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A set of new surface integral equations (Fredholm equations of the second kind) has been systematically de-
rived from the Stratton—Chu formulation of Maxwell’s equations for a two-dimensional TM mode to investigate
the interactions of an incident electromagnetic wave with nanostructures, especially metals. With these equa-
tions, the surface components (the tangential magnetic field, the normal displacement, and the tangential elec-
tric field) on the boundary are solved simultaneously by the boundary-element method numerically. For
nanometer-sized structures (e.g., dimension of 10 nm), our numerical results show that surface plasmon reso-
nance causes a strong near-field enhancement of the electric field within a shallow region close to the interface
of metal and dielectric. In addition, the corresponding pattern of the far-field scattering cross section is like a
dipole. For the submicrometer-sized cases (dimension of several hundreds of nanometers), the numerical re-
sults indicate the existence of a standing wave on the backside surface of metals. This phenomenon could be
caused by two surface plasmon waves that creep along the contour of metals clockwise and counterclockwise,
respectively, and interfere with each other. © 2006 Optical Society of America
OCIS codes: 050.1950, 050.1960, 240.6680, 260.2110, 290.5850.

1. INTRODUCTION

Because of the free electrons of metals, the real part of the
permittivity (dielectric constant) of metals normally ex-
hibits a negative value in a certain range of UV to near
IR. This unique property causes a surface plasmon reso-
nance (SPR), a collective electron oscillation in the sur-
face of metals, by illuminating light upon the metals if
certain conditions are satisfied. Because of the significant
near-field enhancement of the electric field, SPR has re-
cently drawn more attention on the applications of near-
field optics' and the enhancement of spontaneous
emission.” Numerous new research topics on plasmons
have been raised during the past decade. A typical topic is
focused on the interaction of light with metallic nanopar-
ticles and its near-field enhancement.® An important ap-
plication is in surface-enhanced Raman spectroscopy. An-
other interesting topic is the study of metallic film with
arrays of subwavelength holes or corrugations that can
manipulate the transmission of light.""*® Other research
has investigated plasmonic waveguides, including the
nanowire®® and nanoparticle au‘ray.9 Utilizing the
nanometer-scaled metal-dielectric composite, the plas-
mon mode can be used to implement left-handed
materials.'® To simulate the behavior of plasmons and to
design plasmonic devices, several numerical methods
were developed and adopted. The finite-difference time-
domain method (FDTD) has usually been used for SPR
analysis.” The discrete-dipole approximation, employing
intersecting effective spheres, was utilized to analyze the
surface plasmon polariton of a nanoneedle.’’ Volume-
integral equations in terms of a dyadic Green’s tensor
were developed for SPR calculation.”'™® The other tech-
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nique, the multiple multipole method, was also utilized to
calculate SPR.1* Recently, the boundary-element method
(BEM) was adopted for two-dimensional (2D)'® and three-
dimensional (3D)*® plasmon modeling because of its ad-
vantage of meshing only the boundary. Moreover, the
BEM was used to study the second-harmonic generation
of 2D problems by consideration of the nonlinear polariza-
tion from the fundamental frequency.17

In this paper, a set of new formulations of surface inte-
gral equations (Fredholm equations of the second kind) is
developed for the 2D simulation of light interacting with
metallic nanoparticles and are solved by the BEM. These
coupled surface integral equations are derived from the
Stratton—Chu formula'® for a 2D TM mode (p polariza-
tion). The advantage of the surface integral equations is
to reduce the spatial dimension of the problem by one.
With these equations, the normal displacement, the tan-
gential electric field, and the tangential magnetic field on
the boundary are solved simultaneously. As compared
with other BEM studies'®17192! of the TM mode, our ap-
proach calculates these physical components directly, in-
stead of the tangential magnetic field and its normal gra-
dient. In addition, this approach, based on the Stratton—
Chu formulation, can be extended straightforward to a 3D
problem, unlike the other BEM that uses Debye
potentials.22 Since only the boundaries enclosing different
mediums are discretized, fewer meshes are needed than
in the other methods that are implemented by the domain
mesh, e.g., FDTD, finite-element method, the volume-
integral equations method with a dyadic Green’s tensor,
etc. Because most of the energy of the plasmon is confined
within a shallow area close to the interface of metals and
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dielectrics, the BEM has the advantage in that it calcu-
lates the predominant field components along the bound-
ary instead of the domain fields. This unique feature al-
lows the BEM to consume less CPU time and memory for
calculation.

