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The main purpose of the present paper is to provide a general method of fundamental
solution (MFS) formulation for two- and three-dimensional eigenproblems without
spurious eigenvalues. The spurious eigenvalues are avoided by utilizing the mixed
potential method. Ilustrated problems in the annular and concentric domains are
studied analytically and numerically to demonstrate the issue of spurious eigenvalues
by the discrete and continuous versions of the MFS with and without the mixed
potential method. The proposed numerical method is then verified with the exact
solutions of the benchmark problems in circular and spherical domains with and
without holes. Further studies are performed in a three-dimensional peanut shaped
domain. In the spirit of the MFS, this scheme is free from meshes, singularities and
numerical integrations.
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1. Introduction

In the applications of computational engineering, the mesh generation of a
complicated geometry is time-consuming for traditional numerical methods, such
as the finite difference method, the finite element method (FEM), and the finite
volume method. In recent years, there has been an increasing interest in the idea
of meshless numerical methods for solving partial differential equations. Roughly
speaking, such methods can be divided into two categories. The first one is the
domain type, such as Kansa’s method (or multi-quadrics method; Kansa
1990a,b); and the second one is the boundary type, such as the method of
fundamental solutions (MFS; Johnston & Fairweather 1984; Karageorghis &
Fairweather 1987; Golberg 1995; Young et al. 2004a,b, 2005a,b). The MFS has
been successfully applied to the potential flow problems (Johnston & Fair-
weather 1984), the biharmonic equations (Karageorghis & Fairweather 1987),
the Poisson equations (Golberg 1995), the Stokes flow problems (Young et al.
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1444 C. C. Tsai and others

2005a,b) and the diffusion equations (Young et al. 2004 a,b). In this paper, we will
concentrate on the MFS for acoustical problems, which are governed by the
Helmholtz equations.

The boundary integral equations (BIEs) have been used to solve the interior
and exterior acoustic problems for a long time. Several approaches, such as
complex-valued boundary element method (Yeih et al. 1998), multiple
reciprocity method (Chen & Wong 1997, 1998; Chen et al. 1999), and real-part
BEM (Chen et al. 1999; Kuo et al. 2000) have been developed for acoustic
problems. All the above methods have to face the singular and hypersingular
integrals. To avoid the singular and hypersingular integrals, DeMey (1977) used
the imaginary-part kernel to solve the resulting eigenvalue problems governed by
the Helmholtz equations.

To further overcome the difficulties of mesh generation, singularities, and
numerical integrations, the MFS has been widely adopted as an alternative to the
traditional BIE. Kondapalli et al. (1992) were the first to apply the MFS for the
Helmholtz equation in the analysis of acoustic scattering in fluids and solids.
Recently, Kang et al. (Kang et al. 1999; Kang & Lee 2000) applied the non-
dimensional dynamic influence function (NDIF) method to solve the eigenpro-
blem of an acoustic cavity. Chen et al. (2000) commented that the NDIF method
is a special case of the MFS with imaginary-part kernel, and later further
developed the method in a series of papers (Chen et al. 2002a—c). Karageorghis
(2001) applied the complex-valued MFS for the two-dimensional simply
connected domain. In this paper, we further develop the complex-valued MFS,
which has been utilized in exterior problems by Kondapalli et al. (1992) and the
two-dimensional simply-connected domain by Karageorghis (2001), to interior
Helmholtz problems in domains with and without interior holes of two- and
three-dimensional geometry.

To avoid the fictitious frequency of the exterior acoustic problems, Burton
& Miller (1971) have successfully applied the combination of the single- and
double-layer potentials for direct BIE. On the other hand, it was shown
independently by Panich (1965) and by Brakhage & Werner (1965) that the
mixed potential method for indirect BIE is also available. In domains without
interior holes, there are no spurious eigenvalues if the complex-valued BIE is
employed (Tai & Shaw 1974). However, the spurious eigenvalues always
appear when the complex-valued BIE is employed to the domain with interior
holes (Kitahara 1985; Chen et al. 2001, 2003b). Chen et al. (2001, 2003b)
applied the mixed potential method to deal with the eigenproblems
successfully. In the present work, we combine the mixed potential method
with the MFS to solve two- and three-dimensional Helmholtz problems free
from spurious eigenvalues in domains with interior holes. Independently, Chen
et al. (2005) recently presented a similar work for two-dimensional multiply
connected domains.

