fi
j , �35�

here xi
j is the ith node of the jth element on the bound-

ry S, and Fi
j is the field value at xi

j. The shape functions
k��� ,k=1,2,3, of interpolation of the three-node element

re

N1��� =
1

2
��� − 1�, �36�

N2��� = 1 − �2, �37�

N3��� =
1

2
��� + 1�, �38�

here the local coordinate � is defined between −1 and 1
n each element. After the discretization of the boundary,
he numerical integrations are fulfilled by using the
aussian quadrature. Consequently, the surface integral
quations are transformed into a set of linear algebraic
quations with the unknowns of the nodal values Fi

j.
ince the procedure of implementing the BEM is a stan-
ard one,23 no attempt is made to mention it in detail in
his paper. However, it is noted that the singularities of
reen’s functions should be carefully dealt with when the
bserving point x and the field point x� coincide, i.e., as
= �x�−x�→0. Numerical errors are caused by the singu-
arity when the observing point x is the junction point be-
ween the two adjacent segments with different mesh
izes during the integration. This problem can be over-
ome by a numerical scheme of a Cauchy principal value.
t allows us to optimize the distribution of the mesh size
exibly to discretize the boundary. To verify the precision
f our BEM program, typical examples were tested: circu-
ar silver �r=10–300 nm� with relative permittivity �2r
�−4.42,0.73� embedded in an unbounded dielectric do-
ain, relative permittivity �1r= �1,0�, and illumination by
plane p-polarized EM wave at an angular frequency �
4.558�1015 rad/s (3 eV, 
0=413 nm).24 Comparing the
esults of the BEM with the analytical solutions, good
greement is obtained (error �0.5%). In addition, the
ame cases of Ref. 17 (Fig. 12 therein) were calculated by
he new surface integral equations, and our results are in
ccordance with Ref. 17. All the field values in this paper
re normalized with the amplitude of the incident field:

Hz/�Hz
i �,Dn/	�1Ei	, Et/	Ei	, E/	Ei	,

here
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	Ei	 =
k1

��1
�Hz

i �.

onsider that the shape of the silver nanoparticle is an
llipse, �x /a�2+ �y /b�2=1, illuminated by light �3 eV� with
i=0°. The mean SCS, 	̄, of different ellipses of silver are
epicted against the aspect ratio b /a in Fig. 2 with fixed
=10 nm. In these cases, 360 meshes are divided along

he contour of the boundary S for discretization. Figure 2
hows that the maximum mean SCS takes place at b /a
3.8. The real and imaginary parts of the total field of the
ormalized values of �Hz ,Dn ,Et� on the boundary S are
lotted in Figs. 3(a) and 3(b), respectively, for b /a=3.8. In
his case, �i=0°, the polarization of the electric field is
arallel to the longest principal axis of the ellipse to cause
strong collective oscillation of electrons along this axis

the so-called SPR). Furthermore, because the character-
stic length is smaller than the penetration depth
27.5 nm� of the surface plasmon wave, the electric field
nside the nanoparticle is almost uniform; the normalized
alue of the electric field is around 3 as shown in Fig. 4(a),
nd the normalized magnetic field is depicted in Fig. 4(b).
he SCS in Fig. 4(c) exhibits a dipole behavior �	̄
176.4 nm�, since the characteristic length of this nano-
article is much smaller than the wavelength of the illu-
inating light.
When the dimensions of metals are in the submicrome-

er range, the scattering behavior of the metallic particle
s different from the nanometer-scaled one. The reason is
hat the characteristic length is much larger than the
enetration depth of the surface plasmon wave. Consider
submicrometer-sized circular silver �r=400 nm� with

