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A New Numerical  Approach to the Calculation 
of Electromagnetic  Scattering Properties of 

Two-Dimensional Bodies of Arbitrary 
Cross Section 

Abstract-A new method is introduced for formulating the  scatter- 
ing problem in which the  scattered fields (and the  interior fields in 
the  case of a dielectric scatterer)  are  represented in an expansion 
in terms of free-space  modal wave functions in cylindrical coor- 
dinates,  the  coeficients of which are  the unknowns. The boundary 
conditions are satisfied using  either  an analytic continuation pro- 
cedure, in which the far-field pattern (in Fourier series form) is 
continued into  the  near field and  the boundary conditions are 
applied at  the  surface of the  scatterer; or the completeness of 
the modal wave functions, lo approximately represent  the fields 
in the interior and exterior  regions of the  scatterer directly. 
The  methods were applied to the scattering of two-dimensional 
cylindrical scatterers of arbitrary  cross section and only the 
TM polarization of the excitation is considered. The solution 
for  the  coeEcients of the modal wave functions are obtained 
by inversion of a matrix which depends only on the  shape  and 
material of the scatterer. The  methods  are  illustrated using per- 
fectly conducting square  and elliptic cylinders and elliptic dielectric 
cylinders. A solution to  the problem of multiple scattering by two 
conducting scatterers is also obtained  using only the  matrices 
characterizing  each of the single scatterers. As an example, the 
method  is illustrated by application to a two-body configuration. 

C 
INTRODUCTIOK 

ONVEXTIONAL  approach to the solution of the 
electromagnetic scatkering problem entails the for- 

mulat.ion of an integral  equation  for the induced surface 
current  density  in the case of a  perfectly  conducting 
scatterer, or the induced  polarization  current  for a di- 
elect,ric scatterer. The scattered field, which is  often the 
quantity of primary  interest,  is  t,hen  calculated from the 
knowledge of the induced  surface or polarization  current. 

Here we present two  methods for formulating the 
problem  such that  the Fourier coefficients of the far- 
field scatt.ering pattern  are  the  primary unknowns. Thus 
the patt,ern  may be  directly  obtained  upon  solution of 
the problem. Furthermore, the number of significant 
unknowns may be  determined a priori from the size of 
the body, and t,hen the boundary conditions applied at 
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a.s many  points on the contour of the scatterer  as neces- 
sary. This. enables us to obtain  a  set of Fourier  pattern 
coefficients which are best in a least-square-error sense. 
However,  in the usual  integral equat.ion approach, if one 
desires to apply the boundary  conditions a.t, more points 
on the contour of the scatterer, the number of unknowns 
is generally increased. 

Akhough the principle of the met,hods to be discussed 
apply t.0 the general case of an  arbitrary  scatterer,  the 
basic approach will be  illustrated by considering the two- 
dimensional problem of T M  scattering from cylindrical 
sca.tterers of arbitrary cross section. The incident field 
is assumed to be a  plane  wave with the convent,ional 
exp ( j u t )  harmonic  time dependence. 

ANALYTIC COXTINOATION OF FIELDS 
Consider t.he two-dimensional scat.terer S whose cross 

sect.ion is shown in  Fig. 1 with  a TM electric field Eainc 
incident. The vector p = ( p ,  4) locates  points  in cylin- 
drical  coordinates  on the contour dS of the scatterer  or 
in t.he region outside  t,he  scatterer. 

Assume tha.t the z component of the scattered elec- 
tric field is written  as  an expansion in  the cylindrical 
Hankel  function of the second kind so that  the radiat,ion 
condition is sa.tisfied, 

X 

E,S ( p )  = a, f n H n ( * )  ( k p )  exp ( jn+) . (1) 

Then  in  the  far field, we use the asympt,otic expansion 
of the Hankel  function 

n-r 

lim H,(*) ( k p )  - jtl exp ( - j k p )  
P-W 

and  obtain 

Now the far-field scattering  pattern  is defined bJ7 
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tering  pattern is the primary  quant,ity of interest, once 
t,he  unknowns e, are det.ernlined even the near field 
may be calculated  according to (1). Equation ( l ) ,  how- 
ever, ma.y not be  valid  for all values of p less than  the 
minimum  radius pmin which encloses the body (Fig. 1). 
9 s  pointed out  by  Millar [l], the formal series diverges 
inside any circle which encloses a  singularity of the 
scattered field, or what might  be considered to be the 
image source of the incident field. The location of the 
singula.rities  depends  on the excitation and  the geometry, 
but.  since the singularities of the scattered field must be 
contained inside the scatt.erer S ,  we are a.ssured the 
series mill converge outside the  radius pmin. 

