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A New Numerical Approach to the Calculation
of Electromagnetic Scattering Properties of
Two-Dimensional Bodies of Arbitrary
Cross Section
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Abstract—A new method is introduced for formulating the scatter-
ing problem in which the scattered fields (and the interior fields in
the case of a dielectric scatterer) are represented in an expansion
in terms of free-space modal wave functions in cylindrical coor-
dinates, the coefficients of which are the unknowns. The boundary
conditions are satisfied using either an analytic continuation pro-
cedure, in which the far-field pattern (in Fourier series form) is
continued into the near field and the boundary conditions are
applied at the surface of the scatterer; or the completeness of
the modal wave functions, {0 approximately represent the fields
in the interior and exterior regions of the scatterer directly.
The methods were applied to the scattering of two-dimensional
cylindrical scatterers of arbitrary cross section and only the
TM polarization of the excitation is considered. The solution
for the coefficients of the modal wave functions are obtained
by inversion of a matrix which depends only on the shape and
material of the scatterer. The methods are illustrated using per-
fectly conducting square and elliptic cylinders and elliptic dielectric
cylinders, A solution to the problem of multiple scattering by two
conducting scatterers is also obtained using only the matrices
characterizing each of the single scatterers. As an example, the
method is illustrated by application to a two-body configuration.

INTRODUCTION

ONVENTIONAL approach to the solution of the
electromagnetic scattering problem entails the for-
mulation of an integral equation for the induced surface
current density in the case of a perfectly conducting
scatterer, or the induced polarization current for a di-
electric scatterer. The scattered field, which is often the
quantity of primary interest, is then calculated from the
- knowledge of the induced surface or polarization current.
Here we present two methods for formulating the
problem such that the Fourier coefficients of the far-
field scattering pattern are the primary unknowns. Thus
the pattern may be directly obtained upon solution of
the problem. Furthermore, the number of significant
unknowns may be determined a priort from the size of
the body, and then the boundary conditions applied at
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as many points on the contour of the scatterer as neces-
sary. This enables us to obtain a set of Fourier pattern
coefficients which are best in a least-square-error sense.
However, in the usual integral equation approach, if one
desires to apply the boundary conditions at more points
on the contour of the scatterer, the number of unknowns
is generally increased.

Although the principle of the methods to be discussed
apply to the general case of an arbitrary scatterer, the
basic approach will be illustrated by considering the two-
dimensional problem of TM scattering from cylindrical
scatterers of arbitrary cross section. The incident field
is assumed to be a plane wave with the conventional
exp ( jot) harmonic time dependence.

ANavyTic CONTINUATION OF FIELDS

Consider the two-dimensional scatterer S whose cross
section is shown in Fig. 1 with a TM electric field £, i
incident. The vector 5 = (p, ¢) locates points in cylin-
drical coordinates on the contour 38 of the scatterer or
in the region outside the scatterer.

Assume that the z component of the scattered elee-
tric field is written as an expansion in the eylindrical
Hankel function of the second kind so that the radiation
condition is satisfied,

ES(B) = X a.J"H.®(kp) exp (jne).

=2

(1)

Then in the far field, we use the asymptotic expansion
of the Hankel function

2] 172
lim H.®(kp) ~ (;Ic—p> Jvexp (—jkp)

(i

and obtain

2‘7 172 © .
ES(p) — (70—) exp (—jkp) 2. a.exp (jng).

>0 \TIP

n=—oc

Now the far-field scattering pattern is defined by

gle) = f) a, exp (Jne) (2)

n=—o

where the @, are the unknown Fourier expansion coeffi-
cients to be determined. While we assume that the scat-
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tering pattern is the primary quantity of interest, once
the unknowns @, are determined even the near field
may be calculated according to (1). Equation (1), how-
ever, may not be valid for all values of p less than the
minimum radius pmin which encloses the body (Fig. 1).
As pointed out by Millar [1], the formal series diverges
inside any circle which encloses a singularity of the
scattered field, or what might be considered to be the
image source of the incident field. The location of the
singularities depends on the excitation and the geometry,
but since the singularities of the scattered field must be
contained inside the scatterer S, we are assured the
series will converge outside the radius pmin.