2r= �−4.42,0.73�, in air, �1r=1, at �=4.558�1015 rad/s
3 eV�. The distributions of the total field of electric and
agnetic fields are depicted in Figs. 5(a) and 5(b), respec-

ively. Obviously, Fig. 5 shows a ripple with nodal points
n the backside of the metal. The pattern results from a
tanding wave caused by two surface plasmon waves
reeping along the circumference of metal counterclock-
ise and clockwise, respectively. It means that when the

lluminating light impinges upon the metal, a part of the
nergy is converted into the surface plasmon waves. The

ig. 2. Mean SCS, 	̄, versus the aspect ratio b /a for elliptical
ilver �a=10 nm� with �2r= �−4.42,0.73�, in air, �1r=1, at �
4.558�1015 rad/s, �3 eV�, � =0°.
i
wo opposite-directional (counterclockwise and clockwise)
urface plasmon waves interfere with each other to gen-
rate the standing wave on the surface of the scatterer,
specially on the backside. The novel phenomenon is dif-
erent from the common concept of optical diffraction.
urthermore, because of the shielding effect of metal on

he EM field, the incident wave cannot directly transmit
hroughout the scatterer but can creep along it with a
hin penetration depth. Hence the backside of a submi-
rometer metallic particle is not a shallow zone of a per-
ect electric conductor. If the radius of curvature of the
etallic particle is infinite, its wavenumber ksp can be ex-

ressed by a well-known equation,

ksp = k0� �1r�2r

�1r + �2r
, �39�

here k0=� /c and c is the light speed in vacuum.8 Equa-
ion (39) represents the wavenumber of a surface plasmon

ig. 3. Nanometer-sized elliptical silver (a=10 nm, b=38 nm)
ith �2r= �−4.42,0.73�, in air, �1r=1, at �=4.558�1015 rad/s

3 eV, 
0=413 nm), �i=0°. (a) The real parts of the surface com-
onents of the total field along the circumference. (b) The imagi-
ary parts. � is the angle of the polar coordinate. Solid curves
z / �Hz

i �; curves with circles, Dn / 	�1Ei	; curves with triangles,
t / 	Ei	.
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ave at the interface of a half-plane metal and a half-
lane dielectric (two semi-infinite domains). Because of
he influence of the imaginary part of �2r, the attenuation
f the surface plasmon wave is associated with the propa-
ation along the interface. Normally as a surface wave
ropagating along the interface, the energy is confined to
he neighborhood of the interface, and the amplitude of

ic field distribution. (b) The total magnetic field distribution. (c)
=176.4 nm.

ig. 6. Submicrometer-sized elliptical silver (a=400 nm, b
100 nm) with �2r= �−4.42,0.73�, in air, �1r=1, at �=4.558
1015 rad/s �3 eV�, �i=90°. (a) The total electric field distribu-

ion. (b) The total magnetic field distribution. The length scale is
n nanometers for the x and y axes. 	̄=1648 nm.
ig. 4. Field distribution of the total field of Fig. 2. (a) The total electr
ar-field SCS. The length scale is in nanometers for the x and y-axes. 	̄
ig. 5. Submicrometer-sized circular silver �r=400 nm� with
2r= �−4.42,0.73�, in air, �1r=1, at �=4.558�1015 rad/s (3 eV,
0=413 nm) �i=0°. (a) The total electric field distribution. (b) The
otal magnetic field distribution. The length scale is in nanom-
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he field decays exponentially with the distance from the
nterface, like an evanescent wave. The decay constants
1 and �2 of the surface plasmon wave in the dielectric
nd the metal are

�1
2 = − k0

2
�1r

2

�1r + �2r
, �2

2 = − k0
2

�2r
2

�1r + �2r
. �40�

ence the penetration depth of the surface plasmon wave
f Eqs. (40) in dielectric is 1/Re��1� and in metal it is
/Re��2�. For the case �2r= �−4.42,0.73�, �1r=1, at �
4.558�1015 rad/s �3 eV�, the penetration depth esti-
ated by Eqs. (40) is 123.7 nm in dielectric and is