2. INTEGRAL PRESENTATIONS

For a 2D TM-mode problem, the electric field is E=E e,
+E e, and the magnetic field is H=He,. The configura-
tion of an incident p-polarized electromagnetic (EM) wave
illuminating upon a scatterer with an incident angle 6; is
depicted in Fig. 1, where the domain (); (exterior) is an
infinite dielectric material with boundary SUS,, and the
domain ), (interior) is a metal with boundary S. The per-
mittivity (dielectric constant) of the material is denoted
by € and the permeability is denoted by . On the basis of
the Stratton—Chu formulation, the surface integral repre-
sentations of the electric field and magnetic field in the in-
terior )y for a 2D TM-mode problem are derived as

H,(x)= f H,(x')n’ - V'Gydl’
N

+iwf &FE,(x')Gydl’, x e Qg, (1)
S
1
EX) =iw| wGH,dl'+— | D,V'Gydl’
S €@Js
—f Ee, X V'Gydl’, x e, (2)

S

where
i
Gy = ZHE)”(kzr). (3)

Since for the TM-mode problem H, satisfies the scalar
Helmholtz equation, Eq. (1) can also be directly derived
by Green’s theorem.'®"192! The Green’s functions Gy,
the singular solution of the Helmholtz equation of me-
dium 2, satisfies

VZGZ + 0)262/.L2G2 =- 5(X - X,), (4)

where 8(x-x') denotes the Dirac delta function. In Eq.
(3), HE)D is the Hankel function of the first kind of order

Fig. 1. Configuration of a plane p-polarized EM wave illuminat-
ing on a scatterer (), in an infinite domain (); with an incident
angle 6;
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zero for the Green’s function Gy. The above representa-
tions, Egs. (1) and (2), in terms of the boundary compo-
nents (the tangential magnetic field H,, the normal elec-
trical displacement D,,, and the tangential electrical field
E,) can be used to calculate the field in domain 5, once
these boundary components are solved. At the boundary
S, the values of (H,,D, ,E,) satisfy the continuity condi-
tions for the interior and exterior materials, where e, is
the unit vector of the z direction, the unit normal vector n
is in the inner direction, and the unit tangential vector is
defined as t=nXe,. The wavenumbers k;, j=1,2, are of
medium 1 and 2, respectively. For the exterior field, the
solution can be decomposed of two parts: one is the inci-
dent part and the other is the scattering part. The total
fields in domain (); are the sum of the incident field and
the scattering field: E=E'+E*, H,=H' +H:. The super-
script ¢ represents the incident part and the superscript s
represents the scattering part. The incident part satisfies
Maxwell’s equations of medium 1 in an infinite homoge-
neous domain without the obstacle. However, the scatter-
ing field, regarded as a secondary source radiating from
the boundary S, also satisfies Maxwell’s equations of me-
dium 1 in domain ();. Since the scattering field must sat-
isfy the Sommerfeld radiation condition at S, the surface
integral representations of the electric field and magnetic
field of the scattering part in exterior (); are expressed as

Hi(x)=- J Hi(x')n’-V'Gdl’
S

—iwf aEi(x)Gdl!, xeQ, (5)
S

1
ESx) = —iw f wGLHEAL — — f DEV'G,dl’
S S

€1
+f Eje,xV'Gidl', xeQ, (6)
S
where
i
Gy = ZHgD(klr). (7)

