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A unified boundary integral equation (BIE) is developed for the scattering of elastic and
acoustic waves. Traditionally, the elastic and acoustic wave problems are solved separately
with different BIEs. The elastic wave case is represented in a vector BIE with the traction and
displacement vectors as unknowns whereas the acoustic wave case is governed by a scalar
BIE with velocity potential or pressure as unknowns. Although these two waves can be unified
in the form of a partial differential equation, the unified form in its BIE counterpart has not
been reported. In this work, we derive the unified BIE for these two waves and then show that
the acoustic wave case can be derived from this BIE by introducing a shielding loss for small
shear modulus approximation; hence only one code needs to be maintained for both elastic and
acoustic wave scattering. We also derive the asymptotic Green’s tensor for zero shear modulus
and solve the corresponding vector equation. We employ the method of moments, which
has been widely used in electromagnetics, as a numerical tool to solve the BIEs involved.
Our numerical experiments show that it can also be used robustly in elastodynamics and
acoustics.

1. Introduction

The study of elastic or acoustic wave behaviour requires solving the corresponding wave equa-
tions. These equations can be in the form of a partial differential equation (PDE) or a boundary
integral equation (BIE). It is very clear that the acoustic wave equation is a special case of the
elastic wave equation and they can be solved in a unified form as a PDE [1–3]. Conventionally,
however, the elastic wave BIE and the acoustic wave BIE are treated differently [4, 5]. This is
because the acoustic wave BIE has a simpler form and it is unnecessary to resort to solving the
full-fledged elastic wave BIE in most cases. In this work, we unify the acoustic wave BIE and
elastic wave BIE and show that the acoustic wave case can be obtained as a special case of the
full elastic wave BIE. Our unified BIE provides a new approach to solve those problems in a more
versatile manner. This is accomplished by introducing a shielding loss for a small shear modulus
in the elastic wave BIE and solving it as an elastic wave problem. This shielding loss attenuates
the shear wave in the medium. The advantage of this approach is that it requires the maintenance
of only one numerical code that can account for both elastic wave physics and acoustic wave
physics. This is especially important for modern day computational engineering where numerical
codes for complex structures often require high maintenance due to the complexity of the codes.
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304 M.S. Tong and W.C. Chew

This work fills a void in the numerical elastic scattering solutions for integral equation solvers
where the acoustic wave scattering is never derived from a full-fledged code for elastic wave
scattering, even though it has been done in differential equation solvers. Furthermore, we also
derive the asymptotic Green’s function and the BIE for the µ → 0 case, where µ is the shear
modulus of the host medium, and solve the corresponding vector BIE. The new approach has the
same complexity as the traditional acoustic wave BIE, but can provide extra information about
the displacement field in addition to the potential in its solution.

In acoustics, one usually works with the velocity potential or pressure as the unknowns lead-
ing to a simpler scalar BIE. If the obstacle is soft or elastic, the surface impedance concept
is used to account for the property of the obstacle. However, for fluid or underwater acous-
tics problems, the traditional scalar acoustic wave BIE may not be appropriate; hence one has
to resort to the vector elastic wave BIE with displacement and stress vectors as unknowns
[6–8].

We choose the method of moments (MoM) as a numerical tool to solve the unified BIE.
MoM, similar to Galerkin’s method, is a very robust numerical method that has been used
in electromagnetics and has also been introduced to solve for the scalar acoustic BIE [9–14].
MoM expands the unknown functions in a BIE using basis functions and tests the resultant BIE
using weighting functions to form algebraic matrix equations. Compared with collocation-based
methods, such as the boundary element method (BEM) and the Nyström method, MoM enforces
the boundary conditions to be satisfied over an element in an average sense, and minimizes or
controls the weighted residue error in a better philosophy [10]. If the weighting function is the
same as the basis function, it is known as Galerkin’s method. Both MoM and Galerkin’s method
have been used to solve the scalar acoustic BIE [9–18], but have not been implemented yet for
the vector elastic wave BIE.