2. MFS formulation for domains without interior holes

For acoustic problems, the governing equation is the Helmholtz equation with
boundary conditions:
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Figure 1. Geometry configuration of domain (a) without, (b) with interior holes.

(V2 +E)u(z) =0, z€Q,

=0, er?,
u(x) x (2.1)
6u(:z:)=07 zerl",
on

where V? is the Laplacian operator, k is the wavenumber, Q is the domain
of interest, and I'=I""+TI" is the boundary of Q (figure 1a). The fundamental
solution of the Helmholtz equation (2.1) is defined by

— (V2 4+ k) Gy(z, s) = d(x, s), (2.2)

where x are the coordinates of field points and s are the coordinates of source
points. Then, the fundamental solutions are obtained:

_Il Hém (klz—s|), for two-dimensional,

Gz ={ (23)
— e M=l for three-dimensional,
Am|x— s

where H,(,,Q)( ) is the second Hankel function of order n. For simplicity, we define
the following notations:

Ui, s) = Gy(e,s),  Ly(w, s) = 20D ),
on,
2.4
Ty(m,s) = 2@ 4 g = LGil@ ) 24)
w(z,8) = om, x,s) = W

In the spirit of the MF'S, the solution is assumed to be

N
u(x) = Zaj U(z, s)), (2.5)
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where «; is the intensity of the source point at s;, and N is the number of source
points as depicted in figure 1a. Then, we seek to minimize the least squares
functional,

s), ifx;er?|’

M N Uk’(miu
S=3 Y e "7
: Li(m;, s;), ifx;er™

(2.6)

where ;€I are the boundary collocated points and M is the number of the
boundary collocated points. In general, the minimization involves the «;, s;, and
N. In the present work, we assume s; to be known a priori distributed points and
the collocated number is equal to the number of source points for simplicity.
Therefore, it results in a NX N linear system with the same numbers of unknowns
and equations.

_A(k7w1731) A(kvwlaSQ) A(kawlysN)_ _0(1_ [0]
A(ka m2731) A(kv $2,32) A(k7 m2781\/) 0 0

. . . . . . =, (27)
| A(k, zy, 81)  A(k,zy,85) - - A(k,zy, sy) | LN L0

where A(k, x;, s;)= Uz, s;), if @; er?and Ak, z;, s )= Li(x;, s), if z,eT". The
equation (2.7) is a nonlinear elgenproblem for k£ that we are searching for
eigenvalues k) <k, <k;<--- such that the equation (2.7) has non-trivial solutions,
which are the eigenvectors {a;}(ki),{a;}(k2),{a;}(k3), .... Correspondingly, we
are able to find the numerical eigenfunctions of the original Helmholtz equation
(2.1) by equation (2.5), u(x)(k), u(x)(k2), w(x)(ks), .... In the present work, we
adopted the direct determinant search method to find the associated eigenvalues
(Teukolsky et al. 1992; Karageorghis 2001).

3. MFS formulation for domains with interior holes

Next, we consider the problems for which the interior holes exist.

(V2 +i)u(z) =0, z€Q,
u(z) =0, zeTl?,
du(z) _ N
TR eI, (31)
u(z) =0, zer?,
Gu(a:):(L zeTll,
on
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where Q is a domain with interior hole with inside boundary I'y = I'? + 'Y and
outside boundary I'y=TI'Y + I'} as described in figure 1b.

To ensure the solutions without spurious eigenvalues, the mixed potential
method is adopted. Therefore, the solution is assumed to be

N M
z) = (U, sy) +ikTy(x, s1) + > B Ui, s3)), (3.2)

J=1 J=1

where o; and 8, are the intensities of the inside source point s;; and the outside
source points s,; respectively. Moreover, N and M are the corresponding
numbers of source points as depicted in figure 1b. Also, we seek for minimizing
the functional generally,

N 2
Z (Up(z;,81;) +ikTy(z;, 815)) +ZBJU,g x;,8y;), if x; erbur?