In Eq. (7), H, E)l) is the Hankel functions of the first kind
of order zero for the Green’s function GG; to satisfy the out-
going wave behavior in the far field because of the time-
harmonic factor exp(—iwt). The Green’s function G;, the
singular solution of the Helmholtz equation of medium 1,
satisfies

VzGl + (l)zfllLLlGl =- 5(X - X’) . (8)

Consider an incident wave propagating in a homoge-
neous medium of material 1; the incident parts in the
area of interior (), satisfy

H;’(;:):J Hi(x')n'-V'Gdl’
S

+iwf 6E(x)Gdl’, x e Q,, 9)
S
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Ex) =iow| uGHA'+— | D.V'Gdl’
S €é1Js

—fEﬁesz’Gldl’, x e Q. (10)
S

The above equations are identities, which are auxiliary
equations for the following derivation of the integral
equations of the total field of exterior ;.

3. SURFACE INTEGRAL EQUATIONS

A governing equation of the unknowns (H,,D,,,E,) is fur-
ther derived from Eq. (1) by letting the observation point
x approach x, of the surface S(x, € S).

1
—H.(xo) = J H,(x")n' - V'Gydl'
2 S
+ia)f E(x)eGdl', x,eS. (11)
S

The first integral on the right-hand side of Eq. (11) is in
the sense of a Cauchy principal value. By taking the inner
product of Eq. (2) with e;n(x(), where x, € S, and then let-
ting x — X, we can obtain another integral equation as

1
§Dn(X0) = l(()J GZILLZGQHZII(X()) -dl’ + f Dnn(xO) . V’szl’
S S
- f eEmn(x)) e, X VGydl', x5e8.  (12)
S

The second integral on the right-hand side of Eq. (12) is in
the sense of a Cauchy principal value. Using the same ap-
proach but taking the inner product of Eq. (2) with t(x),
where x( €S, and letting x— x,, the other integral equa-
tion is also obtained as

1 1
ZE,(xg) =i f 115GoFLt - dl + — f D,t-V'Godl’
2 S €9 S

—fEtt-eZXV’G2dl’, xp€S. (13)
S

The third integral on the right-hand side of Eq. (13) is in
the sense of a Cauchy principal value. Equations
(11)—(13), derived from the aspect of interior (,, are valid
for Vx, e S. For the sake of simplicity, we use x to replace
X( in the following. Using the same procedure of obtaining
the integral equations for interior )y, we derive the inte-
gral equations of the scattering part of the exterior
from Egs. (5) and (6) as

1
“H(x) = - f Hix')n' - V'G,dl’
2 S

—ia)f Ei(x)eGdl’, xe8, (14)
S
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1
ED; =—1Ilw HZ:GI[LIGln -dl’
S

—f Dfln-V’Gldl’+f eEin-e,
s s

XV'Gdl’, xeS, (15)

1
“Ef=-iw f G HEt - dl’
2 S

1
-— Dflt-V'Gldl’+f Eit-e,
€1Jg S

XV'Gdl', xe8. (16)

Furthermore, taking into account the incident part, the
identity formulas are also obtained through the same ma-
nipulations:

1 .
SHA) = f Hi(x')n’ - V'Gydl’
S

+iwf Ei(x)eGqdl’, xe8, (17)
S

1 .
_D; = lwf H;flﬂlGln -dl’
2 S

+f D;n-v'Gldz'-f &Ein-e,
S S

XV'Gdl', xe8, (18)

1 . 1(
5E;=iwf wGHt-dl' + — [ Dit-V'Gydl’
S

€1 S
—fEft-erV’Gldl’, xeS. (19
S

Combining Eq. (14) with (17), Eq. (15) with (18), and
Eq. (16) with (19), a set of integral equations of the total
field of the exterior (); is obtained as

1 A
SH.(0) =H. - f H,(x')n’-V'Gdl’
S

—iwf E,(x)eGidl', x€8S, (20)
s

1 .
_Dn =DiL - le HZGI,LLIGln -dl’
2 S

_f Dnn-V’Gldl’+f aEm-e,
S S

XV'Gdl', xe8, (21)
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1 .
“E,=F —iw| wGHt-dl
2 N