Since the elastic wave BIE has 3D unknown vectors over a boundary surface, the implemen-
tation of MoM is not straightforward compared with electromagnetic BIEs. We have to separate
the unknown vectors into tangential components and normal components along the surface and
expand them in basis functions individually. We choose the Rao–Wilton–Glisson (RWG) basis
[19] to represent the tangential components and pulse basis to represent the normal components.
These basis functions are also used as the weighting function to test the BIE, resulting in a
Galerkin process.

In the numerical process for the unified acoustic wave BIE, we will encounter the integral
kernels with 1/R3 singularity, where R is the distance between a field point and a source point.
This singularity is generated from the double gradient of the scalar compressional wave Green’s
function. In elastic wave scattering, the shear wave exists and this singularity is cancelled by the
same term in the double gradient of the scalar shear wave Green’s function, leading to an easily
handled 1/R2 singularity.

In the acoustic wave problem, the shear wave vanishes and the degree of singularity increases to
1/R3. This may have been a challenging problem before, but we have developed a technique based
on the Cauchy principal value (CPV) to treat these kinds of singular integrals in electromagnetics
[20], and the same procedure can be followed here.

This paper is organized as follows. In Section 2, we describe the original BIE for elastic
wave scattering developed by Pao and Varatharajulu [21]. In Section 3, we derive the limit of
the dyadic Green’s function in the BIE for acoustic waves. In Section 4, the unified BIE for
acoustic waves is developed and the equivalence to the conventional scalar BIE is proved. Section
5 introduces MoM and illustrates its use for the elastic wave BIE and unified acoustic wave
BIE. Section 6 presents numerical examples either for elastic waves or for acoustic waves to
illustrate the applications of the MoM and unified BIE. Finally, we draw some conclusions in
Section 7.
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Waves in Random and Complex Media 305

2. Elastic wave BIE

Consider the scattering of an elastic wave by a homogeneous obstacle V0 with boundary S, as
shown in Figure 1. The obstacle, whose properties are characterized by the mass density ρ0 and
Lamé constants λ0 and µ0, is embedded in an infinite 3D isotropic elastic medium V . Here
we use the subscript 0 to indicate the parameters of the obstacle. Similarly, the host medium is
characterized by ρ, λ and µ with no subscript for its parameters. The coordinate system is labelled
in indicial notation (x1, x2, x3) corresponding to (x, y, z) for convenience.

The incident wave is a time-harmonic compressional (longitudinal) plane wave propagating
along the −x3 direction and impinging upon the obstacle. If we incorporate boundary conditions
which are the continuity of displacement and traction vectors, the BIE can be written as [21]

1

2
u(x) +

∫
S

[R
T

(x, x′) · u(x′) − G
T

(x, x′) · t(x′)] dS ′ = uI (x), x ∈ S

1

2
u(x) +

∫
S

[G
T

0 (x, x′) · t(x′) − R
T

0 (x, x′) · u(x′)] dS ′ = 0, x ∈ S (1)

where u and t, the unknowns to be solved, are the total displacement and traction vectors at the
surface of the obstacle. G is the dyadic Green’s function given by

G = 1

µ

(
I + ∇∇

κ2
s

)
gs(x, x′) − 1

γ

∇∇
κ2

c

gc(x, x′) (2)

and R = n̂′ · �(x, x′) where �(x, x′) = λI∇ · G + µ(∇G + G∇) is a third-rank Green’s tensor.
The superscript T on G and R denotes the transpose which can be removed if their positions with
the vector u or t are exchanged. The constant 1

2 in front of �u follows from the assumption that
the observation point is on a locally smooth surface on S. Note that the integrals in all BIEs are
defined in the CPV sense.

In Equation (2), gs = eiκsR/4πR and gc = eiκcR/4πR are the scalar Green’s functions in free
space with R = |x − x′| being the distance between the field point x and the source point x′. The
subscript s denotes the shear wave and c denotes the compressional wave. The corresponding
wave numbers are given by κ2

s = ω2ρ/µ and κ2
c = ω2ρ/γ with γ = λ + 2µ. In addition, the

superscript I in (1) denotes an incident wave, a single bar over a vector denotes a dyadic tensor,

Iu

O

1x

3x
2x

S

000 ,, µλρ
0V

µλρ ,,
V

n′ˆ

Figure 1. Elastic wave scattering by an arbitrarily-shaped homogeneous obstacle embedded in an infinite
3D isotropic elastic medium.
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306 M.S. Tong and W.C. Chew

double bars over a vector denote a third-rank tensor and I stands for the identity dyadic tensor
in (1) and (2). G and R are also known as the Stokes displacement tensor and traction tensor,
respectively, and their expressions in indicial notation can be found in many publications [22, 23].