L
i i
= (L ( ) +ikM, )+ Li( ife,erVury

k wzvslj 1 k(mﬂslj 6] k $Z7S2j) L x; 1 2
= =

(3.3)

where x;€I'{UTI5 is the boundary collocated point and L is the number of the
boundary collocated points. Similarly, we assume s;; and sy, to be known a priori
distributed points and the collocated number is equal to the number of source
points, L= M+ N, for simplicity. Then, it results in a LX L linear system with the
same unknowns and equations.

A(k7$17311) A(ka331,31N) B(k7$1a321) B(k7$1a32N)
Ak, ey yar, s11) 0 Ak, Tyvan, siv) Bk &y, 801) - Bk, Ty, Son)
Fay ] 0
oy 0
X = ,
61 0
L B | 10 (3.4)

where A(k: x;, 81;)= U(x;, 81;) +ikTi(=;, 81;) and B(k, x;, 82)) = Ui(x;, s9,), if ; €
rPur? and A(k x;, 81)) = Li(x;, 81;) TikMy(x;, s1;) and B(k, ;, s2;) = Li(=;, 82)),
if &, €I'VUTY. Then, the eigenvalues k <k <k;<--- and the corresponding
elgenvectors {a, ﬂj}(lﬁ), {aj, B} (k2), {e;, B;}(k3), ... can be obtained as described

above.
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4. Analytic treatments

In general, solutions of the Helmholtz problems obtained by the MFS cannot be
solved analytically except for some special shapes. Chen et al. (2005) have
derived the finite eigenvalues of the annular problem by using the discrete
version of the MFS and the circulant theory. Herein, we use the continuous
version of the MFS, which is equivalent to the indirect BEM (Golberg & Chen
1998; Chen et al. 2004), to derive the eigenequations for the following Helmholtz
problems: circular, annular, spherical, and concentric spherical problems with
the Dirichlet and Neumann boundary conditions. In the following derivation,
we assume the source points s are dense enough so that the equations of the
MFS equation (2.5) can be transformed into integral forms (Golberg & Chen
1998; Chen et al. 2004),

u(z) = Ja(s) Up(z, s)ds, (4.1)
and similarly for normal derivatives
ou(x
67(17,) = Ja(s)Lk(a:, s)ds, (4.2)
and also for the MFS equation (3.2) in domains with interior holes,
@) = [alsn) (Uil s0) + kT3, s0))dss + [B(s2) Ui so)dss, (1)
Ou(x) )
o a(s))(Li(, s1) +ikMy(z, s,))ds; + [ B(s2) Li(w, sp)ds,. (4.4)

(a) Case I: circular problem with the Dirichlet boundary condition

Consider the Dirichlet Helmholtz problems in the circular domain described in
figure 2a, where s(R, 6) and x(p, ¢) are the source and boundary field positions in
polar coordinate system, respectively. To describe the MFS numerical solutions
in the circular domain, it is convenient to introduce the two-dimensional
degenerate kernels:

I
8

m .
1

1 ko) Hi) (kR)cos(m(0 =), R>p,
Up(z,8) =< ' (4.5a)
5 In(RR)HL (kp)cos(m(8 ). R<p,

3
Il
8

3
Il
8

m=ow k ,
N =2 (kp) Y (ER)cos(m(0— ), R>p,

—, 4
Ty(z,s) =4 " " (4.50)
>~ In(kR)HD (kp)eos(m(0—¢)), R <p.
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Figure 2. The distributions of source and field points in the (a) circular, (b) annular problem.

( M=o ik

> = Jnlko) B (ER)cos(m(0—¢)), R>p,
Li(@.9) =4 e (45¢)
Z _Z‘]m(kR>Hr(n2) (kp)cos(m(0—¢)), R<p,
=ik /
—— (ko) B (ER)cos(m(6—9)),  R>p,
My(z,8) =4 " " 2 (4.5d)
Y.~ TRV (kp)cos(m(6—¢)), R<p,

where J,,( ) is the Bessel function of the first kind of order n. Then, we decompose
the source intensities (in equation (2.5)) in circular harmonics,

o(s) = Z A, cos nf + B, sin nd, (4.6)

n=—00

and substitute into equation (4.1) with the boundary condition

2 m=oo . 9]
ozj ( > — L J,,(kp) H (kR)cos(m( — ¢)) > Ancosn0+aninne>Rda.