1
-— Dnt~V'G1dl'+f Et-e,
€1Jg S

XV'Gdl', xe8S. (22)

Now we have two sets of integral equations, one set,
Egs. (11)-(13), is for the exterior (), and the other, Egs.
(20)—(22), is for the interior )y. Although the values of
(H,,D,,,E,) of boundary S satisfy the continuity condi-
tions for the interior and exterior materials, these equa-
tions are not independent. We have to choose appropriate
equations from them as the governing equations. Since
the scattering phenomena result from the nonhomogene-
ity of materials, we can recombine the two sets of integral
equations to exhibit the coupled forms. First, by taking a
summation of Eq. (11) with (20), Eq. (12) with (21), and
Eq. (13) with (22), we derive a new set of three coupled
integral equations with a Cauchy principal value as fol-
lows:

Hz(x)=Hi(x)—f Hz(x’)n’-V’[Gl—GQ]dl’—in E(x')
S S

X[elGl - €2G2]dl’, X e S, (23)

D,= Dfl - i“’f H [&6111G1 — €u9GoIn - A1
S

- f D V'[G, - Gyldl’
S

+ f En-e, X V'[eG) - eG,ldl, (24)
S
. Gy
Et=E;—ia) Hz[/.LlGl—/.Lsz]t'dl’ - Dnt‘V’ —
S S €1
Gy
A+ | Et-e, X V'[G,-G,)dl". (25)
€9 S

Equations (23)—(25) are Fredholm equations of the second
kind because the unknowns (H,,D, ,E,) exist inside and
outside the integrals. Since these integral equations con-
tain only the surface integrals but without the domain in-
tegral, they are called the surface integral equations and
can be dealt with numerically by the BEM. On the other
hand, we can also subtract Eq. (11) from Eq. (20), Eq. (12)
from Eq. (21), and Eq. (13) from Eq. (22) to obtain the
other set of integral equations of the total field:

0=H§(x)—JHz(x')n'-V'[G1+G2]dl'—iwf E.(x")[€,G4
S S

+ Esz]dl/, X e S, (26)
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o:DQ-mJ Hz[el,u,lG1+62,u2G2]n-dl’—f D,n-V'[G,
S S