If the obstacle is a traction-free cavity, then the total traction on the surface vanishes and the
above equations reduce to

1

2
u(x) +

∫
S

R
T

(x, x′) · u(x′) dS ′ = uI (x), x ∈ S. (3)

If the obstacle is a fixed rigid inclusion, then the total displacement on the surface vanishes and
the above equations reduce to

∫
S

G
T

(x, x′) · t(x′) dS ′ = −uI (x), x ∈ S. (4)

As we mentioned above, there is a numerical difficulty in solving for the BIE when µ → 0
in the host medium. However, if we introduce a loss for the host medium that causes the shear
wave to decay quickly, then we can solve the pertinent BIE. This can be accomplished by
choosing a small negative value for µ to approximate the original positive value of µ. After
doing so, the wave number κs = ω

√
ρ/µ will have a large imaginary part with a chosen plus

sign. The Green’s function now decays exponentially like an evanescent wave with no oscillatory
behaviour. Then the integration with eiκsR in the kernel is no longer difficult. The approach will
give us a good approximate solution for the small value of µ as demonstrated in the numerical
examples.

3. Limit of dyadic Green’s function

For acoustic waves, there is no shear wave propagating in the surrounding non-viscous medium
and µ = 0. The limit of the dyadic Green’s function G when µ → 0 in the host medium may not
be derived from its explicit expression (2). When µ → 0, κs → ∞ and the scalar shear Green’s
function gs becomes highly oscillatory. This high oscillation makes numerical computation
with this Green’s function difficult in this limit. Hence, there is no direct way to calculate the
asymptotic dyadic Green’s function. However, a highly oscillatory integrand including ê{ik−sR}
in wave physics, when integrated, contributes a small value to the integral eventually when k−s
is very large. This is because the alternating positive and nagative values of the integrand within
an interval will be mostly cancelled each other and the residue will be very small when k−s is
very large. Therefore, we can derive the limit by inspecting the derivation of the dyadic Green’s
function using the Fourier–Laplace transform [24].

The elastic wave equation in PDE form is

(λ + µ)∇∇ · u + µ∇2u − ρü = −f . (5)

Applying the Fourier–Laplace transform

u(x, t) = 1

(2π )4

∫ ∞

−∞
dωe−iωt

∫ ∞

−∞
dkeik·xũ(k, ω) (6)
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we obtain

ũ(k, ω) = [(λ + µ)kk + µκ2I − ω2ρI]−1 · f̃ (k, ω)

= (αI + βkk) · f̃ (k, ω)

=
(

I − k

k
κ2

s

)
· f̃ (k, ω)

µ
(
κ2 − κ2

s

) + kk · f̃ (k, ω)

κ2
c γ

(
κ2 − κ2

c

)
(7)

where

α = 1

µκ2 − ω2ρ

β = − 1

κ2
s µ

(
κ2 − κ2

s

) + 1

κ2
c γ

(
κ2 − κ2

c

) . (8)

If µ 
= 0 which is the elastic wave case, it can be shown that

∫ ∞

−∞
dkeik·x

(
Ī − kk

κ2
s

)
1

µ
(
κ2 − κ2

s

) =
(

I + ∇∇
κ2

s

)
gs

µ∫ ∞

−∞
dkeik·x kk

κ2
c γ

(
κ2 − κ2

c

) = −∇∇
κ2

c

gc

γ
(9)

yielding the dyadic Green’s function as shown in (2). However, the first Equation in (9) is not
valid if µ = 0 which is the acoustic wave case. This is because the identity used in deriving that
equation

∫ ∞

−∞

dkeik·x

κ2 − κ2
s

= −gs (10)

is not well-defined as in the lossless medium case in electromagnetics [25]. In fact, when µ = 0,
(8) is reduced to