Let. us  assume  for  illust,ration that we are concerned 
with the scattering  by  a  perfectly  conducting cylinder. 
In  Fig. 1 i t  is obvious that t.he region of convergence 
of the scat.tered field expression depends  on the location 
of the coordina1.e origin. If the origin is  translated to 
a new location at po = (po, 40) &h respect to the origi- 
na.1 system as shown, we may  again u7rit.e the field in 
terms of a  convergent series of outgoing  wave  functions 
in the new (primed) coordinate  system? viz., 

EzS(p0 + p’) = ~ , ’ j - m H , ( ~ ) ( k p ’ )  exp ( jm4 ’ ) .  (3) 

In  order  to express (1) in t.his form and still  ret,ain the 
original expansion coefficients as unknowns, the addition 
theorem  for  Hankel  functions  is  invoked (Stratton [2]), 

oc 

m-m 

Hn,(?) (kpo) 
Hn@) ( k p )  esp ( jn+) = 

m-- az I t  Jn-m  PO) 

- exp [ j (.72 - m ) 40] I H,(2) Jm(kp‘) ( kp’) i 
/IY < . (4) 

PO > P’ 
Sexp (jm+‘j? for 

If t,he original coordinate origin lies inside the body, 
then PO is always less than p’ and we ma?; use (4j in. ( I )  
t.0 write 

x) 0 

EaS ( P O  + p‘j = a, j-. [ J,, (kpo)  
h-- cc m-m 

- exp [ j ( n  - 177)  +0]Hmc2) ( k p ’ )  

-exp ( jm+’)]. (5) 

NOW in  the region where both the conditions I p I = 

I P o  -I P‘ j > pmin  and 1 p’ I > 1 PO I are satisfied the series 
in the brackets is absolutely  convergent so that we nlay 
interchange the order of summation  to get. 

m 

(PO + p‘j = [ X an p-mJm-n (kpo)  
rJ 

m-m I=-= 

- exp [ j (n  - m) 40] jlRH,(2) (kp’ ) 

* exp jm+’]. ( 6 )  

REGION INTO WHICH THE 
FIEU) REPRESENTATION 
IS CONTINUED 

Fig. 1. Geometry for t,wo-dimensional scatterer with TM wave 
incident,. 

In  regions where both (6) and (3) converge we mag 
identify (by  the orthogonality of exp ( jm+’j  on  a cjrcle 
of large enough radius) the coefficients of (3) as 

m 

am’ = &.FmJm-n(kpo) exp [ j ( n  - mj+O]. (7) 

Since (6) is convergent  for  all p‘ > p,,,in‘ we may use it 
to  apply  the  boundary condition Eas + E E i n c  = 0 at  the 
point  on t.he boundary where the circle p,,,in’ is tangent. 
This process is essent,ially analytic  continuation of the 
field representation. 

Generally the largest  number j 17. j = N of t.he spec- 
trum of coefficients a, which is significant. is on the order 
of about kp,,,in. For I 11 I > kpmin’ the coefficients decay 
exponentially  faster than  the exponential grovith of t,he 
Hankel  functions  for p > pmin so that  the scat,tered field 
representation converges. Furthermore t.he largest  number 
of significant terms of j-“J, (kpo) exp ( - j t t + o j  is about 
I n I = kpo because of the so-called spa.t,ial filtering of the 
Bessel wavefunctions. Owing t,o t.he convolut,ion form of 
these two spectra  in (7), we conclude tha.t, the largest, 
number I m I = JT of tlhe coefficients a,’ which are sig- 
nificant is a,bout kpn,in + kpo. Thuq we may  determine 
a priori the number of terms nccdcd in (6). We simply 
choose an .M somewhat  larger than kp, + kplnin and  an 
X somewhat. larger than kpn,in: truncate  the series and 
reverse the order of summation,  writing 

n=-w 

w .w 
E z S ( p ,  + P‘) = G( X j--mJm-n(kpo) 

n-X m=--N 

The process described, of changing co0rdinat.e origins 
and analytically  continuing the fields, may be used to 
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find the value of the scat.tered field, a t  any point  on  a 
convex body. Thus if we designate the coordinates of 
p ,  BO, and p f  with  subscripts i to  denote  their  values for 
each different  point  on the body  where the scat,tered 
field is  matched  to  the negat.ive incident field, we have 
a  system of equations which may  be  mitt.en in the ma- 
trix  form 

[ B ~ ~ ] [ c L , , ]  = - [Eiinc] (9) 

where 

- exp [ j (n. - m )  + i o ]  j-mHm(2) (kpi l )  exp ( jm+i') 

(10) 

Eiinc = E z inc ( P j , + i ) ,  i=1,2, . . - ,P .  (11 )  