+ G2]dl’ + f Etl’l ‘e, X V’[GlGl + €2G2]dl’, (27)
S

. G
o=E;-iwf Hz[,ulG1+,u2G2]t-dl/—fD,Lt-V/[—l
S S

€1

G
+—2}dl’+fEtt-esz’[G1+G2]dl’. (28)
S

€

Equations (26)—(28) belong to the Fredholm equations
of the first kind because the unknowns (H,,D, ,E;) exist
only inside the integrals. Although the formulations of
Eqgs. (26)—(28) are correct theoretically, they are not rec-
ommended to be used as the governing equations due to
the poor numerical stability of Fredholm’s first kind.
When the problem is dealt with by discretization, the in-
tegral equations are transformed into a set of linear alge-
bra equations. Because the diagonal terms of the matrix
are small for the first kind, its numerical results are sen-
sitive to the error caused by the discretization, i.e., the
matrix is ill-conditioned. In contrast, the diagonal terms
of the matrix for the second kind are more dominant than
the nondiagonal terms, so its numerical stability is supe-
rior to the first kind. Therefore a set of integral equations
of Fredholm’s second kind, Eqgs. (23)—(25), is used as the
governing equation for the numerical calculation
throughout the paper, in terms of three unknowns
(H,,D, ,E,). Instead of our solving the three coupled inte-
gral equations, an alternative way is to choose a set of
surface integral equations, Egs. (11) and (20), as the gov-
erning equations for the two unknowns (H,,E,) on the en-
closed surface S; this method has been used in some
studies.!>1"1921 1py principle, the two methods should be
equivalent. However, for the numerical viewpoint, using
Egs. (11) and (20) has an advantage in that we can con-
struct a smaller matrix of 2n X 2n than the matrix of 3n
X 3n by using Egs. (23)-(25), if the boundary of the scat-
terer is discretized by n points. This is to say that the new
method, with Eqs. (23)-(25), takes more CPU time and
memory to obtain and solve the matrix than the method
with Egs. (11) and (20). On the other hand, the new
method has the advantage in that we can calculate the
surface information (H,,D, ,E,) directly, where the nor-
mal displacement field D,,, as well as the tangential elec-
tric field E,, are of importance to study plasmon behavior.
In contrast, it is difficult to obtain the surface information
of D, by the method of Egs. (11) and (20); an additional
equation is needed from the derivative of Eq. (1), and a
numerical difficulty of the hypersingularity of the kernel
function needs to be overcome. In addition, Eqgs. (11) and
(20) are Fredholm’s second kind for H, but Fredholm’s
first kind for E,, while Eqgs. (23)—(25) are Fredholm’s sec-
ond kind for (H,,D,,E,). Since Fredholm’s second kind
has better numerical stability than the first kind, it is
reasonable to say that the accuracy of the new method
could be superior to the method of Eqs. (11) and (20).
Moreover, after solving the unknowns (H,,D,,E,;) by the
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new proposed method, we can calculate the field values of
E=E!+Es, H,=H,+H; (e.g., the near-field distribution)
straightforwardly by substituting (H,,D,,E;) into Egs.
(1)—(4).

4. SCATTERING CROSS SECTION

The far-field scattering cross section (SCS) of the TM
mode is defined as

B x ¥ e
a(6;60,) = lim 2mjx|————
Jx| o2 |E: x HY|
I+ e ?
= lim 27fx|———— = lim 27[x| ——, (29)
e I e |H|

where H*(x) is the complex conjugate of H¥(x), 6 is the ob-
serving angle, and 6, is the incident angle. The unit vector
e,=x/|x| is (cos 6,sin 6). Using the asymptotic form of
Hankel’s function,

2
HV(z) = \| — expli(z - nw/2 — 7/4)], as |z| > 1;
z

(30)

and using r=|x-x'|=[x|-x"-e, (|x|>|x'|,x'eS), the
asymptotic form of Green’s function is expressed as

1
Gi(kir) = 4 Py expli(k[x| + /4 - kX" - e,)],
1

as |x| — o. (31)

Substituting approximation (31) into the integral rep-
resentations of Ef, H; and then into Eq. (29), the SCS can
be expressed, in terms of the surface components H;,E;,

as
” o |H |E:|]
-n e+
s A

2

1
0'('9§0i)=z

exp(—ikx' - er)dl’ (32)

According to Eq. (32), the SCS can be calculated, once the
surface components H;,E} are solved. Furthermore, the
mean SCS, o, is defined as

1 2
5(6) = — f odo, (33)
2

0

which is a function of the incident angle 6,.

5. NUMERICAL RESULTS AND DISCUSSION

The surface integral equations of Eqs. (23)-(25) are
adopted and dealt with by the BEM because of the supe-
rior numerical stability of the Fredholm equations of the
second kind. To implement the BEM, a three-node, isopa-
rameter, quadratic element is used to discretize the geo-
metric boundary and the physical unknowns to solve the
integral equations of 2D problems. First, the boundary S
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is divided into several segments, the so-called boundary
elements. Each segment is composed of three nodes. The
position vector x/ of any point in the jth element and the
corresponding field values (H,,D,,E;) of the point de-
noted by F are interpolated by the nodal values as

3

x(&) = X, Ny(9)x, (34)
i=1
3

Fi(9) = 2, N(OF, (35)

i=1

where xﬁ is the ith node of the jth element on the bound-
ary S, and F/ is the field value at x}. The shape functions
N,(¢),k=1,2,3, of interpolation of the three-node element
are

1

Ny(& = 56(5— 1), (36)

