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SUMMARY

There exist quite a number of published papers showing that BEM/FEM coupling in time domain is
a robust procedure leading to great computer time savings for in"nite domain analyses. However, in many
cases, the procedures presented so far have considered only constant time interpolation for BEM tractions,
otherwise one may have (mainly in bounded domains) strong oscillations which invalidate the results. In this
paper, such a limitation is overcome by employing the linear h method which consists, basically, of
computing the response at the time t

n`1
from the response previously computed at the time t

n`h , h*1.0.
This procedure is implicitly incorporated into the BEM algorithm in the coupled BEM/FEM process
presented here, i.e. the response is calculated directly at time t

n`1
. Proceeding this way, it becomes possible

to adopt the Newmark scheme in the FEM algorithm. Two examples are presented in order to validate the
formulation. Copyright ( 2000 John Wiley & Sons, Ltd.
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INTRODUCTION

The purpose of this work is the presentation of a new BEM/FEM coupling procedure for scalar
wave propagation analysis in the time domain. The FEM employs the Newmark time-marching
scheme [1, 2] whereas for the BEM a time-domain formulation which makes use of linear time
interpolation functions for the #ux is employed. This BEM approach is known as linear h method
and was presented by Yu et al. [3] in order to overcome the di$culty of the standard
time-domain BEM formulation [4}7] to perform closed domain analysis by assuming a
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linear-time approximation for the #ux. In fact, since 1983, when Mansur [7] established the
general time-domain BEM formulation for the scalar wave equation and elastodynamics, con-
stant time interpolation was considered as the only way to take into account the #ux time
discontinuities that occur in closed domain analyses. Since then, alternative schemes have
appeared in the literature in order to make possible the use of linear time interpolation functions
for the #ux, e.g., Yu et al. [3] and Mansur et al. [8].

The linear h method [3] considers #ux and potential to vary linearly from time t to time
t#h*t (h*1.0). The method is not unconditionally stable; however, as shown by Yu et al. [3], it
is stable for any realistic time-step choice.

Two examples are presented in this paper. The numerical results can be considered fairly good,
letting one to conclude that the BEM/FEM coupling procedure is reliable for bounded and
unbounded time-domain analyses. The second example shows the advantage of coupling proced-
ures: the region of interest can be discretized with "nite elements and the boundary elements play
the role of an absorbing boundary.

THE LINEAR h METHOD FOR THE BEM

The numerical procedure referred to as standard here is that presented by Mansur [7] and by
Mansur and Carrer [9].

In the linear h method [3], a di!erent last time step [t
n
, t

n`h] is used, instead of [t
n
, t

n`1
], where

t
n`h"t

n
#h*t, h*1. Responses at time t

n`1
can be computed from responses at t

n`h by
following the relationship below:
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Expressions for the fundamental solution u*(Q, t;S, q), and for B*(Q, t;S, q) can be found in
References [3, 7].

In order to couple the BEM with FEM equations originated from the Newmark method [1, 2],
the procedure described so far has to be modi"ed in such a way that un`1 and pn`1 appear
explicitly, instead of un`h and pn`h in Equation (2). The followed procedure is described next.

From Equation (1) one can write
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Substitution of Equations (5) into Equation (2) gives
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Equation (6) can be written in matrix form as:
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"rn (7)

After considering the prescribed boundary conditions, the following equation arises:
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Figure 1. General representation of )
FE

and )
BE

sub-domains.

Boundary unknowns at time t
n`1

can be computed from Equation (8), which can also be used
in a coupled BEM/FEM procedure in the same way usually employed for the standard BEM
formulation as will be discussed in the following sections.

It can be seen that if h"1, Equation (8) becomes the standard BEM equation [7]. If h*1, the
present formulation, however, is stable when linear #ux time interpolation functions are em-
ployed, whereas the standard one fails in closed domain analyses.

NEWMARK ALGORITHM FOR THE FEM

The Newmark scheme [1, 2], for a"1/4 and for d"1/2 leads to the following version of the
FEM dynamic equilibrium equations for an undamped system (K1 "Keff ; R1 n`1"Rn#1

eff )

K1 un#1
"R1 n`1 (10)

where:
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BEM/FEM COUPLING PROCEDURE

In order to develop the coupling procedure, consider "rst the ) domain of a continuous medium
subdivided into two sub-domains )

BE
and )

FE
()")

BE
X)

FE
) with a common interface !

i
. The

sub-domain )
BE

is modelled by boundary elements and the sub-domain )
FE

by "nite elements
(see Figure 1).