Let us assume for illustration that we are concerned
with the seattering by a perfectly conducting cylinder.
In Fig. 1 it is obvious that the region of convergence
of the scattered field expression depends on the location
of the coordinate origin. If the origin is translated to
a new location at o = (po, ) with respect to the origi-
nal system as shown, we may again write the field in
terms of a convergent series of outgoing wave functions
in the new (primed) coordinate system, viz.,

ES(mo+5) = X an7™H,®(ko') exp (jmg¢’). (3)
In order to express (1) in this form and still retain the
original expansion coefficients as unknowns, the addition
theorem for Hankel functions is invoked (Stratton [2]),

w | Hua® (kpo)
H,?(kp) exp (jng) = 2
m=—cc Jn—m(kp[))

I (kp")
cexp [ j(n—m) ¢y ]
Ha® (k)
po > p
for )]
po < p

-exp (jme"),

If the original coordinate origin lies inside the body,
then po is always less than o’ and we may use (4) in (1)
to write

ES(Bo+7) = X aj"[ 2 Jo-m(koy)

-exp [ J(n — m) ¢y JHn® (kp')
-exp ( jme’) . 5)

Now in the region where both the conditions I5]| =
5o+ 5| > pmin and | 5" | > | 5o | are satisfied the series
in the brackets is absolutely convergent so that we may
interchange the order of summation to get

ES(po+7) = X [ X auj = nnlkp)

cexp [ j(n — m) ¢ ™Hn® (kp')
cexp [ jme’]. (6)

n=—=ux

ORIGIN OF NEW
COORDINATE
SYSTEM

ORIGIN OF
ORIGINAL
COORDINATE
SYSTEM

REGION INTO WHICH THE

FIELD REPRESENTATION

IS CONTINUED

Geometry for two-dimensional scatterer with TM wave
incident.

Fig. 1.

In regions where both (6) and (3) converge we may
identify (by the orthogonality of exp (jm¢’) on a circle
of large enough radius) the coefficients of (3) as

' = 2 ] ma(kpo) exp [j(n — m)go]. (7)
Since (6) is convergent for all p’ > pnin’ We may use it
to apply the boundary condition £.5 4- £."¢ = 0 at the
point on the boundary where the circle puni’ is tangent.
This process is essentially analytic continuation of the
field representation.

Generally the largest number [n| = N of the spec-
trum of coefficients a, which is significant is on the order
of about kpmin. For |n| > kowin’ the coeflicients decay
exponentially faster than the exponential growth of the
Hankel functions for p > pmin s0 that the scattered field
representation converges. Furthermore the largest number
of significant terms of j—J,(kpo) exp (—jngo) is about
| n| = koo because of the so-called spatial filtering of the
Bessel wavefunctions. Owing to the convolution form of
these two spectra in (7), we conclude that the largest
number |m | = M of the coefficients a,” which are sig-
nificant is about kpmin + kpe. Thus we may determine
a priori the number of terms nceded in (6). We simply
choose an M somewhat larger than kpy + kpnin and an
N somewhat larger than kpni,, truncate the series and
reverse the order of summation, writing
M

Z T men (kPO)

m=M

N
ES(p+5) = 2 aaf

n=—2xN
-exp [j(n — m) o] Hn'™ (kp')
cexp (jm) ). (8)

The process described, of changing coordinate origins
and analytically continuing the fields, may be used to
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find the value of the scattered field, at any point on a
convex body. Thus if we designate the coordinates of
B, Po, and p’ with subscripts ¢ to denote their values for
each different point on the body where the scattered
field is matched to the negative incident field, we have
a system of equations which may be written in the ma-
trix form

[Bnlla.] = —[Ei=] . (9
where
M
Bin = Z jﬂ_m']m—n(kpio)
m=M
rexp [j(n — m)dulfHa® (kp) exp (jme:)
(10)

Ejioe = Ezinc(Pi}¢i)1 7:=1721' * 'JP' (11)

~ If the number of points matched P is equal to the num-

ber of coefficients 2N + 1, then the solution may be
found by inverting the matrix [8:.] which must be non-
singular due to the uniqueness condition for scattering
(Jones [3]). Thus we write

[e:] = —[Bal'[E]

- In order to make the solution less dependent on the
particular choice of points where the field is matched,
one may attempt to satisfy (9) at many points such
that there are more equations than unknowns. A set of
coefficients a, can then be found which satisfies (9) in
a least-square-error sense. The solution is

[a.] = —{[Bi )" [Bun )} [Bin I [E ]

where the dagger denotes the transpose conjugate of the
matrix. The quantity {[8:]'[Bin]}"'[Bin]" is called the
“pseudoinverse” (Penrose [4], [5]) of the matrix [Bi].
Of course once the coefficients a, have been found by
either (12) or (13) the scattering pattern is calculated
by (2).