Ny(9=1-¢&, (37)
1

N3(¢) = §§(§+ 1), (38)

where the local coordinate ¢ is defined between -1 and 1
in each element. After the discretization of the boundary,
the numerical integrations are fulfilled by using the
Gaussian quadrature. Consequently, the surface integral
equations are transformed into a set of linear algebraic
equations with the unknowns of the nodal values F.
Since the procedure of implementing the BEM is a stan-
dard one,? no attempt is made to mention it in detail in
this paper. However, it is noted that the singularities of
Green’s functions should be carefully dealt with when the
observing point x and the field point x’ coincide, i.e., as
r=|x’-x|—0. Numerical errors are caused by the singu-
larity when the observing point x is the junction point be-
tween the two adjacent segments with different mesh
sizes during the integration. This problem can be over-
come by a numerical scheme of a Cauchy principal value.
It allows us to optimize the distribution of the mesh size
flexibly to discretize the boundary. To verify the precision
of our BEM program, typical examples were tested: circu-
lar silver (r=10-300 nm) with relative permittivity ey,
=(-4.42,0.73) embedded in an unbounded dielectric do-
main, relative permittivity €;,=(1,0), and illumination by
a plane p-polarized EM wave at an angular frequency w
=4.558x 10 rad/s (3 eV, \y=413 nm).>* Comparing the
results of the BEM with the analytical solutions, good
agreement is obtained (error <0.5%). In addition, the
same cases of Ref. 17 (Fig. 12 therein) were calculated by
the new surface integral equations, and our results are in
accordance with Ref. 17. All the field values in this paper
are normalized with the amplitude of the incident field:

H/\H.|.D/|e,E|, E/|EY, E/E],

where
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ok
(| = — ||
wey

Consider that the shape of the silver nanoparticle is an
ellipse, (x/a)?+(y/b)?=1, illuminated by light (3 eV) with
#;=0°. The mean SCS, 7, of different ellipses of silver are
depicted against the aspect ratio 6/a in Fig. 2 with fixed
a=10 nm. In these cases, 360 meshes are divided along
the contour of the boundary S for discretization. Figure 2
shows that the maximum mean SCS takes place at b/a
=3.8. The real and imaginary parts of the total field of the
normalized values of (H,,D,,,E,) on the boundary S are
plotted in Figs. 3(a) and 3(b), respectively, for 6/a=3.8. In
this case, #,=0°, the polarization of the electric field is
parallel to the longest principal axis of the ellipse to cause
a strong collective oscillation of electrons along this axis
(the so-called SPR). Furthermore, because the character-
istic length is smaller than the penetration depth
(27.5 nm) of the surface plasmon wave, the electric field
inside the nanoparticle is almost uniform; the normalized
value of the electric field is around 3 as shown in Fig. 4(a),
and the normalized magnetic field is depicted in Fig. 4(b).
The SCS in Fig. 4(c) exhibits a dipole behavior (o
=176.4 nm), since the characteristic length of this nano-
particle is much smaller than the wavelength of the illu-
minating light.

When the dimensions of metals are in the submicrome-
ter range, the scattering behavior of the metallic particle
is different from the nanometer-scaled one. The reason is
that the characteristic length is much larger than the
penetration depth of the surface plasmon wave. Consider
a submicrometer-sized circular silver (r=400 nm) with
€9,=(~4.42,0.73), in air, €,=1, at w=4.558x 10 rad/s
(3 eV). The distributions of the total field of electric and
magnetic fields are depicted in Figs. 5(a) and 5(b), respec-
tively. Obviously, Fig. 5 shows a ripple with nodal points
on the backside of the metal. The pattern results from a
standing wave caused by two surface plasmon waves
creeping along the circumference of metal counterclock-
wise and clockwise, respectively. It means that when the
illuminating light impinges upon the metal, a part of the
energy is converted into the surface plasmon waves. The