α = − 1

ω2ρ

β = 1

κ2
c λ

(
κ2 − κ2

c

) . (11)

and the first Equation in (9) becomes

lim
µ→0

∫ ∞

−∞
dkeik·x

(
I − kk

κ2
s

)
1

µ
(
κ2 − κ2

s

) = − I

ω2ρ

∫ ∞

−∞
dkeik·x

= −δ(x − x′)
ω2ρ

· I (12)
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308 M.S. Tong and W.C. Chew

where δ(x − x′) is the Dirac delta function. Hence, the limit of the dyadic Green’s function for
µ = 0 is

G(x, x′) = − 1

ω2ρ
[δ(x − x′)I + ∇∇gc(x, x′)]. (13)

4. Vector BIE for acoustic wave

It is of interest to obtain the limit of the dyadic Green’s function for acoustic waves when µ → 0.
Having the asymptotic Green’s function in (13), the other related quantities can be simplified with
µ = 0 as follows

t(x′) = n̂′ · {λI∇′ · u(x′) + µ[∇′u(x′) + u(x′)∇′]}
= n̂′[λ∇′ · u(x′)]

R(x, x′) = n̂′ · {λI∇ · G(x, x′) + µ[∇G(x, x′) + G(x, x′)∇]}
= n̂′∇gc(x, x′) (14)

and the first Equation in (1) becomes

∫
S

{[−λ∇′ · u(x′)]n̂′ · G(x, x′) + u(x′) · [n̂′∇gc(x, x′)]}dS ′

= −1

2
u(x) + uI (x) x ∈ S. (15)

where we have removed the transpose on the kernels by exchanging their order with u or t for
convenience. This is a vector BIE for acoustic waves. This vector BIE is a limiting case of the
elastic wave BIE and can be solved with the second equation in (1).

Notice that the boundary conditions here may be different from before and can be expressed
as [6]

n̂ · u+ = n̂ · u−

n̂ · t+ = n̂ · t−

n̂ × t− = 0 (16)

where + and − implies that the observation points approach the boundary surface from the exterior
and interior of the obstacle, respectively. These conditions state that the normal components of
the displacement and traction vectors are continuous and the tangential component of the traction
vector vanishes (also continuous), but the tangential component of the displacement may not be
continuous at the surface due to the assumption that the host medium may be non-viscous [26].

In fact, the above vector BIE is equivalent to the conventional scalar acoustic wave BIE. If
we take a divergence on the vector BIE and define the potential � = ∇ · u, we have

∫
S

{−λ�(x′)∇ · [n̂′ · G(x, x′)] + u(x′) · n̂′∇2gc(x, x′)}dS ′

= −1

2
�(x) + �I (x) x ∈ S. (17)
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Since

∇ · [n̂′ · G(x, x′)] = ∇ · G(x, x′) · n̂′

= 1

λ
∇′gc(x, x′) · n̂′ (18)

and

∇2gc(x, x′) = −κ2
c gc(x, x′) − δ(x − x′) (19)

with δ(x − x′) = 0 due to the CPV definition, we can write (17) as

∫
S

[−�(x′)n̂′ · ∇′gc(x, x′) − u(x′) · n̂′κ2
c gc(x, x′)]dS ′

= −1

2
�(x) + �i(x) x ∈ S. (20)

Also, when µ = 0, the elastic wave equation in PDE form reduces to

∇′∇′ · u(x′) + κ2
c u(x′) = 0 (21)

or

n̂′ · u(x′) = − 1

κ2
c

n̂′ · ∇′∇′ · u(x′)

= − 1

κ2
c

n̂′ · ∇′�(x′). (22)

Using (22) in (20), we obtain

∫
S

[−�(x′)n̂′ · ∇′gc(x, x′) + n̂′ · ∇′�(x′)gc(x, x′)]dS ′

= −1

2
�(x) + �i(x) x ∈ S (23)

which is consistent with the conventional scalar acoustic wave BIE.
The derivation above indicates that we can use the vector BIE (15) to solve for acoustic wave

problems. The vector BIE is a special case of the elastic wave BIE and the solution for it will
provide additional information about the displacement in addition to the potential if compared
with the conventional scalar BIE. The potential is included in the traction vector in this case
(t = n̂′[λ∇′ · u] = n̂′λ�).
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5. Method of moments

To illustrate MoM for solving the elastic or acoustic wave scattering solution in the vector BIE,
we consider the BIE in (4) describing the scattering by a rigid obstacle. The general case is a
natural extension of the example shown here.