0\, 4 =
(4.7)
We then apply the orthogonal relations
[¢™ sin[nf]cos[md]dé = 0,
{5 cos[nf]cos[mb]dl = 76, (4.8)

[5™ sin[nf]sin[m6]df = 76,
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where 0,,, is the Kronecker delta symbol. It will result in

0=>" A J,(kp)H (kR)cos m¢ + > B, J,(kp)H (kR)sin mp.  (4.9)

Since the source intensities are arbitrary when k is an eigenvalue, therefore, we
can obtain the following relation:

Jo(kp) =0, n=0,1,2,.... (4.10)
It is noticed that there are no spurious eigenvalues in equation (4.10).

(b) Case II: annular problem with the Dirichlet boundary condition

Next, we consider the Dirichlet Helmholtz problem in the annular domain as
depicted in figure 2b, where si(Ry,6,), and s3(Ry, 6;) and x(p1, ¢1), and
Z>(po, ¢p2) are the source and boundary field positions of the inner and outer
circles in the polar coordinate system, respectively. Similarly, we decompose the
source intensities in circular harmonics,

a(s) = Z A,, cos nf; + B, sin nfy,

n=—e (4.11)
B(sy) = Z C,, cos nfy + D, sin nfs,

where «(s;) and B(s;) are source intensities of the outer and inner circles,
respectively. Then, we impose boundary condition and substitute to the
conventional MFS equation (4.1):

ox [ m=o .
0 :J ( Z ZlJm(le)Hfr%)(kpl)cos(m(al _¢1))

0 m=—00
X Z A, cos nf; + B, sin nf; | R; df;

n=——wx

2n [ MEE 4
+ JO < Z 4 Tu(kpr) B (kRy)cos(m(6y — 1))
X Z C, cos nfy + D,, sin n02> Ry d6,, (4.12a)

2 [ m=® i
0 ZJ ( Z ij(kRﬂHg)(ka)COS(m(ﬁl _¢2))

m=—®

X )" A, cos nby + B, sin nf, R, d01>

n=—o0

0 m=—x

+ J ) (Tnf} _IiJ,,L(k;pg)H,(,?)(k‘Rg)cos(m(ﬁg —$,))

X Z C, cos ny + D, sin nﬁz) Ry db,. (4.120)

n=—00

Proc. R. Soc. A (2006)



Fundamental solutions for eigenproblems 1451

Similarly, the arbitrariness of the source intensities for eigenvalues k ensure the
following relation:

Jn(le)(Jn(kpl) Yn(kPQ) _Jn(kPZ) Yn(kpl)) =0, n=0,1,2,..., (413)

where Y,,() is the Bessel function of the second kind of order n. It is noticed that
spurious eigenvalues occurred at J,(kR;) =0 when conventional MFS is applied.
Then, we apply the MFS equation for domains with interior holes (3.2) and
check if it does not have spurious eigenvalues. Similarly, we substitute the
equation (4.11) and the homogeneous Dirichlet boundary condition to the MFS
modified by the mixed potential method of equation (4.3), it results in

=—00

J <Z n(kRy) + 1K T, (kR ) HLP (py )cos(m(6 — 1))

8

X A,, cos nf; + B, sin n01>

3

(X T e k) costn(0, )

%
/\

X Z C,, cos nfy + D, sin n02> R, d6,, (4.140)

n=—oo

0 :rﬂ <m_w _Ii(t]m(k&) 1R T, (kR ) HYY (Kpa)cos(m(6; — )

» cos nf; + B, sin n01> R, do,

(ko) () (ER,) )cos(m(8y — )

X Z C, cos nfy + D, sin 77,02) Ry do,. (4.14b)

n=—oo
Also, the arbitrariness of the source intensities ensure the following relation:
Jn(kpl)yn(kPQ)_']n(kp2) Yn(kp1> = 07 n= 071727 (415)
Wherein, it is noticed that only true and non-spurious eigenvalues are contained.
This is the major declaration of the present paper.
(¢) Case III: annular problem with the Neumann boundary condition

A similar procedure can be applied to the Neumann Helmholtz problem in the
annular domain. The resulting relation is

(d) Case IV: spherical problem with the Dirichlet boundary condition

The present scheme can be applied not only for two-dimensional Helmholtz
problems but also for three-dimensional Helmholtz problems. Consider the

Proc. R. Soc. A (2006)
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)

Figure 3. The distributions of source and field points in the (@) spherical, (b) concentric spherical

problem.