200 T T T T T T T T T T T T
180- 1
160 AN ]
140 / AN .
120 ] / e, ]
] TTe—e—0—4
100
80 / 1
60 §
40 / ]
20- / 1
ol ]

1 2 3 4 5 6 7 8
aspect ratio (b/a)

mean SCS (nm)

Fig. 2. Mean SCS, o, versus the aspect ratio b/a for elliptical
silver (¢=10 nm) with e€,=(-4.42,0.73), in air, €,=1, at o
=4.558 X 10% rad/s, (3 eV), 6,=0°.
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Fig. 3. Nanometer-sized elliptical silver (=10 nm, 5=38 nm)
with e€,=(-4.42,0.73), in air, €,=1, at ©=4.558x10% rad/s
(3 eV, \y=413 nm), #,=0°. (a) The real parts of the surface com-
ponents of the total field along the circumference. (b) The imagi-
nary parts. ¢ is the angle of the polar coordinate. Solid curves
H,/|H!|; curves with circles, D,/|eE!; curves with triangles,
E,/|E.

[=]

two opposite-directional (counterclockwise and clockwise)
surface plasmon waves interfere with each other to gen-
erate the standing wave on the surface of the scatterer,
especially on the backside. The novel phenomenon is dif-
ferent from the common concept of optical diffraction.
Furthermore, because of the shielding effect of metal on
the EM field, the incident wave cannot directly transmit
throughout the scatterer but can creep along it with a
thin penetration depth. Hence the backside of a submi-
crometer metallic particle is not a shallow zone of a per-
fect electric conductor. If the radius of curvature of the
metallic particle is infinite, its wavenumber kg, can be ex-
pressed by a well-known equation,

€1-€2r
ksp =kg 1+ € > (39)

where ky=w/c and c is the light speed in vacuum.® Equa-
tion (39) represents the wavenumber of a surface plasmon
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Fig. 4. Field distribution of the total field of Fig. 2. (a) The total electric field distribution. (b) The total magnetic field distribution. (c)
Far-field SCS. The length scale is in nanometers for the x and y-axes. 5=176.4 nm.
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Fig. 5. Submicrometer-sized circular silver (r=400 nm) with
€,=(-4.42,0.73), in air, €,=1, at ©=4.558x 10" rad/s (3 eV,
No=413 nm) 6;=0°. (a) The total electric field distribution. (b) The
total magnetic field distribution. The length scale is in nanom-
eters for the x and y axes. =2136 nm.
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Fig. 6. Submicrometer-sized elliptical silver (¢=400 nm, b
=100 nm) with e€,=(-4.42,0.73), in air, €,=1, at w=4.558
X 10 rad/s (3 eV), 6,=90°. (a) The total electric field distribu-
tion. (b) The total magnetic field distribution. The length scale is
in nanometers for the x and y axes. 7=1648 nm.

wave at the interface of a half-plane metal and a half-
plane dielectric (two semi-infinite domains). Because of
the influence of the imaginary part of e,,, the attenuation
of the surface plasmon wave is associated with the propa-
gation along the interface. Normally as a surface wave
propagating along the interface, the energy is confined to
the neighborhood of the interface, and the amplitude of
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Fig. 7. Total electric field distribution of an elliptical silver (¢ =400 nm, b=100 nm) in air, €,,=1, at w=4.558 X 10> rad/s (3 eV), 6,
=45°. The length scale is in nanometers for the x and y axes. =599 nm.
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Fig. 8. Total electric field distribution of an elliptical silver (a
=400 nm, b=100nm) in water, ¢€,=1.777, at w=4.558
X 10 rad/s (3 eV), #,=90°. The length scale is in nanometers for
the x and y axes. 6=1608 nm.

the field decays exponentially with the distance from the
interface, like an evanescent wave. The decay constants
y1 and 7y, of the surface plasmon wave in the dielectric
and the metal are

e

>
€1+ €9

r 2r

2

712 ==k 722 == ko2 (40)