The notation employed in the following developments considers that the subscript &o' is
associated to nodes that do not belong to !

i
and the subscript &i' is associated to nodes that belong
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to !
i
, whereas the subscript F refers to the subdomain )

FE
, and the subscript B refers to the

subdomain )
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. Thus, on !
i

the equilibrium condition reads p
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In order to establish the coupling algorithm, the BEM system of equations must be written for
the subdomain )
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, and organized in such a way that all entries of the vector xn`1 in

Equation (8), concerning nodes located at !
*
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unknown nodal interface #uxes. Consequently, all entries of xn`1 not related to !
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By considering the equilibrium condition at the interface (p
F*
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(s, t)), the following
expression can be written, [1, 2]:
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By considering the compatibility condition (u
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A similar procedure must now be followed for the subdomain )
FE

. From Equation (10),
submatrices K1

jk
, j, k"i, o and vectors un#1

Fk and R1 n`1
F,

k"i, o are generated.
When expression (15) is substituted into Equation (10), organized as described above, the FEM

system can be written as:
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Figure 2. Waveguide under a Heaviside-type forcing function.

where
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Displacements in the FEM sub-domain can be obtained by solving Equation (16). Other
quantities such as velocities, accelerations, support reactions, stresses, etc., in that sub-domain
can determined following standard FEM procedures. By observing that un#1

Bi "un#1
Fi , it is also

possible to calculate, by means of Equation (12), the boundary unknowns in the region discretized
with boundary elements, and then the internal points state variables.

NUMERICAL EXAMPLES

=aveguide

The example depicted in Figure 2, previously presented by Mansur [7], has been chosen to be
analysed here because it is prone to severe numerical instabilities and illustrates quite well the
stability improvement that arises from using the linear h method described in this paper. It
consists of a waveguide subjected to a Heaviside-type #ux forcing function applied at one
extremity (see Figure 2). Isoparametric linear FE were used for half of the domain, the other half
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Figure 3. Time histories of the #ux at point D(a/2, b/2) for the waveguide with 128 "nite elements and 64
boundary elements: model I, h"1.0, and b"0.6

Figure 4. Time histories of the #ux at point D(a/2, b/2) for the waveguide with 128 "nite elements and 64
boundary elements: model II, h"1.4, and b"0.6.

part being modelled by linear BE with the same length l. Linear-time interpolation functions for
both potentials and #uxes were adopted in the BE formulation.

In the "rst analysis, 64 FE and 32 BE (see Figure 2(b)) were used. Subsequently, a second
analysis with 128 FE and 64 BE was carried out. The #ux time history for this second analysis,
referred to here as model I, at the FE and BE meshes interface point D(a/2, b/2), obtained from
the standard time-domain BEM formulation (i.e. h"1.0) for b"0.6 (b"c*t/l) is shown in
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Figure 5. 2-D cavity problem.

Figure 6. Time histories of displacements at point E(R, 0) for the 2-D cavity problem, for b"0.6 and
h"1.4, with 128 "nite elements and 32 boundary elements.

Figure 3, where a quick deterioration of the numerical results can be observed. This behaviour
also occurred in the analysis carried out by the authors with the less re"ned mesh shown in
Figure 2(b), and although later, was also observed for potential at point D(a/2, b/2) for both
analyses.

Other analyses where the "nite element region shown in Figure 2(b) was discretized with
boundary elements and vice versa were also carried out, and in this case instability started much
earlier. This case, referred to here as model II, showed to be more critical than that where model I
was employed; thus, it was chosen to verify the improvement of stability achieved by the linear h
approach discussed in this paper. As one can see from Figure 4, a great improvement of stability
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was achieved with h"1.4. Other analyses, carried out for 1.2)h)2.0, showed that in this range
good results are obtained, and that increasing h improves stability, but introduces arti"cial
damping in the numerical results.

¹wo-dimensional cavity

Figure 5 shows a cylindrical (2-D) cavity of radius R in an in"nite space. At t"0 a boundary #ux
p was suddenly applied and kept constant until the end of the analysis. One hundred and
twenty-eight triangular "nite elements were used in the region from r"R to 1.6R, whereas 32
boundary elements with the same length l were used at r"1.6R.

Time history of the potential at the boundary point E obtained from the standard BEM/FEM
coupling formulation (h"1.0) was unstable from ct/R"25 onwards, whereas results obtained
with the present approach with h"1.4, shown in Figure 6, are stable for the whole time length of
the present analysis, i.e. up to ct/R"40. It is important to observe that the instability in this
analysis was due to the coupling process, as for this analysis the standard BEM is stable as shown
by Yu et al. [3].

CONCLUSIONS

A new approach for coupling BEM and FEM in scalar dynamic time-domain analyses has been
presented in this paper. The approach used for the BEM algorithm, named linear h method,
permits the use of linear time interpolation functions for boundary #uxes in a coupling procedure
where Newmark method is used for the FEM algorithm. The algorithm was described in this
paper and used to analyse two examples, one of them prone to numerical instabilities.

The following conclusions can be inferred from the discussion presented here:

1. It is now possible to use linear time interpolation for BEM #uxes in coupling BEM/FEM
algorithms for scalar dynamic time-domain analyses.

2. The computer costs of the linear h method and the classical BEM are very much the same,
however stability in closed domain analyses is substantially improved when the former is
used. Besides, the linear h method can be easily implemented into existing BEM/FEM
coupling algorithms.

3. As h increases stability improves; however large values of h can bring excessive numerical
damping into the analysis.

The h procedure presented here can be easily extended to 3-D acoustics and to 2-D and 3-D
elastodynamics time-domain approaches. In fact, results as good as those shown here have
already been obtained for 2-D elastodynamics [10].
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