. If the  number of points  matched P is equal to  the num- 
ber of coefficients 2N + 1, t.hen  t.he  solution  may be 
found  by  inverting the matrix [&] which must  be non- 
singular due  to t.he uniqueness  condition for scat,tering 
(Jones [SI). Thus x e  write 

[cL,,] = - [~ in] - l [Ei inC] .  (12) 

In order  to  make t,he  solution less dependent  on the 
particular choice of points  where the field is matched, 
one may  attempt.  to  satisfy (9) at many  points such 
that  there  are more equations than unknowns. A set, of 
coefficients a, can  then  be found which sat.isfies (9) in 
a least-square-error sense. The solution is 

where the dagger  denotes the transpose  conjugate of the 
matrix. The  quantity { [ @ i n ] i @ i n ] } - l ~ i n ] i  is called the 
"pseudoinverse" (Penrose [4], [5]) of the mat,rix [ P i n ] .  

Of coume once t,he coefficients a, have been found by 
eit.her (12) or (13)  the  scattering  patt,ern  is calculated 
by ( 2 ) .  

The possibility of represent.ing the scattered field in 
terms of outgoing  cylindrical  wave  functions  (which we 
will designate as an "outside expansion") at every  point 
on a  body  requires tha.t t,he  body must be convex and 
that  the largest  radius of curvature of the body  not  be 
so large that. po must  be chosen large. If po is too large, 
then  the  number of terms needed to calculate the  matrix 
element may become prohibitively  large. 

A simple modification of the preceeding method is 
available which will always work and is generally  pref- 
erable. Instead of expanding  t.he field in the new co- 
ordina.te  system  in terms of outgoing  wave  functions, 
we expand  in terms of the cylindrical  wave  functions 
which are valid  inside the largest circle of radius p,=' 
which excludes the scatterer  (Fig. 2).  This field expan- 
sion involves the ordinary Bessel functions of the first 
kind, 

EzS (PO + $1 = C ~,?-J,(kp') exp ( j m 4 ) .  (14) 
m 

m-a 

r SYSTEM 
ORlGpl OF NEW  COORDINATE 

POINT ON  BODY WHERE 
NEW SERIES  REPRESEN- 
TATION  CONVERGES 

TATION  IS  CONTINUED 
FIELD  REPRESEN- ORIGIN OF ORIGINAL 

COORDINATE SYSTEM 

Fig. 2. Geometry for inside expansion using analytic cont,inuation. 

To express (1) in  this form, we again use the addition 
theorem (4) this  time  noting  that po > p'. Using  ana- 
lytic  continuation  arguments we obtain  the inside ex- 
pansion equivalent of (7), 

h' = ~ ~ , , j n - H ~ - ~ ( ~ ) ( ( k p ~ )  exp [ j ( n  - m)+O].  (15) 
co 

n-cO 

It should be not,ed that t.he  analytic  continuation argu- 
ment will be  valid  only if po > pmin so that  there exist,s 
a t  least  a  small circle about, the nelv coordinate  origin 
which lies entirely  inside  a region where the series rep- 
resentation  is  valid  in  both the original and  the new 
coordinate  system.  Such  a  condition  was not needed  for 
the outside expansion since we needed only to find a 
large enough circle about- the new coordinat,e  system on 
which the field expressions were valid in eit,her coordi- 
nate  system. 

Upon  t.runcating  t.he series and interchanging the order 
of summation  one  obt.ains t.he [ S i n ]  matrix for the inside 
expansion, 

Kote  t,hat,  the  radius  vectors pi0 and pi' are  not  the same 
for  matching  a  given  point  on the sca.tterer n4t.h t.he 
inside expansion as for the outside expansion. However, 
for points  on a  body  where  either expansion is appro- 
priate,  either  one  may  be used so that  the matrix @in]  

may cont,ain a mixt.ure of the two  t.ypes of expansions. 
One further problem is that of bodies which are con- 

cave to t.he  extent that no  coordinate  system  can  be 
found which would enable  one to  match  the field a t  
some point on t.he  body. An example is  the body  in 
Fig. 3  where i t  is  desired to  match fields a t  point P. 
An auxilia.ry coordinate  system is chosen at  po which 
extends the field part of the way to the  boundary  as 
shown. Then a new coordimte  system at  PO' is chosen 
R4t.h respect to  the auxiliary  system. The fields in this 



WILTON AND NITI’RA: SUMERICAL  APPROACH TO CALCCLATIXG EN SCA4TTERING 313 

REGION  INSlDE  WHICH SERIES CONVERGES IN THE 
AUXILIARY  COORDINATE  SYSTEM 

IN THE  POINT WTCHING COORDINATE 
REGION  INSIDE WHlCH SERIES  CONVERGES 

SYSTEM 

- CWaE OF MINIMUM RADIUS ENCWSHG 
THE BODY IN THE ORIGINAL  COORDINATE 
SYSTEM 

Fig. 3. Use of auxiliary  coordinate  system to match interior  points 
of concave scatterer. 