€1+ €9

Hence the penetration depth of the surface plasmon wave
of Eqgs. (40) in dielectric is 1/Re(y;) and in metal it is
1/Re(y,). For the case e5,=(-4.42,0.73), €,=1, at o
=4.558 X 10'° rad/s (3 eV), the penetration depth esti-
mated by Egs. (40) is 123.7 nm in dielectric and is
27.5 nm in silver. As shown in Fig. 5, the electric and
magnetic fields inside the metallic scatterer are zero ex-
cept at a skin zone near the interface because the pen-
etration depth of the surface plasmon wave is much
smaller than the characteristic length, i.e., the shielding
effect causes a null field inside the metal. Taking account
of the geometric effect, convex or concave, the attenuation
of the surface plasmon wave increases, i.e., a certain
amount of energy radiates into the surrounding medium,
as the wave creeps along a curve surface. In addition, the
speed of the surface plasmon wave along a curve is slower
than that predicted by Eq. (39) for a flat plane. Generally,
the behavior of the creeping surface plasmon wave along
a curve is more complicated than that of Eq. (39), which is

a special case with an infinite radius. Nevertheless, Eqs.
(39) and (40) are still useful to describe the main features
of the surface plasmon wave on a submicrometer struc-
ture. In Fig. 5 the pitch of the nodal points is around
164 nm (along the curve), which is close to a half of the
wavelength, \y,=365 nm, predicted by Eq. (39). Subse-
quently, we consider an elliptical silver (¢=400 nm, b
=100 nm), in air, €1,=1 (3 eV, \y=413 nm). From the dis-
tributions of the electric and magnetic fields, ripples of co-
rona with nodal points along the backside contour of the
scatterer are also observed in Fig. 6 with 6,=90° and in
Fig. 7 with 6,=45°. The former is a symmetric case, and
the latter is a nonsymmetric one. The numerical results
illustrate that the standing wave always exists no matter
whether the geometric configuration is symmetric or not.
We also consider the effect of the surrounding medium by
embedding the elliptical silver in an aqueous solution,
€,=1.777, at w=4.558%x10'% rad/s (3 eV). The electric
field distribution is plotted in Fig. 8. The same phenom-
enon is also observed as for the cases in air. However,
when the size of the metallic particle becomes larger, say
1 wum, the standing wave no longer exists because the two
opposite-direction plasmon waves are attenuated to van-
ish before they can interfere with each other.

Normally it is more difficult to implement the calcula-
tion for a larger scatterer than for a smaller one by using
the numerical methods that need a domain mesh. In con-
trast, the surface integral equations solved by the BEM
have some advantages since only the boundary of the
scatterer needs to be meshed and the Green’s functions
automatically satisfy the far-field radiation condition. In
particular, when a multiscattering problem with different
orders of the sizes of the scatterers is dealt with, the
boundary mesh is easier to implement and takes less
memory than the domain mesh.

6. CONCLUSIONS

The capability of the new surface integral equations was
demonstrated on the SPR of nanometer- and
submicrometer-sized structures of circular and elliptical
metals by the BEM. For the nanometer-sized cases (di-
mension of tens of nanometers), the numerical results
confirm that the near-field enhancement of the electric
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field can be strong, if the resonance condition is met, and
the corresponding pattern of the far-field SCS is like a di-
pole. For the submicrometer-sized cases (dimension of
several hundreds of nanometers), the numerical results
point out the existence of a standing wave on the surface
of the metals caused by two surface plasmon waves creep-
ing along the contour of metals clockwise and counter-
clockwise, creating an interference on the backside of the
scatterer. Even though we change the permittivity of the
surrounding medium and the aspect ratio of the particle’s
shape, the standing waves always exist. The standing
waves, regarded as nanoantennas or gratings, could gen-
erate a unique forward scattering. This novel phenomena
could be utilized to manipulate the incident light for spe-
cial purposes. However, the near-field enhancement of the
electric field of the submicrometer-sized structure is less
compared with that of the nanometer-sized one.
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