The possibility of representing the scattered field in
" terms of outgoing cylindrical wave funections (which we
will designate as an “outside expansion”) at every point
on a body requires that the body must be convex and
that the largest radius of curvature of the body not be
so large that p, must be chosen large. If pp is too large,
then the number of terms needed to calculate the matrix
element may become prohibitively large.

A simple modification of the preceeding method is
available which will always work and is generally pref-
erable. Instead of expanding the field in the new co-
ordinate system in terms of outgoing wave functions,
we expand in terms of the cylindrical wave functions
which are valid inside the largest circle of radius pmes’
which excludes the scatterer (Fig. 2). This field expan-
sion involves the ordinary Bessel functions of the first
kind,

(12)

(13)

BS54 ) = 5 aninTu(ke) exp (jmg). (14)

m=—c0
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Fig. 2. Geometry for inside expansion using analytic continuation.

To express (1) in this form, we again use the addition
theorem (4) this time noting that po > p’. Using ana-
Iytic continuation arguments we obtain the inside ex-
pansion equivalent of (7),

@' = 2 @ Huo® (kpo) exp [j(n — m)¢o].  (15)

It should be noted that the analytic continuation argu-
ment will be valid only if pp > pmin 50 that there exists
at least a small circle about the new coordinate origin
which lies entirely inside a region where the series rep-
resentation is valid in both the original and the new
coordinate system. Such a condition was not needed for
the outside expansion since we needed only to find a
large enough circle about the new coordinate system on
which the field expressions were valid in either coordi-
nate system.

Upon truncating the series and interchanging the order
of summation one obtains the [, ] matrix for the inside
expansion,

M
Z jn~mHm—n @ (kPiD)

m=—2f

cexp [7(n — m) ] m(kp!) exp (jme). (16)

Note that the radius vectors p;o and p;’ are not the same
for matching a given point on the scatterer with the
inside expansion as for the outside expansion. However,
for points on a body where either expansion is appro-
priate, either one may be used so that the matrix [8in]
may contain a mixture of the two types of expansions.

One further problem is that of bodies which are con-
cave to the extent that no coordinate system can be
found which would enable one to match the field at
some point on the body. An example is the body n
Fig. 3 where it is desired to match fields at point P.
An auxiliary coordinate system is chosen at g, which
extends the field part of the way to the boundary as
shown. Then a new coordinate system at sy is chosen
with respect to the auxiliary system. The fields in this

Bin =
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REGION INSIDE WHICH SERIES CONVERGES IN THE
AUXILIARY COORDINATE SYSTEM

REGION INSIDE WHICH SERIES CONVERGES
N THE POINT MATCHING COORDINATE
SYSTEM

CIRCLE OF MINIMUM RADIUS ENCLOSING
THE BODY IN THE ORIGINAL COORDINATE
SYSTEM

Fig. 3. Use of auxiliary coordinate system to match interior points
of concave scatterer.

system may be expanded in terms of the fields in the
auxiliary system and the analytie continuation argument
used to find the coefficients of expansion. Thus the field
in the auxiliary system is written as in (14),

ES(+7) = X a7 JIn(kp’) exp (jme’). (17)

Now we employ the addition theorem for Bessel func-
tions of the first kind (Stratton [2]),

In(kp’) exp (gm¢’) = 3 Jmp(kpd')

p==——3C

-exp [j(m — p) oo’ Vop(ke)
-exp (jp¢”). (18)

This may be substituted into the expression in the auxil-
iary coordinates and the summations interchanged in the
common regions of absolute convergence to get

o

ES(o+n +5") = Z { X and"Vup(ko')

p=st m=—
-exp [J(p — m)eo' 1} 77T (kp"")
(19)

The bracketed expression may now be recognized as the
expansion coefficient in the double-primed coordinate
system which is valid at point P. Of course, we have
already expressed the a,’ coefficients in terms of the
unknown coefficients @, in (15). When the summations
are suitably truncated and the summation over n is
interchanged, the result is

ES(po+ 5 + 57)

-exp (7p¢”).

N P M
>~ 3 el X X (T Huen® (kpo)

=P m=M
-exp [J(n — m) g ](j7"I m—p(kpo')
-exp [j(p — m)¢d D (7 p(ke") exp (jpe”))}.

n=—x

(20)

(b)

Fig. 4. Use of branches and chains from auxiliary coordinate
system. (a) Branching from auxiliary coordinate system. (b)
Chains of auxiliary coordinate systems which are also used for
point matching.