As the first step in MoM, we separate the unknown traction vector into tangential and normal
components, i.e.

t(x′) = tt (x
′) + tn(x′). (24)

We then expand the two components using RWG and pulse bases, respectively

tt (x
′) =

Nt∑
n=1

αnfn(x′)

tn(x′) =
Nn∑
n=1

βnn̂n(x′). (25)

In the above, fn(x′) is the RWG basis as shown in Figure 2, n̂n(x′) is the unit normal vector of
the nth triangle patch used as a pulse basis, and αn and βn represent the unknown expansion
coefficients to be solved. The RWG basis is defined as [19]

fn( x′) =




�n

2S+
n

+

n ( x′) x′ ∈ S+
n

�n

2S−
n

−

n ( x′) x′ ∈ S−
n

0 otherwise

(26)

where �n is the length of the common edge of two neighbouring triangles, S+
n and S−

n are the
areas of the two triangles, and 
+

n (x′) and 
−
n (x′) are the distance vectors as indicated in Figure

2. We have in total Nt non-boundary edges connecting two neighbouring triangles in which the
RWG bases are defined and Nn triangles in which the pulse bases are defined.

After using the above expansion, the BIE can be written as
Nt∑

n=1

αn

∫
Sn

G(x, x′) · fn(x′) dS ′ +
Nn∑
n=1

βn

∫
Sn

G(x, x′) · n̂n(x′) dS ′ = −uI (x). (27)

where we have omitted the transpose T on G(x, x′) without changing the order with t. This is
because G(x, x′) is symmetrical [22].

The next step is using the basis functions as the weighting or testing functions to test the
equation. By doing so, the following matrix equations are formed

Nt∑
n=1

αnAmn +
Nn∑
n=1

βnBmn = Emn m = 1, · · · , Nt

Nt∑
n=1

αnCmn +
Nn∑
n=1

βnDmn = Fmn m = 1, · · · , Nn (28)
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n

)(x′+
n

)(x′−
n

+
nS

−
nS

x ′ x ′

+
n0x

−
n0x

Figure 2. RWG basis fn defined in two neighbouring triangles S+
n and S−

n . These two triangles share the nth
non-boundary edge whose length is �n. S+

n and S−
n also denote the corresponding areas of the two triangles.

where

Amn = 〈fm(x), G(x, x′), fn(x′)〉

= �m�n

4S+
mS+

n

〈
+
m(x), G(x, x′),
+

n (x′)〉

+ �m�n

4S+
mS−

n

〈
+
m(x), G(x, x′),
−

n (x′)〉

+ �m�n

4S−
mS+

n

〈
−
m(x), G(x, x′),
+

n (x′)〉

+ �m�n

4S−
mS−

n

〈
−
m(x), G(x, x′),
−

n (x′)〉

Bmn = 〈fm(x), G(x, x′), n̂n(x′)〉

= �m

2S+
m

〈
+
m(x), G(x, x′), n̂n(x′)〉 + �m

2S−
m

〈
−
m(x), G(x, x′), n̂n(x′)〉

Cmn = 〈n̂m(x), G(x, x′), fn(x′)〉

= �n

2S+
n

〈n̂m(x), G(x, x′),
+
n (x′)〉 + �n

2S−
n

〈n̂m(x), G(x, x′),
−
n (x′)〉

Dmn = 〈n̂m(x), G(x, x′), n̂n(x′)〉
Emn = −〈fm(x), uI (x)〉

= − �m

2S+
m

〈
+
m(x), uI (x)〉 − �m

2S−
m

〈
−
m(x), uI (x)〉

Fmn = −〈n̂m(x), uI (x)〉 (29)

with


+
n (x′) = x′ − x+

0n


−
n (x′) = x−

0n − x′. (30)
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The involved inner products above are defined, for example, as

〈fm(x), G(x, x′), fn(x′)〉 =
∫

Sm

dSfm(x) ·
∫

Sn

G(x, x′) · fn(x′) dS ′

〈fm(x), uI (x)〉 =
∫

Sm

fm(x) · uI (x) dS. (31)