system  may  be expa.nded in terms of the fields in t.he 
auxiliary  system and  the  analytic  continuation  argument 
used t.o find the coefficients of expansion. Thus  the field 
in the auxiliary  system is  written  as  in (14), 

EzS(p0 + P’) = C h’j-Jm(kp’) exp ( j ~ ’ ) .  (17) 

Now n-e employ the addition  theorem  for Bessel func- 
tions of t.he first kind (Stratton C2]j, 

a 

m-m 

02 

J ,  (kp’) exp ( jm+’) = Jm-p (kpo’) 
p = - x  

eexp [ j ( m  - p)+o’Y,(Jz~‘’) 
- exp ( j p + ” ) .  (18) 

This ma; be substituted  into  the expression in the auxil- 
iary coordinat,es and  the  summations interchanged in t,he 
common regions of absolute convergence to  get 

E,S ( p 0  + PO’ + p”) = 1 c a m ~ - ~ m - p ( k p o ’ )  
m a 

m--sc 

-exp [ j ( p  - m)4,,’]/ j-pJp(kp”) 

- exp ( j P 4 J ” ) .  (19) 

The bracketed expression may now be recognized as  the 
expansion coefficient in  the double-primed coordinate 
system which is valid  at. point. P. Of course, we have 
already expressed the am’ coefficients in  terms of the 
unknown coefficients an in (15). When the summations 
are suitably  t,runcated  and the summation  over 72 is 
interchanged, the result is 

EZS(P, + Po’ + P”) 
x P .li 

= G{ ( jn--%?+n(*)(kpo) 
n-X p3-P m-,V 

- exp [ j (,72 - nz) &,I ( jrmJ,-p (kp,,’) 

-exp C A P  - 4 + i l ) ( j - p J p ( J Z p ” )  exp ( j p 4 ~ ‘ ’ ) )  I .  (20) 

(b) 
Fig. 4. Use of branches and chains from auxiliary coordinate 

smtem. (a)  Branching  from  auxiliary coordinat,e system. (b) 

point  matching. 
chains of auxilia.ry coordinate  systems which are also used for 

f DmECTRlC SCATTERER 

NEW COORDINATE  OWGM  FOR 
EXTENDING THE INTERIOR 
flELD EXPANSION TO THE 
SURFACE OF THE BODY 

i ih WlNT ON THE 
SCATTERING  SURFACE 

- -. 

SCATTERED FIELD 
FOR EXTENDING THE 

EXMNSION TO THE SUR- 
FACE OF THE BODY 

- 

.. ~ 

Fig. .5. Geomet.ry of  coordinate system used in  dielectric scattering 
problem. 

Obviously, the computational difficulty necessa,rJT t.0 
match  the field at one  point is considerable --hen this 
met.hod must be used. Fortunatelyt  in  many  instances 
t.he auxiliary  coordinate  system may be used to cal- 
culate hhe fields at,  several  points  on a body by branch- 
ing  out from it. t s  in Fig. 4ia) .  Part,icularly difficult 
points to reach may require  a  chain of auxiliary co- 
ordinate syst.ems as shown for the two  elliptic  cylinder 
scat,terers  in  Fig. 4(b). 

The analytic  continuation  method  may also be ex- 
tended to calculate  scatt,ering  from a dielectric cylin- 
der [SI. The procedure  requires  only that we begin wit.h 
an inside expansion for t,he fields inside the cylinder in 
addition t.0 the outside expa.nsion for the scat,tered fields. 
Thus  in Fig. 5 the field in  t,he (p ,4J )  coordinate  system 
in the interior of the body is expa.nded by 

a 

E,’@) = b,j-mJ,(kdp) exp ( jm+) (21) 
m-cG 
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where kd is the wavenumber  in the dielectric medium. 
The  internal fields may be  continued to the surface 
using inside expansions  with the  aid of any auxilia.ry 
coordinat.e transformations  which  might  be  needed.  The 
exterior scathered field is also continued to the surface 
by  any of the methods  discussed for the perfectly con- 
ducting  scatterer. The  total  tangential I? field must  be 
continuous at  the dielectric interfa.ce. Thus for the  ith 
point on the  boundary  the fields sa.tisfy 

E,s(pO: + pi') - EzI(poi,' + p,") = -Ebc(pi)  ( 2 2 )  

where p ; ,  p i ' ,  and pi are defined as in Fig. 5.  At  t,he 
dielectric int.erface, the  tangential component, of the  total 
H field must also be  continuous. In  the t.wo dimensional 
TM case, the field is  given by 