DEELECTRIC SCATTERER

NEW COORDINATE ORIGIN FOR
EXTENDING THE INTERIOR
FIELD EXPANSION TO THE
SURFACE OF THE BODY

i th POINT ON THE
SCATTERING SURFACE

NEW COORDINATE ORIGIN
FOR EXTENDING THE -
SCATTERED FIELD

o EXPANSION TO THE SUR-
FACE OF THE BODY

Fig. 5. Geometry of coordinate systems used in dielectric seattering
problem.

Obviously, the computational difficulty necessary to
match the field at one point is considerable when this
method must be used. Fortunately, in many instances
the auxiliary coordinate system may be used to cal-
culate the fields at several points on a body by branch-
ing out from it as in Fig. 4(a). Particularly difficult
points to reach may require a chain of auxiliary co-
ordinate systems as shown for the two elliptic cylinder
scatterers in Fig. 4(b).

The analytic continuation method may also be ex-
tended to calculate scattering from a dielectric eylin-
der [6]. The procedure requires only that we begin with
an inside expansion for the fields inside the cylinder in
addition to the outside expansion for the scattered fields.
Thus in Fig. 5 the field in the (p,¢) coordinate system
in the interior of the body is expanded by

EIG) = 3 bujJn(kap) exp (jme)  (21)

=00



314

where ks 1s the wavenumber in the dielectric medium.
The internal fields may be continued to the surface
using inside expansions with the aid of any auxiliary
coordinate transformations which might be needed. The
exterior scattered field is also continued to the surface
by any of the methods discussed for the perfectly con-
ducting scatterer. The total tangential E field must be
continuous at the dielectric interface. Thus for the <th
point on the boundary the fields satisfy

Ezs<50i, + 51',) - EzI(ﬁOi” + l_)i”) = —‘Ei’m(ﬁi) (22)

where 5/, p’, and 5; are defined as in Fig. 5. At the
d_ielectric interface, the tangential component of the total
H field must als_o be continuous. In the two dimensional
TM case, the H field is given by

4

— X grad E,
Joon

H = (23)
where £ is the unit vector along the z axis. Application
of the boundary conditions at the ¢th point gives

e X [£ X (grads BS — grad” BF)]
= —#; X [2 X grad; E.7] (24)

where #; is the unit normal to the boundary at the dth
point and grad, grad,””, and grad; are the gradient
operators for the 7th point in the (p/,¢:'), (pi’,¢i"),
and (p;¢:) coordinate systems, respectively (Fig. 5).
When written out explicitly (22) and (24) constitute
a matrix system for determining the unknown coeffi-
cients a, and b,, of the scattered and internal fields,
respectively.

Analytic continuation of the fields in the case of the
dielectric ¢ylinder is considerably more difficult and nu-
merically time consuming than for the conducting cyl-
inder. At least two new coordinate systems are needed for
each point at which the field is matched and both the
electric and magnetic fields must be calculated. For cases
in which the dielectric cylinder is not too thin, a simpler
representation of the fields near the scatterer is described
in the next section.

Several advantages of analytic continuation over the
usual methods are apparent:

1) No integrations are performed.

2) The size of the matrix to be inverted to give suf-
ficient accuracy can be determined a priors.

3) The method works even for cases when the scat-
terer is resonant and surface current formulations
fail.

4) No singularities in the fields arise in contrast to
the singularities in surface current which arise, for
example, at edges.

5) Upon solution of the matrix equation the scattered
fields may be easily compared to the incident fields
at the surface of the scatterer to determine how
well the boundary conditions are met.

It should also be noted when comparing this method to
the mode-matching method to be discussed in the next
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section, that analytic continuation is applicable to any
scattering shape, whereas the mode-matching method
works best for shapes which do not depart significantly
from a circular cross section.

The major disadvantage of the method is the com-
putational difficulty in caleulating the matrix [8;,]. This
is in part due to the time-consuming summations that
must be performed for each matrix element plus the
calculation of higher order Bessel and Hankel functions
even when recursion relations are used to generate those
functions. Furthermore, each point on a body requires
the computation of several coordinates associated with
it which must be carefully chosen to insure that the
representation converges on the body.