Dirichlet Helmholtz problems in the spherical domain described in figure 3a, where
s(p, 8, ¢) and z(p, 6, ¢) are the source and boundary field positions in the spherical
coordinate system, respectively. We first decompose the three-dimensional kernels
into circular harmonics, and it will result in the following degenerate kernels:

U(z, s)

T (z, s)

Li(x,s) =

Proc. R. Soc. A (2006)

\

>3 2 ot 16, P cosfm(s )

n=0m= 0 ( +m)

X Pyl (cos 0) Py (cos B)hi” (kp)ja(kp), 7> p,
Z - —ik (n—m)! _
ZZ —(2n + 1)emmcos[m(¢ — )]

n=0m=0 ( )
X PJl(cos 8) Py (cos O)h (kp)j,(kB), B <p,

= —ik? n—m)! _
ZZ ik (2n +1)e (4)"cos[m(¢—¢)]

e m(n+m).

X Pi(cos 0) Py (cos O)h (kp)ju(kp), 5> p,
Zz_lk 2n +1) m((n m))'cos[m(¢—q_5)]
Vhi

n=0m=

X PI(cos ) PI(cos 6

n=0m=0

Zz_lk 2n +1) m(<n m)"cos[m(d’—@)]
s 0)ha

(4.17a)

(4.17b)

(4.17¢)
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s _
ZZ 1k (2n+1)e (( ))‘ cos[m(¢ —¢)]
n=0m=

X P™(cos 0) P™(cos®) W2 (kp)i. (k 5>
Mk(m’ S) — n (COS ) n (COS ) ( )]n( p)’ p p7 (4,17d)

—ik3 B
ZZ 1k (2n+1) m( )"cos[ (p—9)]

n=0m= ( m)
X Pir'(cos 0) P (cost) i (kp)ii(kp),  5<p,
where P)'( ) is the associated Legendre polynomial function, ¢, is the Neumann

factor (e,=1, when m=0 or ¢,=2, when m>0), j,,() is the spherical Bessel

function of the first kind of order n defined by j,(v)=+/m/2xJ,1/(z), and
hg)( )=Jn(z ) iy,(z) is the second spherical Hankel functlon of order n with the

definition y,(z) = \/7/22Y,41/2(x). Then, we decompose the source intensities
(in equation (2 5)) in spherical harmonics,

= Z Z APy (cos )cos(we), (4.18)
v=0 w=0
and substitute the result into the integral form of the MFS equation (4.1) with
the homogenous Dirichlet boundary condition

s ik (n—m)! o
0=, LZZ T 20+ D, coslm(s )]

n=0m=

X Py (cos 6) Py (cos B)?) (k)7 (k) D3 APy (cos B)cos(w)p* sin §.d d.
v=0 w=0

(4.19)

Applying the orthogonal relations,
2 (n+m)!
2n+1 (n—m)!

[o" Pi"(cos 6) PY(cos 6)sin 6 df = 01100 s
(4.20)

7 coslm($ — §)lcos(wh) A = 2, cos(mg),

w

will result in

n=0 m=0
Since the source intensities are arbitrary where k is an eigenvalue, therefore, we
can obtain the following relation:

gu(kp) =0, n=0,1,2,.... (4.22)

It is noticed that there are no spurious eigenvalues in equation (4.22).