2? = - X grad E ,  

where 2 is  the  unit  vector along the z axis. Application 
of the bounda.ry  conditions at  the  ith point, gives 

f i i  x [ a  x (grad: EZs - grad:' E z z ) ]  

2 
3 w  

(23) 

= -7ii X [ 2  X gradiEZinC] (24) 

where f i i  is the  unit  normal  to  the  boundary at the  ith 
point  and grad;', grad:', and  gradi a.re the  gradient 
operators for the  ith  point in the  (pill&'), (pi",&"), 

and ( p i , & )  coordinate  systems, respectively (Fig. 5). 
When  written  out explicitly (22) and (24) constitute 
a mat,rix  system for determining the  unlmom coeffi- 
cients an and b, of the scatt,ered  and  internal fields, 
respectively. 

Analytic  continua.tion of the fields in t.he case of t,he 
dielectric cylinder is  considerably  more difficult and  nu- 
merically time consuming  t.han  for t.he conducting cyl- 
inder.  At least, two new coordinate syst,ems are  needed for 
each  point  at.  which the field is matched  and  both  the 
electric and magnetic fields must be calculat.ed. For cases 
in sl:hich the dielectric cylinder is not t.oo thin,  a simpler 
representation of 6he  fields near  the  scatterer  is described 
in  the next, section. 

Several  advantages of analytic  cont,inuation  over the 
usual  methods  are  apparent: 

No integrations  are  performed. 
The size of the  matrix  to be  inverted to give suf- 
ficient accuracy  can be  determined a priori. 
The met.hod  works  even for cases when the scat- 
terer is resonant, and  surface  current,  formulations 
fail. 
No singularities in the fields arise in  contrast. to 
the singularities in  surface  current  which arise, for 
example,  at. edges. 
Upon solut,ion of the  matrix  equation t.he scattered 
fields may  be easily compared to the incident. fields 
at  the surface of the  scatterer to determine how 
well the boundary condit.ions are  met. 

It should also be  noted  when  comparing  this  method to 
the mode-matching  method to  be  discussed  in the next 
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section,  t.hat  analytic cont.inua.tion is applicable to any 
scatkering shape,  whereas the mode-matching  method 
works  best for shapes which do not  depart significantly 
from a circular cross section. 

The  major  disadvantage of the method  is the com- 
putational difficulty in  calculating the mat.rix [Bin]. This 
is  in  part  due t.0 the time-consuming  sununat,ions t,hat 
must be  performed for each mat,rix element  plus the 
calculation of higher  order Bessel and  Hankel funct,ions 
even  when recursion relations  are used to generate t,hose 
functions.  Furthermore, each  point  on  a  body requires 
t,he computation of several coordinat.es associated with 
it. which must be ca.refully chosen to insure that  the 
representation  converges on the body. 

The only analytic  source of error  which arises in this 
formulat.ion is the  truncation of the expansions in ea.ch 
coordinate  system. As mentioned previously, the  trun- 
cation size can  be  predet.ermined for each scatterer. 
Furthermore,  upon solution of the problem we need  only 
examine the  rate  and degree of decay of the  scattering 
coefficients t.0 be  reasonably a.ssured of the accuracy of 
the  scattering  patt,ern. In the surface current formula- 
tion, hon-ever, n-hen  moment  methods  with subsect,ional 
bases are used, the coefficients of expansion of the sur- 
face current  are all of about  the  same  order,  and  usually 
a larger mat,rix is  solved to check  convergence (Har- 
rington ['i]) . 

M O D E  MATCHING OF FIELDS 

For tn-o-dimensional scatterers whose cross section does 
not, depart, significantly from a. circular shape, the scat- 
tered field representatmion (1) may  be used  along the 
contour as even  if the  formal series diverges for some 
p0int.s on the cont,our. Hen-ever, the may (1) is  used 
becomes critical here. It has  been  shown by several 
a.uthors [S>[lO] tha.t  a  trunmtion point, N and a set 
of scatt,ering coefficients a , , (N)  can a.ln-ays be  found  such 
that  the mean-squared  error in  the  scatt,ered field rep- 
resentat,ion  on t.he contour, 