The main work in MoM is the evaluation of these two-fold integrals to generate the system matrix.
For elastic wave scattering, the integral kernels have only 1/R and 1/R2 singularities for singular
elements and they can be easily handled. For acoustic wave scattering, however, there is a 1/R3

singularity in the evaluation of integrals for singular elements and we use the strategy developed
in electromagnetics to perform these kinds of singular integrations [20]. To reduce the overhead
of numerical integrations, the one-point quadrature rule can be used for the outer integrals in
the testing procedure. Since the unknown coefficients in the RWG basis expansions are counted
in terms of the non-boundary edges connecting two neighbouring triangles, MoM uses fewer
unknowns compared with the collocation-based methods in the same mesh size.

6. Numerical results

6.1. Elastic wave scattering

To demonstrate the use of MoM in elastodynamics, we first consider scattering by a fixed rigid
sphere with a radius of a = 1.0. The host medium has Poisson’s ratio ν = 0.25 and mass density
ρ = 1.0. The incident wave has a unit circular frequency (ω = 1.0) and normalized wave number
of κca = 0.125, 0.913 and π , respectively. Figures 3–5 show the radial and tangential (elevated)
components of the total traction along the principal cut (φ = 0◦ and θ = 0◦ ∼ 180◦) at the surface.
The surface is discretized into 960 flat triangles in all cases and may be overly meshed for the
spheres of small sizes. It can be seen that the solutions agree with the analytical solutions very
well. Note that the analytical solutions for general elastic wave scattering by a sphere can be found
in [26], but the asymptotic solutions with µ → 0 for acoustic wave scattering are not available
and we have derived them in the appendix.

We then consider the scattering in an elastic medium by a traction-free spherical cavity
(void). The cavity has a radius of a = 1.0 and the host medium is characterized by Poisson’s
ratio ν = 1/3, Young’s modulus E = 2/3 and mass density ρ = 1.0. The incident wave has unit
circular frequency (ω = 1.0) with normalized wave number κca = 0.125 and 0.913, respectively.
Figures 6–7 show the total displacement components along the principal cut at the surface. The
solutions are also very close to the analytical solutions.

For the generalized case with both the host medium and obstacle being elastic, we select
λ = 0.53486, µ = 0.23077 and ρ = 1.0 for the host medium, and λ0 = 0.23716, µ0 = 0.52641
and ρ0 = 1.9852 for the elastic spherical inclusion with unit radius. Figures 8–9 plot the tangential
or radial components of the total traction and displacement at the surface along the principal cut
for κca = 0.125 and 0.913. These results are also in excellent agreement with the analytical
solutions.

We choose spherical objects as scatterers because there are available analytical solutions to
compare in numerical solutions for scattering by such objects. MoM can of course be used to
solve the scattering by arbitrarily shaped objects and Figure 10 is an illustration of the solutions
of scattering by an elastic cube with a side length of 2a. We calculate the scattered displacement
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Figure 3. Radial and tangential components of total traction along the principal cut at the surface of a rigid
sphere, kca = 0.125.
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Figure 4. Radial and tangential components of total traction along the principal cut at the surface of a rigid
sphere, kca = 0.913.
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Figure 5. Radial and tangential components of total traction along the principal cut at the surface of a rigid
sphere, kca = π .
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Figure 6. Radial and tangential components of total displacement along the principal cut at the surface of
a cavity, kca = 0.125.
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Figure 7. Radial and tangential components of total displacement along the principal cut at the surface of
a cavity, kca = 0.913.

field at the r = 5a surface along the principal cut under the same material properties and incident
wave as in the generalized case.

6.2. Acoustic wave scattering

In principle, the acoustic wave equation can be derived from the elastic wave equation by letting
µ → 0 as shown in Sections 3 and 4. The shear wave part of the dyadic Green’s function becomes a
Dirac delta distribution as shown by Equation (13). However, from our numerical experimentation,
it is difficult to achieve this numerically by setting µ → 0, as the Green’s function for the shear
wave becomes highly oscillatory. This oscillation makes the numerical evaluation of the matrix
elements difficult. We have also experimented with µ = −iδ where δ is a small number. This is
analogous to the highly conductive medium case in electromagnetics, where the shear wave will
be highly attenuated. However, an oscillatory factor of the Green’s function still persists with this
choice making its accurate numerical evaluation difficult.