(e) Case V: concentric spherical problem with the Dirichlet boundary condition

Next, we consider the Dirichlet Helmholtz problem in the concentric spherical
domain as depicted in figure 3b, where s,(p,6;,¢;) and 8y(ps, 0y, ¢s), and

Proc. R. Soc. A (2006)
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x1(p1, 01, $1), and xy(po, 09, Po) are the source and boundary field positions of the
inner and outer spheres in the spherical coordinate system, respectively. Then,
we decompose the source intensities (in equation (3.2)) in spherical harmonics,

05(81) = ZZAW}PZH(COS 91)Cos(w$1),
v=0w=0 (423)

Bs2) = S By P (cos y)cos(uh),

v=0w=0

where «(s;) and ((sp) are source intensities of the inner and outer spheres,
respectively. Next, we substitute the equation (4.23) and the homogeneous
Dirichlet boundary condition to the MFS equation (4.3) for domains with
interior holes in the integral form

2m (2 ©° " ik n—m)! -
0 :J J Z Z_(Qﬂ + l)em%COS[m(% —¢s)]

0 0 %=0 m=0 T (n m)

X Pl (cos 0;) P (cos )\ (kpy) g (kpy )

X Z Z B, P, (cos 92)cos(wq_52)[)§ sin 6, dfy de

S . ( ) (4.24q)
(" "\ —i n—m)! -
* JO Jo nz::[) ;ZOE@TL e (n+ m)! cos[m(¢; —¢1)]

X PJ(cos 0,) P (cos 0y) 2 (kpy ) (G (kB ) + iK%, (kpy )

X Z Z AW)P;)U(COS él)cos(wél)ﬁ% sin 91 dél dq;la

v=0 w=0
B 2 m _® n —ik (n—m)l o
O—L JO;;)E(Qn-l—l)smmcos[m(% $5)]

X Py (costy) Py (costy) b2 ()i (k)

X Z Z B,y P (cos 05)cos(wey)p3 sin Oy dfy de,

. B} (n—m) (4.24b)
—1 n—m). —
" Jo Jo ;ﬂ;)ﬂ@n e (n+ m)! cos[m(es = ¢)]

X P (costly) P (cosy ) b (kpy) (7, (kpy ) + ik, (kpy))

X Z Z A,y PY(cos 0,)cos(we, )pi sin 0, d; dg,.

v=0 w=0
Similarly, the arbitrariness of the source intensities ensures the following relation:
jn(klol)yn(ka) _jn(kPQ)yn(kpl) = 07 n = 07 17 27 (425)
Also, it is noticed that only true eigenvalues are contained in the even three-

dimensional domain with interior hole. In a similar way to equations (4.13) and

Proc. R. Soc. A (2006)
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Table 1. The first 10 eigenvalues for the circular problem with different nodes compared with the
analytical solution.

ky ks ks ky ks kg kz ks ko k1o

MFS (20 nodes) 2.4039 3.8309 5.1340 5.5200 6.3801 7.0180 7.5905 8.4210 8.6590 8.7900
MFS (30 nodes) 2.4049 3.8319 5.1360 5.5200 6.3801 7.0160 7.5880 8.4170 8.6540 8.7720
MFS (40 nodes) 2.4049 3.8319 5.1360 5.5200 6.3801 7.0160 7.5880 8.4170 8.6540 8.7720

MFS (50 nodes) 2.4049 3.8319 5.1360 5.5200 6.3801 7.0160 7.5880 8.4170 8.6540 8.7720
analytical solutions 2.4048 3.8317 5.1356 5.5201 6.3802 7.0156 7.5883 8.4172 8.6537 8.7715

(4.25), we obtain that spurious eigenvalues occurred at j,(kR;)=0 when
conventional MFS is applied.

(f) Case VI: concentric spherical problem with the Neumann boundary condition

A similar procedure can be applied to the Neumann Helmholtz problem in the
concentric spherical domain. The resulted eigenequation is

n(kpy)yn(kpo) —5n(kpa)yn(kpy) =0, n=0,1,2,.... (4.26)

5. Numerical results and discussions

In this section, numerical experiments are carried out and results are discussed
and compared with the solutions studied analytically in §4. Further studies are
performed to extend to the three-dimensional peanut shaped domain.

(a) Case I: circular problem with the Dirichlet boundary condition

A circular cavity with a unit radius, p=1, subjected to the Dirichlet boundary
condition is considered as depicted in figure 2a. Table 1 shows the first 10
eigenvalues obtained by the direct determinant search method depicted in
figure 4. In figure 4, it is observed that there are no spurious eigenvalues as we
have studied analytically in the last section, as addressed in equation (4.10).