J,, 
N 

I E,s(p)  - u , ( N ) ~ - ~ H , ( ? )  ( k p )  exp (.in+) 1' ds 
n--5 

( 25 )  

can be  made  as sma.11 as desired. Thus we say  t.hat  the 
field represented  by t.he series in (25) converges in  the 
mean (as N increases) to  the  true field in  the region 
out.side the  scatterer S. The coefficients & ( N )  have been 
mitten to show explicitly their dependence on N ,  be- 
cause it is precisely this dependence  which  enables US 

to use t.his field representation  everywhere  mithout  ana- 
lytically  continuing the fields. It is true  that if we  des- 
ignate  the exact scattered mode coefficient by &, the n 
limhr+w a, ( N )  = u,,. One finds in act,ual practice, hon-ever, 
tha.t. the higher  order coefficients ndl  not be  relatively 
close to a, in  any  truncated problem, and will generally 
be  smaller in  magnitude than  the correct CL. This rela- 
tive  error act-ually helps to keep the series field representa- 
tion  from diverging  numerically. As N is increased, the 
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coefficients in the first part of the serics approach the 
correct coefficients a,, so t,hat, the first part of the series 
begins to diverge  in the near field. But this tendency is 
always correctled by tlhe  last few terms in the series 
whose coefficients are small, but whose scat.tered  wave 
funct.ions  have  a  large  contribution  in the near field. 
The tot,al  finite sum  actually does represent t.he field 
although the formal infinit.e sum represeneation may 
diverge. 

Assuming the field may be so represented, the solution 
of ( 2 5 )  may be  obtained  in an approximate sense if the 
mean-squa.red error  is minimized over  a set of points on 
the body  rather  than over the ent,ire surface. The solu- 
tion of the perfectly  conducting  scatt>erer follows then 
as  in (13) if now we redefine 

Bin = j-nHn(2) ( l i p ; )  exp ( jn&). (26) 

The method  may be  extended to include the solution of 
the dielectric scat,tering  problem by using (21) t,hrough- 
out. t.he  int,erior of the scat,terer and applying  boundary 
conditions (Bzj and (24) to  obtain a mat,rix equation 
for the unknown  scattering  and  internal  cylindrical mode 
coefficients. 

-4s the cross section of the scatt,erer is made  thinner, 
one finds that  the method described requires more and 
more coefficients to accuratel. represent  t.he fields. Thus 
our a. priori est.imate of the  number of coefficients re- 
quired becomes less accurate. While only the first few 
coefficient,s may a.ctually cont,ribute to  the far-field pat- 
tern,  in  order  to  obtain t,hem  accurately, a large  mat,rix 
must be inverted.  Furthermore, the h g e r  matrix will 
have somewhat. less desirable  characteristics  for com- 
putational purposes because of the order of t.he singu- 
larities  in the higher order  Hankel functions. For thin 
bodies therefore, the  analytic  continuation procedure  may 
be more useful despit,e the large  number of coordinate 
t,ransformations  required. 

SCATTERING BP PAR~~LLEL CYLIKDERS OF 

ARBITRARY CROSS SECTION 
Eit,her the analytic  continuation  method  or the method 

of direct mode matching of tlhe fields may be  extended 
to  soIve tlhe  problem of multiple  scatterers. We illust.rate 
t,he  method  by considering the scattering of t.u-0 parallel 
perfectly  conducting cylinders with a T M  wave  incident. 
One simply  writes the scattered field in terms of two 
series of outgoing wa.vefunct.ions, each scatterer  contain- 
ing a coordinate origin for one set of wave  funct.ions. 
Then anal;t,ic continuation or direct. mode  matching  is 
used to minimize t.he total t,angentiaI  electric field on 
the boundary of both of the scatt,erers. (If one or  both 
of the scatterers is dielcct,ric, the field inside each di- 
electric  scat,terer is expanded  in  a series of regular  wave 
functions  and  the difference between  t,he tangent,ia,l com- 
ponents of the  total interior and exterior elect.ric and 
magnetic fields  is minimized on the contour of the scat- 
terer. j 

p,] of either (10)  or  (26) is already known for eac.h 
If: however, the inverse or pseudoinvcrsc of t.he matrix 
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Fig. 6.  Geometry for two cylindrical  conducting scat.terers. 

scatt.erer one may  formulate  the problem  such as to 
writ.e the solution  directly  in terms of t.hese matrices, 
which are independent of the incident field and depend 
only  on  t,he  shape of t.he scatterer  and  the frequency. 
Hence we make  t,he following definit,ions which refer to 
Fig.  6: 

(27a) 

HI = [Hknl] 

Hnxl = fnHn(*) (&I) exp ( (27c) 

HII = [Him''] 
H i n I I  = j-mHm(2) (kRi'I) exp ( jm.Gi1I) ( 2 7 4  

GI = [Gpnl] 

Gpnl = exp C-jlZRoI cos ( W  - &) ] exp ( ~ ' 7 2 . 4 ~ )  (27e) 

GII = [GPm"] 

GmIr = exp [--jkRoI1 cos (@,,I1 - &j ] exp ( jm&,). (27f) 

The vectors E1 a.nd E11 represent  values of the incident 
field on the surfaces of two  scat,terers. The ma.trix HI 
is  a  propagation  matrix which reIat.es t.he  scattering co- 
efficients from body I to field values at  the  appropriate 
points on body I1 a.nd similarly for HII. GI and GII 
relahe tlhe  scattering coefficients from  body I and 11, 
respectively, t.0 the value of the sca,t.tered far-field pat- 
tern at angle +* with respect to  the origin 0. We will 
designate  by PI-' and BII-' the inverses or pseudoinverses 
of the B matrices which are presumed to be known for 
body I and body 11; respectively. 