7.5 nm in silver. As shown in Fig. 5, the electric and
agnetic fields inside the metallic scatterer are zero ex-

ept at a skin zone near the interface because the pen-
tration depth of the surface plasmon wave is much
maller than the characteristic length, i.e., the shielding
ffect causes a null field inside the metal. Taking account
f the geometric effect, convex or concave, the attenuation
f the surface plasmon wave increases, i.e., a certain
mount of energy radiates into the surrounding medium,
s the wave creeps along a curve surface. In addition, the
peed of the surface plasmon wave along a curve is slower
han that predicted by Eq. (39) for a flat plane. Generally,
he behavior of the creeping surface plasmon wave along
curve is more complicated than that of Eq. (39), which is

ig. 7. Total electric field distribution of an elliptical silver (a
45°. The length scale is in nanometers for the x and y axes. 	̄=

ig. 8. Total electric field distribution of an elliptical silver (a
400 nm, b=100 nm) in water, �1r=1.777, at �=4.558
1015 rad/s �3 eV�, �i=90°. The length scale is in nanometers for

he x and y axes. 	̄=1608 nm.
special case with an infinite radius. Nevertheless, Eqs.
39) and (40) are still useful to describe the main features
f the surface plasmon wave on a submicrometer struc-
ure. In Fig. 5 the pitch of the nodal points is around
64 nm (along the curve), which is close to a half of the
avelength, 
sp=365 nm, predicted by Eq. (39). Subse-
uently, we consider an elliptical silver (a=400 nm, b
100 nm), in air, �1r=1 (3 eV, 
0=413 nm). From the dis-

ributions of the electric and magnetic fields, ripples of co-
ona with nodal points along the backside contour of the
catterer are also observed in Fig. 6 with �i=90° and in
ig. 7 with �i=45°. The former is a symmetric case, and
he latter is a nonsymmetric one. The numerical results
llustrate that the standing wave always exists no matter
hether the geometric configuration is symmetric or not.
e also consider the effect of the surrounding medium by

mbedding the elliptical silver in an aqueous solution,
1r=1.777, at �=4.558�1015 rad/s �3 eV�. The electric
eld distribution is plotted in Fig. 8. The same phenom-
non is also observed as for the cases in air. However,
hen the size of the metallic particle becomes larger, say
�m, the standing wave no longer exists because the two

pposite-direction plasmon waves are attenuated to van-
sh before they can interfere with each other.

Normally it is more difficult to implement the calcula-
ion for a larger scatterer than for a smaller one by using
he numerical methods that need a domain mesh. In con-
rast, the surface integral equations solved by the BEM
ave some advantages since only the boundary of the
catterer needs to be meshed and the Green’s functions
utomatically satisfy the far-field radiation condition. In
articular, when a multiscattering problem with different
rders of the sizes of the scatterers is dealt with, the
oundary mesh is easier to implement and takes less
emory than the domain mesh.

. CONCLUSIONS
he capability of the new surface integral equations was
emonstrated on the SPR of nanometer- and
ubmicrometer-sized structures of circular and elliptical
etals by the BEM. For the nanometer-sized cases (di-
ension of tens of nanometers), the numerical results

onfirm that the near-field enhancement of the electric

m, b=100 nm) in air, �1r=1, at �=4.558�1015 rad/s �3 eV�, �i
.

=400 n
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eld can be strong, if the resonance condition is met, and
he corresponding pattern of the far-field SCS is like a di-
ole. For the submicrometer-sized cases (dimension of
everal hundreds of nanometers), the numerical results
oint out the existence of a standing wave on the surface
f the metals caused by two surface plasmon waves creep-
ng along the contour of metals clockwise and counter-
lockwise, creating an interference on the backside of the
catterer. Even though we change the permittivity of the
urrounding medium and the aspect ratio of the particle’s
hape, the standing waves always exist. The standing
aves, regarded as nanoantennas or gratings, could gen-
rate a unique forward scattering. This novel phenomena
ould be utilized to manipulate the incident light for spe-
ial purposes. However, the near-field enhancement of the
lectric field of the submicrometer-sized structure is less
ompared with that of the nanometer-sized one.
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