Boundary Value P

MATHEMATIC

PHYSICS

\
\

IVAR STAKGOLD

Value Problems of -
Hmﬂ?ﬁ mwm%m:um

AR




86 THE GREEN'S FUNCTION  [Ch.1

This corresponds to heat conduction in a rod whose ends and lateral surface
are insulated. Since the sources along the rod generate heat at a rate f(x) per

unit length per unit time, a solution is possible only if fol f(x)dx = 0, that is,
if the net heat added per unit time is 0. If this condition is violated, it is physic-

ally clear that the temperature would rise (or decline) with time and no steady-
state solution could exist.

Suppose f; Sf(x)dx = 0. To be specific, let f(x) = sin (2x/I). We can solve
the differential equation —d?y/dx? = sin (2nx/l) to obtain y(x) = 4 + Bx +
(1/4n?) sin (2nx/I). The boundary condition at the left end yields B = —1/2n;
from the boundary condition at the right end, B + (/2/4n?)(2n/I) cos 2n = 0,
which is satisfied by B = —//2n; furthermore, 4 is arbitrary. Therefore,
the general solution of the system is y(x) = 4 + (1*/4n?) sin (2nx/l) — (I/27)x.
It is easy to check that this satisfies all the conditions on the problem.

It is apparent that the alternative theorem does not tell us how to obtain the
solution; it merely predicts the existence or nonexistence of solutions.

Example 2. Consider the inhomogeneous system
YV'+2y'+5y=f(x), 0<x<m; p0)=0, yn)=0.

The corresponding homogeneous system has the nontrivial solution e~ * sin 2x.
The adjoint homogeneous system is

V' =20+ 50=0, O0<x<m; v(0)=0, v(n)=0,

which, by direct calculation, can be shown to have the nontrivial solution
e sin 2x. The original inhomogeneous system will therefore have solutions if
and only if

f f(x)e* sin 2x dx = 0,
o

and, if this consistency condition is satisfied,
y=y,+ Ae *sin 2x,

where y, is any particular solution of the inhomogeneous system [which can
be obtained explicitly by (1.50) or by the method outlined below].

The Modified Green’s Function

We have seen that the self-adjoint system —d?u/dx® = 0,0 < x </, with
u'(0) =4'(l) = 0, has the nontrivial solution ¥ = constant.
This means that the system
d%y

2= YO =yd=0 (1.89)
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has a solution if and only if f(: S(x)dx = 0. It follows that the ordinary Green’s
function cannot be constructed for this problem. The system '

d? d
—S =8 S

r= =0 (1.90)

has no solution, since J: o(x — &)dx # 0.

There is a simple physical interpretation of this difficulty. We know that
(1.90) represents the steady-state temperature in a completely insulated rod
when a steady heat source is present at the point x = ¢ along the rod. These
conditions are contradictory, since the temperature would surely rise indefi-
nitel; in the interior of such a rod, owing to the presence of the steady source.

If we insist upon constructing something like a Green’s function [a function
thaf will help us solve system (1.90) when this system has a solution, that is,

when f; J(x)dx = 0], the remedy is rather simple. We introduce an additional

source density of strength —1/I in the rod. Thus the net heat input per unit
time in the rod for this new problem is

fol [5(x ey ﬂ dx =0.

The modified Green’s function satisfies

_Lou 1. dou

— . _dgM
2 =03 g

o_dx

=0. (1.91)
l

Since the consistency condition is satisfied, this system has a solution (deter-
mined only up to an additive constant). For x # £, —g4 = —1/I, so that

2

A+Bx+.%,‘ 0<x<§;

gu(x|8) =
C+Dx+

xZ
YR

2 E<x<.

The boundary conditions yield B=0, D = —1. éontinuity at x = ¢ implies
A+ (E32) = C — &+ (£%/2]), or C = A + &. The jump condition on dgy/dx
at x = £ gives 1 — (¢/1) + (¢/I) = 1, which is automatically satisfied. Therefore,
2
A+, 0<x<f;
Iulx1&) = 2 - (1.92)

X
A — — 4
+¢ x+21, ‘£<xsl
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As was expected, -an arbitrary constant 4 appears in the solution. It is often
convenient to choose a particular modified Green’s function which is a sym-
metric function of x and £ To accomplish this, consider g,(x|&;) and
gu(x] &,), which satisfy the systems

g Lytib} —Mﬁl—)=5(x—-’:1)——_l.- @ﬁ =.£€.‘1 =0
)

dx? I dx |,—0 dX |y=
and -
d*gu(x1£2) . l dg_M = dg_M -0
%MD‘S )) J S I’ dx [y=0 dX |x= '

respectively. Combining these equations in the usual way, we obtain
,l 1 1 Pl B
Im(&1182) — gm(&2181) — 7 f gmu(x|&5)dx + 7 ogM(x [€1)dx = 0.
D e 0 - ’ =