If n-e desigmte  by a1 = [a,I] and a11 = [~LII] t.he 
column vect.ors for the scat.tering mode coefficients for 
fields scattered  from bodies I and 11, respect>ively, we 
see that t.he  boundary condit,ions may be writ.ten 

P I ~ I  + H I I ~ I I  = --E1 

H I U I  + BIIUII -En. (28) 

It should be uot.ed tha.t ( 2 8 )  includes all t.he inter- 
actions  between  tlhe two scatterers and is  therefore exact 
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to  the  extent of the approximation that  the  scattering 
of the bodies may  be completely  characterized by  the 
various  matrices  in  (28). The matrices 61 and 811 must 
have inverses (or pseudoinverses) by  the uniqueness 
theorem of the single-body scattering problem. Thus we 
find the solution of (28) to be 

a1 = PI-' [U - HIIPII-lHIBI-ll-l [ - - l+~IIBII - l~I I I  

a11 = B11-1 [ 17 - H1P1-1H11B11-11-1 [-E11 + H1Br1E1I 

(29) 

where U designates the  identity  matrix.  The  values of 
the  pattern  at various angles are given by  the column 
vector 

GIUI + GIIUII (30) 

or the coefficients a1 and  aI1 may  be used to calculat,e 
the  near fields when these  are of interest. 

SUMERICAL RESULTS 
The techniques discussed here  have been applied to 

a number of example  problems and where possible these 
results  have been compared to results  found  in the lit- 
erature. Some of the more important results are given 
here. 

Fig. 7 shows the scattered  pattern produced by  an 
elliptical  cylinder of semimajor  axis ka = 1.0 and semi- 
minor axis kb = 0.5. Both inside and outside  expansions 
and  the  direct mode-matching  methods were used and 
the results  are compa.red to t.he  method of Burke  and 
Twersky [Ill. The same problem was also solved using 
-an integral  equation  approach  and good agreement was 
obtained. 

We also show in  Fig. 7 the scattered  pattern of a 
square cylinder of half-length ka = 1.0. Also shown  is 
the result  obtained by Mei and Van Bladel  [l2].  Here, 
the sides of the cylinder  have  infinite  radius of curvature 
and only the inside expansion could be used. It should 
be  noted here  t.hat, no special precautions need be taken 
at the cylinder  corners in this  formulation of the prob- 
lem since the unknown is the field rather  than  the cur- 
rent  at  the corner and  the field is  finite at   the edge. 
Furthermore, it, n-as demonst.rated  for this problem that 
the  matrix resulting  from the integral  equation  formula- 
tion for the current. became ill-conditioned near the 
resonant  frequencies for  the  square cylinder [SI. This 
does  not occur when the problem  is  formulated  with the 
field as  the unknown.  Several  different  shapes of rec- 
tangular cylinders  were  investigated and  the results com- 
pared closely t.o t.hose of Mei  and  Van Bladel [l2]  and 
with  results  obt,ained  by the integral  equat,ion  formu- 
lation. 

Fig. 7 also shows the scattered  pattern of an elliptical 
dielect,ric cylinder of semimajor axis ka = 1.2 and semi- 
minor axis kb = 1.0198 with  a  dielectric  constant e/% = 
2.0. The result  shown mas obtained  using the direct 
mode-matching  method. It appears that sufficient data 
does not. exist in the  literature  to accurately check the 
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Fig. 7. Scattering  patterns for  conducting ellip& cylinder, con- 
ducting  square cylinder, dielectric elliptic cylinder, and two 
conducting square cylinders. 

TABLE I 
P A ~ E R I I  VALUES FOR 'bvo CIRCULAR CYLINDERS CALCULATED BY 
MULTIPLE SCATTERIXG APPROACH AND BY XETHOD OF Ron7 D41. 