(b) Case II: annular problem with the Dirichlet boundary condition

Next, the annular problem with the Dirichlet boundary condition is
considered, where p;=0.5 and py=2 (figure 2b). Table 2 describes the first five
eigenvalues obtained by the direct determinant search method and the
comparisons with the analytical solutions of equation (4.15). Figure 5a,b
addresses the results obtained by the present method (3.2) and the conventional
method (2.5). It is observed in the figures that the spurious eigenvalues are
exactly predicted by equation (4.13), which is analytically derived in §4.

(¢) Case III: annular problem with the Neumann boundary condition

To demonstrate the capability of the present method for the Neumann
problems, an annular Helmholtz problem with the Neumann boundary condition

Proc. R. Soc. A (2006)
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Figure 4. The determinant value versus k for the circular problem (nodes=50, R=1.3).

Table 2. The first five eigenvalues for the annular Dirichlet problem with different methods
(nodes=60, R1=0.4, Ry=2.3).

numerical methods

BEM + chief fictitious BEM

FEM (Chen  BEM (Chen  (Chen et al. (Chen et al. analytical
eigenvalue et al. 2003b) et al. 2003b)  2003b) 2003b) MFS  solutions
ky 2.03 2.06 2.04 2.04 2.05 2.05
ko 2.2 2.23 2.2 2.21 2.22 2.23
ks 2.62 2.67 2.65 2.66 2.66 2.66
ky 3.15 3.22 3.22 3.21 3.21 3.21
ks 3.71 3.81 3.81 3.80 3.80 3.80

is considered, where p;=0.5 and p,=2 (figure 2b). Table 3 addresses the first few
eigenvalues obtained by the direct determinant search method. The results in the
table also show the excellent performance of the present method as compared
with the analytical solutions of equation (4.16).

(d) Case IV: spherical problem with the Dirichlet boundary condition

To validate the method for the three-dimensional Helmholtz problem, a
spherical cavity with a unit radius, p=1, subjected to the Dirichlet boundary
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Figure 5. The true and spurious eigenvalues by two methods. (a) Nodes=60, R;=0.45, Ry=2.3;
(b) nodes=60, R1=0.4, Ry=2.3.
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Table 3. The first few eigenvalues for the annular Neumann problem with analytical solutions
(nodes=80, R1=0.2, Ry=2.5).

eigenvalue

ky ky ks ky ks ke ke
MFS 0.825 1.505 2.095 2.225 2.505 2.655 3.175
analytical solutions 0.823 1.504 2.096 2.223 2.501 2.658 3.178

ks kg k‘m k11 k12 k13 k14
MFS 3.205 3.755 3.935 4.270 4.405 4.615 4.815
analytical solutions 3.207 3.753 3.932 4.269 4.403 4.619 4.811

Table 4. The first nine eigenvalues for the three-dimensional sphere problem with analytical
solution (nodes=600, p=1, p=1.2).

eigenvalue
Ky ks ks ky ks ks ke ks ko
MFS 3.141 4493  5.763 6.282 6.987 7.725 8182 9.095 9.356

analytical solutions  3.141 4.493 5.763 6.283 6.987 7.725 8183 9.095 9.356

condition is considered (figure 3a). Table 4 addresses the first nine eigenvalues
obtained by the direct determinant search method sketched in figure 6. The
results also show good performance of the present method for the three-
dimensional problem compared to the analytical solutions of equation (4.22).

(e) Case V: concentric spherical problem with the Dirichlet boundary condition

Next, we consider a three-dimensional concentric spherical problem.
A concentric spherical domain with Dirichlet boundary condition is studied,
in which p;=0.5 and p,=1 (figure 3b). Table 5a shows the first few
eigenvalues obtained by the direct determinant search method depicted in
figure 7a,b. In the figure, it is also observed that there is no spurious
eigenvalues by utilizing the combination of single- and double-layer potentials.

(f) Case VI: concentric spherical problem with the Neumann boundary condition

Similarly, we consider a Neumann problem for the three-dimensional domain
with interior holes. A concentric spherical domain with the Neumann boundary
condition is studied, where p;=0.5 and p,=1 (figure 3b). The numerical results
also show the excellent performance of the present method for the three-
dimensional Neumann problem. Table 5b describes the first few eigenvalues
obtained by the direct determinant search method.