If we impose the condition f; gu(x| &dx = 0 for every &, then g, (x| &) will -
be symmetric. In our particular case this condition yields

¢ x2 ! x*
- Zldx=0
L(A+21)dx+L(A+€ x+2l)x

or
1 & ) »
=-\=+=-¢I).
A-7(3+5-

The symmetric modified Green’s function is given by

I x2 + &2

g ; 0<x<¢;

3 £ 30 ¢

X =
am(x[£) ! " 248 N
3=Vt v

This result could have been obtained By inspecting (1.92) and making a
judicious choice of 4. : , ,
The modified Green’s function can be used to solve the system
d?y

d
~Desw; To=2o=0, (1.93)

. 1
where f(x) satisfies f; f(x)dx = 0 [no solution exists unless fo f(x)dx = 0].
Multiply (1.93) by gy (x| &), (1.91) by y(x), subtract, and integrate to obtain

l 1 1
= fl(guy” — ygumdx = j gu(x 18 f(x)dx — y(&) + 7 Ly(x)dx-
0 ~Jo :
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Therefore, after imposing the boundary conditions,

l
() = constant + fogu(x 1)1 (x)dx,

where gy (x| £) is any solution of (1.91). If we choose g,,(x | £) to be the sym-
metric solution of (1.91) then y(£) = constant + f; Im(&€| x)f(x)dx, or

() = constant + [ g, (x| )/ (E).

Consider now the problem of a general self-adjoint system. We assume that
all the nontrivial solutions of the homogeneous system Lu =0; B,(u) =

B;(u) =0, are of the form Cu,(x), where u,(x) is a normalized solution;
that is, ' )

) Ty= [u - — Z
J'bufdx=1. bt e _
The modified Green’s function-satisfies
Lgu(x1§) = 0(x — &) —u,(x)ui(8;  Bi(g) = By(g) =0. (1.94)

This system has a solution because f: [0(x — &) — uy(X)u (&)uy (x)dx = 0.

The construction is entirely similar to that for the ordinary Green’s function
described in Section 1.5, but the modified Green’s function is not uniquely
determined. We can add Cu,(x) to a Green’s function without violating any
of the requirements on it. The reader can verify that the modified Green’s
function will by symmetric if '

b :
[ 92 uy(x)dx = 0.

The modified Green’s function enables us to solve the inhomogeneous
system '

Ly=f(x);  By(»)=By(»)=0.

We require f: S (x)uy(x)dx = 0, for otherwise no solution exists. By the usual
procedure we obtain’

b b b
[ @uLy = yLgw)ax = [ gu(x1 )1 00dx — @) + [ Yy (0u,(@)d.
The left side vanishes by the boundary conditions and, therefore,

b
W& = [ gulx] ©)f®)dx + Cuy(2).



90 THE GREEN'S FUNCTION  [Ch 1

If we use the symmetric modified Green's function, the above result can be
written

b
¥x) = [ gu(x1Of(©)dE + Cuy(x).

The above arguments can be modified in a suitable manner when there exist
two linearly independent solutions of the homogeneous equation (see Exercise
1.55).

EXERCISES

1.54 Show that a sufficient condition for the modified Green’s function to be
symmetric is

b
[ ax 1 Ous(xdx = 0.

Show that there are problems where this condition is not necessary.

1.55 Develop the theory of modified Green’s functions in the case of a self-
adjoint system where the completely homogeneous system has two
linearly independent solutions u,(x) and u,(x) (hence every solution of
the homogeneous equation satisfies the boundary conditions).

1.56 Consider steady-state heat conduction in an insulated thin ring of con-
stant cross section. Let x be a coordinate along the center line of the ring,
where x ranges from O to /. The equation governing the temperature

- distribution u(x) in the ring is —kA(d?u/dx*) = f(x); 0 < x < .
Although, at first glance, there appear to be no boundary conditions
associated with the system, further thought shows that the temperature
and its derivative must have the same value at x = 0 and x = . There-
fore, u(0) = u(l), (du/dx)(0) = (du/dx)(l). The completely homogeneous
system has the nontrivial solution u = constant. Find the modified

Green'’s function for this problem. Use this Green’s function to solve
d?y

——= = f(x);

=1

y(0) = y(D), y'(0) =y,

when f.,b f(x)dx = 0.

1.57 Find the modified Green’s function for the system L = d?/dx* with
»(0) = —yp(1), ¥'(0) = y'(1). This system is not self-adjoint.

1.58 Apply the result of Exercise 1.54 to find the deiﬁed Green’s function
for the system L = (d?/dx?) + 1 with p(0) = y(2n), y'(0) = y'(2n).

1.59 (a) Find the consistency condition for the system

d*y
dx?

=f(x); YO =a y1)=4

§1.6)  ALTERNATIVE THEOREMS AND MODIFIED GREEN'S FUNCTION 91

(b) Find the consistency conditions for the system

d?
=+ y=f(x);

= $0) - y2m) =,

y'(0) — y'(2n) = B.
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