Pattern Values g(@) 
Angle of Observation 

(Degrees) Multiple scattering Row's Method 

0 
20 
40 
60 

100 
80 

120 
140 
160 
180 

3.136 3.1359 
2.591  2.5912 

0.8793 
1.511 

0.8792 
1.5105 

0.8011 0.8011 
0.8064 0.8064 
1.029 1.0293 
1 .576 1 ,5760 
2.170 2.1700 
2.429 2.4290 

results  in  this inst.ance. Hon-ever,  t,he  elliptical dielect.ric 
scatterer was also solved for a number of cases with 
very  small  mavenumbers and  the results  agreed  with 
the well-known low-frequency Ragleigh  approximations 
[13]. It should be remarked that even  though the ge- 
ometry of the dielectric elliptic  cylinder conforms to a 
separable  coordinate  system, a closed form  solution in 
this inst,ance  cannot be  obtained.  Even  in elliptic cylin- 
drical  coordinates,  one  obtains an infinite  set of linear 
equations  for the modal coefficients, so that one  might 
prefer to solve t,he  problem  numerically in circular cylin- 
drical  coordinates in order to use Bessel functions  rather 
than  Mathieu functions. 

Fig. 7 also gives the scattering  pattern of two  square 
cylinders of the  type considered and spaced a distance 
kb = 3.0 apart.  This  pattern was obtained using the 
matrix which resulted  from solving t.he scattering  problem 
of an isolated  square  cylinder.  Although data for  t.his 
case do not exist, the method was checked using the 
same  program to calculate  scattering  by t,wo circular 
cylinders, the results  for which are k n o m  (ROW [14]) 
and  are given by  Imbriale  and  Mittra [lj]. Table I 
gives a comparison of the  pattern values  for the two 
circular  cylinders of radius ka = 1.0 and spaced kb = 3.0 
apart  for  various angles. The configuration is  similar to 
that of the square cylinders in Fig. 7. 
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It has been demonstrated  that  thc scat,tered field of a 
two-dimensional cylindrical  scatt,erer  can bc determined 
direct,ly wit,hout first solving  for the induced current. 
The method  proves to be useful for scatterers  in  the 
range 0 < kd < 70: d being t.he largest, dimension of the 
scatterer  and X. the wavenumber. It should be noted 
t.hat, for scat.terers of this size the phpsical or geomet,rical 
optics approximat,ions are  not applicable and  one must, 
resort  to  inverting  an  integral  or  matrix  opemtor. 

We  have also demonst.rated a met,hod for  calculating 
sca.t,tering from t,wo parallel perfecdy conduct.ing cylin- 
ders. The met,hod may  be extended to  t,he case of three- 
dimensional and dielect,ric scat>terere. 

It should be mentioned that  in cases when t,he in- 
duced surface  current, or t,he  polarization current is the 
quantity of int.erest? the problem  should be formula.t.ed 
with the current. as the unknown. This is because t,he 
higher order multipole  t.erms  cont,ribut,e substa.nt,ially to 
the  near fields and  it is t.he higher order  Fourier  pat,tern 
coefficients which have  t8he  greatest  relative  error,  even 
t,hough t>he coefficients themselves are  very small com- 
pared to t,he low-order coefficients. Thus  the far-field 
pattern may be  quit,e  accurate, whereas  tjhe nea.r  field 
may be somewhat in error resulting in Ia.rger errors in 
the surface or polarization current.  The lower order 
coefficients are  relatively-  more  accurate because t.he 
higher order multipole terms do  not couple significant,ly 
1vit.h the lower order  t.erms when the mean-squa.re error 
in  t.he  t.otal field is minimized on the bod:: con- 
tour. 

The formulation of t,he  scat,tering problem in terms 
of modal  wavefunctions also has  certain computationa.1 
advant,ages  over  t,he integral formulation. In  particular! 
one does not hare  to consider singhrit ies in  either  t,he 
induced  current.  or the kerneI funct,ion in  the  int.egal. 
Furthermore, numerical  instabilities  due t,o the resonances 
of the interior  problem  do not.  a.rise. Partially offset,t,ing 
these advant,ages, however, is the disadvant,age of 
calculating the higher  order multipole wave  func- 
tions. 

In t.he case of t.he dielcct,ric ecat.tercr.5: it appe:m that 
the modal formulnt.ion has an additional advantagc. In  
the  intcg~nl  equation formulation, the. integral crlu:tt.ion 
is satisfied at a suffiricnt. numbcr of points pcr wave- 
length  internal  to  the  scattmbr to  insuro a rcasonable 
approximat.ion to the polarizat,ion currmt.  Thus  the 
number of unknowns is proportional to the cross  sec- 
t,ional a.rea. In  t.he modal  formulationt however, the 
number of unknowns. thc far-field co&icient.s, is pro- 
portional to  the largest, dimcnsion of t,he  scat,terer.  For 
modera.t,e  size scat,terers in t,erms of ~ave leng ths~  t,he 
difference in the  number of unknowns  required in t.he 
two  formulations can be cignificant.. It. is apparently  for 
this reason t.hat few  rcau1t.s  a,ppr.ar in  the  litcraturc  for 
t,he dielect,ric scat,terer. 
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