Proc. R. Soc. A (2006)



Fundamental solutions for eigenproblems

—200.00 —

—400.00 —

determinant value

—600.00 —

1459

~800.00 :
2.00

I
4.00

| T
6.00

eigenvalue (k)

I
8.00

I
10.00

Figure 6. The determinant value versus k for the three-dimensional sphere problem (nodes=600,
p=12,p=1).

Table 5. The first few eigenvalues for the three-dimensional (a) Dirichlet, and (b) Neumann
problem in the concentric spherical domain with analytical solution (nodes=400, p;=0.5, po=1,

,51 = 035, ,52 = 15)

eigenvalue
(a) ky ks ks ky ks ke
MFS 6.284 6.573 7.112 7.846 8.716 9.682
analytical solutions 6.283 6.572 7.112 7.845 8.711 9.682
(b) ky ko ks ky ks ke ke
MFS 1.841 3.151 4.390 5.573 6.575 6.716 6.912
analytical solutions 1.842 3.151 4.392 5.573 6.571 6.717 6.911

(9) Case VII: peanut shaped domain

In order to demonstrate the flexibility of the proposed numerical method to
treat irregular domains, a three-dimensional peanut shaped computational
domain (Chen et al. 2003a) is chosen as the last problem. The first few
eigenvalues are found by the direct determinant search method as shown in
figure 8. Also, in table 6 the results for different source points by the proposed
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Figure 7. The true and spurious eigenvalues by two methods for the three-dimensional concentric
spherical problem with Dirichlet boundary. (@) Nodes=400, p;=0.5, po=1, p; =0.35, py = 1.5;
(b) nodes=400, p;=0.5, po=1, p; = 0.33, py = 1.5.
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Figure 8. The determinant value versus k for the three-dimensional peanut shaped domain problem
with Dirichlet boundary.

Table 6. The first five eigenvalues for the three-dimensional peanut shaped problem for different
nodes by MFS and comparison with BEM.

eigenvalue

ky ko ks ky ks
MFS (300 nodes) 5.584 7.419 8.172 9.033 9.232
MFS (450 nodes) 5.646 7.498 8.310 9.168 9.309
MFS (600 nodes) 5.671 7.520 8.340 9.185 9.331
MFS (875 nodes) 5.671 7.519 8.341 9.187 9.337
BEM (2048 elements)  5.693 7.608 8.365 9.281 9.493

method are addressed and compared with the results obtained by using the BEM
with 2048 constant elements. By observing these results, it is found that the
proposed method is applicable to the problem of the three-dimensional irregular
domain.

(h) Investigation of the ill-conditioned problem in MFS

The ill-conditioned problem always happens in the MFS as the number of
collocation point increases. The eigenvalues obtained by different collocation
points are depicted in figures 9a,b and 10a,b, respectively. In the above studies,
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Figure 9. The determinant value versus k by different numbers of the collocation point in (a) a
circular domain, and (b) an annular domain.
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the ill-conditioned problem will not happen within the range of the collocation
point in these cases. The consistency and well-conditioned matrix of the proposed
method is demonstrated.

6. Conclusions

We have developed the MFS for eigenproblems in two-dimensional and three-
dimensional domains with and without interior holes. We are convinced that
there are no spurious eigenvalues if the complex-valued kernels are adopted for
domains without interior holes, or the combination of the MFS and the mixed
potential method is utilized for domains with interior holes. To demonstrate this
fact, the continuous version of the MF'S with the degenerate kernels and Fourier
series are applied to derive the eigenequations for circular, annular, spherical,
and concentric spherical domains. Later, some numerical results also supported
the same point. Further studies are also performed in a three-dimensional peanut
shaped problem. Moreover, we studied the issue of spurious eigenvalues
analytically and numerically for the annular Dirichlet problem by utilizing the
conventional MFS and also BEM in a three-dimensional peanut shaped domain.
As a meshless numerical method, the scheme is free from meshes, singularities,
and numerical integrations.

The National Science Council of Taiwan is gratefully acknowledged and appreciated for providing
financial support to carry out the present work under the grants NSC 93 2611-E-002-001 and NSC
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