We find that the best approach is to let µ = −δ where δ is a small number. This is analogous
to a plasma medium in electromagnetics where waves become evanescent with no oscillatory
component, or are shielded in a short length-scale.

In the following, the acoustic wave scattering solution can be derived numerically using the
original elastic wave BIE with a negative small value of µ. This approach allows one to solve
for the scattering of both waves in a unified manner using one numerical code. Figure 11 shows
the solutions of scattering by a rigid sphere with a = 1.0, ρ = 1.0, ω = 1.0 and κca = 1.0. We
take µ = −10−3 for this case and the solution is very close to the analytical counterpart. It can
be seen that the µ = −10−3 solution approximates the µ = 0 solution. On the other hand, the
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Figure 8. Tangential components of total displacement and traction along the principal cut at the surface
of an elastic sphere, kca = 0.125.
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Figure 9. Radial and tangential components of total displacement along the principal cut at the surface of
an elastic sphere, kca = 0.913.
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Figure 10. Radial and tangential components of scattered displacement along the principal cut at the r = 5a
surface by an elastic cube, kca = 0.125.

µ = 10−3 solution approximates the µ = 0 case with difficulty and less accurately due to the
highly oscillatory integral kernels.

Figure 12 illustrates the scattering by an elastic sphere with the same parameters as the rigid
sphere case except the penetrable property of the sphere now. The elasticity of the sphere is the
same as the third case for the elastic wave scattering. The numerical solution is also in good
agreement with the analytical one for the smaller value of µ and also the approximation between
negative µ and µ = 0 gets better if µ is closer to 0.

If µ is exactly equal to 0, we need to use the vector BIE (15) to solve for acoustic wave
scattering. Similar to the elastic wave scattering, we consider the scattering by a rigid sphere,
a spherical cavity and an elastic sphere, all with unit radius, respectively. For the rigid sphere
case, the host medium is characterized by ρ = 1.0, µ = 0 and λ which is determined by other
parameters. The incident wave has a unit circular frequency (ω = 1.0) and normalized wave
number of κca = 0.5 and π , respectively. Figures 13–14 show the radial components of total
traction along the principal cut at the surface of the rigid sphere. Since there is no shear wave, the
tangential component of traction is zero. It can be seen that the MoM solutions are very close to
the analytical solutions.

For the spherical cavity case, the host medium and incident wave are the same as before
except κca = 0.913 now. The numerical and analytical solutions are shown in Figure 15 and a
good agreement is seen again.

Finally, for the elastic inclusion case, we choose the same parameters as in the preceding
elastic wave scattering, except µ = 0 for the host medium now. Figure 16 plots the solutions for
κca = 0.913 and they are also consistent with the analytical results.
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Figure 11. Radial and tangential components of total traction along the principal cut at the surface of a
rigid sphere with a small value of µ.
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Figure 12. Tangential components of total displacement and traction along the principal cut at the surface
of an elastic sphere with a small value of µ.
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Figure 13. Radial components of total traction along the principal cut at the surface of a rigid sphere,
kca = 0.5.
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Figure 14. Radial components of total traction along the principal cut at the surface of a rigid sphere,
kca = π .
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Figure 15. Radial components of total displacement along the principal cut at the surface of a spherical
cavity, kca = 0.913.
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Figure 16. Radial and tangential components of total displacement and traction along the principal cut at
the surface of an elastic sphere, kca = 0.913.
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7. Conclusions

We have developed a unified form of boundary integral equation for the scattering of elastic and
acoustic waves. Under this unified form, acoustic wave scattering can be solved for using the
vector elastic wave BIE either by introducing a shielding loss for a small shear modulus. In this
manner, only one numerical code needs to be maintained from which acoustic wave scattering
solutions and elastic wave scattering solutions can be derived.

We also show that by using the derived limit of the Green’s tensor for a zero shear mod-
ulus, an alternative way of solving the acoustic wave scattering problem using vector fields is
possible. Even though this added complication is unnecessary, it can be shown that solving
this equation is exactly equivalent to solving the scalar acoustic wave equation. The new ap-
proach has the same complexity as the traditional scalar BIE. Although the scalar BIE is simpler
in implementation, the vector BIE provides extra information about the displacement in addi-
tion to the velocity potential. This is desirable in some cases, such as in fluid or underwater
acoustics.

In terms of our literature search, the MoM presented here has been used for the first time
to solve the elastic wave BIE. Since the 3D unknown functions are defined over a surface in
the BIE, we divide the unknown functions into normal components and tangential components,
and expand them using the pulse basis and RWG basis, respectively. The discretized BIE is then
tested with these basis functions, yielding a Galerkin scheme. Since MoM enforces the boundary
conditions to be satisfied in a better manner, it is more stable, more accurate, and uses fewer
unknowns compared with collocation-based methods with the same discretization.
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Appendix A:

Analytical solutions for spherical obstacles
Both elastic wave and acoustic wave scattering by a spherical obstacle have analytical solutions and they
are usually used as a benchmark to verify numerical results. Although Pao and Mow provided the general
solutions for elastic wave scattering [26], the asymptotic solutions for acoustic wave scattering are not
available; hence we present the results here. For a rigid sphere, the solution for the total traction field is

τrr = 2µ

r2

∞∑
n=0

(−�0E3 + AnE31 + BnE32)Pn(cos θ )

τrθ = 2µ

r2

∞∑
n=0

(−�0E4 + AnE41 + BnE42)
Pn(cos θ )

dθ
(A1)

where we have used the notation in [26]. Here, τ is the traction vector, �0 is the amplitude of the incident
plane compressional wave travelling in the x3 direction, Pn is the Legendre polynomial of order n, An and
Bn are the coefficients to be determined, and all E’s are defined in (18) in [26]. In the limit of µ → 0, we
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have

lim
µ→0

µE3 = 1

2
i−n(2n + 1)ω2ρr2jn(αr) = E0

3

lim
µ→0

µE31 = −1

2
ω2ρr2hn(αr) = E0

31 (A2)

and all other terms incorporating µ will be zero. Here jn is the spherical Bessel function of order n, hn is
the spherical Hankel function of the first kind of order n and α is the wave number of the compressional
wave in the host medium. Thus the solution reduces to

τrr = 2

r2

∞∑
n=0

(
− �0E0

3 + AnE0
31

)
Pn(cos θ )

τrθ = 0 (A3)

with

An = �0
E1

E11
= −�0i

−n(2n + 1)
njn(αa) − αajn+1(αa)

nhn(αa) − αahn+1(αa)
(A4)

where E is the value of E at r = a and a is the radius of the sphere. This solution, when only considering
the scattered part, is the same as the conventional analytical solution for the scattered potential by a rigid
sphere in acoustics [27]

�s(r, θ ) = �i

∞∑
m=0

im+1(2m + 1)Pm(cos θ ) sin δm(κa)hm(κr)eiδm(κa) (A5)

if we note that τ = n̂λ∇ · u = n̂λ�. The notation in (A5) can be found in [28] and δm(z) is the phase of
d

dz
hm(z) minus π

2 .
For an elastic inclusion, we can derive the following equations from Equation (20) in [26] by taking the

limit µ → 0

E11An + E13Cn + E14Dn = �0E1

E0
31An + E33Cn + E34Dn = �0E

0
3

E43Cn + E44Dn = 0 (A6)

where E0
3 and E0

31 are E0
3 and E0

31 with r = a in (A2), respectively. With the solved coefficients from (A6),
the analytical solutions are

ur = 1

r

∞∑
n=0

(−�0E1 + AnE11)Pn(cos θ )

uθ = 1

r

∞∑
n=0

(−�0E2 + AnE21)
dPn(cos θ )

dθ

τrr = 2

r2

∞∑
n=0

(
− �0E0

3 + AnE0
31

)
Pn(cos θ )

τrθ = 0. (A7)
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Similarly, we can find the following analytical solution for acoustic scattering by a traction-free cavity

ur = 1

r

∞∑
n=0

(−�0E1 + AnE11)Pn(cos θ )

uθ = 0 (A8)

where

An = �0
E0

3

E0
31

= −�0i
−n(2n + 1)

jn(αa)

hn(αa)
. (A9)