The only analytic source of error which arises in this
formulation is the truncation of the expansions in each
coordinate system. As mentioned previously, the trun-
cation size can be predetermined for each scatterer.
Furthermore, upon solution of the problem we need only
examine the rate and degree of decay of the scattering
coefficients to be reasonably assured of the accuracy of
the scattering pattern. In the surface current formula-
tion, however, when moment methods with subsectional
bases are used, the coefficients of expansion of the sur-
face current are all of about the same order, and usually
a larger matrix is solved to check convergence (Har-

rington [7]).
MobpE MaTcHING OF FIELDS

For two-dimensional scatterers whose cross section does
not depart significantly from a circular shape, the scat-
tered field representation (1) may be used along the
contour 95 even if the formal series diverges for some
points on the contour. However, the way (1) is used
becomes ecritical here. It has been shown by several
authors [8]-[10] that a trunecation point N and a set
of scattering coefficients a,(N) can always be found such
that the mean-squared error in the scattered field rep-
resentation on the contour,

J.

can be made as small as desired. Thus we say that the
field represented by the series in (25) converges in the
mean (as N increases) to the true field in the region
outside the scatterer S. The coefficients a,(N) have been
written to show explicitly their dependence on N, be-
cause it is precisely this dependence which enables us
to use this field representation everywhere without ana-
lytically continuing the fields. It is true that if we des-
ignate the exact scattered mode coefficient by a,, the n
liMysw @ (N) = @,. One finds in actual practice, however,
that the higher order coefficients will not be relatively
close to @, in any truncated problem, and will generally
be smaller in magnitude than the correct a,. This rela-
tive error actually helps to keep the series field representa-
tion from diverging numerically. As N is increased, the

| ES(p) — 2 an(N)JHa® (kp) exp (jné) |* ds

n=XN

(25)
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coefficients in the first part of the scries approach the
correct coefficients a,, so that the first part of the series
begins to diverge in the near field. But this tendency is
always corrected by the last few terms in the series
whose coefficients are small, but whose scattered wave
functions have a large contribution in the near field.
The total finite sum actually does represent the field
although the formal infinite sum representation may
diverge.

Assuming the field may be so represented, the solution
of (25) may be obtained in an approximate sense if the
mean-squared error is minimized over a set of points on
the body rather than over the entire surface. The solu-
tion of the perfectly conducting scatterer follows then
as in (13) if now we redefine

Bin = H,® (kp;) exp (jné:).

The method may be extended to include the solution of
the dielectric scattering problem by using (21) through-
out the interior of the scatterer and applying boundary
conditions (22) and (24) to obtain a matrix equation
for the unknown scattering and internal eylindrical mode
coefficients.

As the cross section of the scatterer is made thinner,
one finds that the method described requires more and
more coefficients to accurately represent the fields. Thus
our a priori estimate of the number of coefficients re-
quired becomes less accurate. While only the first few
coefficients may actually contribute to the far-field pat-
tern, in order to obtain them accurately, a large matrix
must be inverted. I'urthermore, the larger matrix will
have somewhat less desirable characteristics for com-
putational purposes because of the order of the singu-
larities in the higher order Hankel functions. For thin
bodies therefore, the analytic continuation procedure may
be more useful despite the large number of coordinate
transformations required.

(26)

SCATTERING BY PArarLLEL CYLINDERS OF
ARBITRARY CROSS SECTION

Either the analytic continuation method or the method
of direct mode matching of the fields may be extended
to solve the problem of multiple scatterers. We illustrate
the method by considering the scattering of two parallel
perfectly eonducting eylinders with a TM wave incident.
One simply writes the scattered field in terms of two
series of outgoing wavefunctions, each scatterer contain-
ing a coordinate origin for one set of wave functions.
Then analytic continuation or direct mode matching is
used to minimize the total tangential electric field on
the boundary of both of the scatterers. (If one or both
of the scatterers is dielectrie, the field inside each di-
electric scatterer is expanded in a series of regular wave
functions and the difference between the tangential com-
ponents of the total interior and exterior electric and
magnetic fields is minimized on the contour of the seat-
terer.)

If, however, the inverse or pseudoinverse of the matrix

[Bin] of either (10) or (26) is already known for each
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PATTERN AND THE INCIDENT
FIELD

Fig. 6. Geometry for two cylindrical condueting scatterers.

scatterer one may formulate the problem such as to
write the solution directly in terms of these matrices,
which are independent of the incident field and depend
only on the shape of the scatterer and the frequency.
Hence we make the following definitions which refer to
Fig. 6:

E: = [E1]
B = Be(Re + 5) (272)
En = [E]
B = B (R + ) (27b)
H: = [Hw]
Hiat = jH,® (kBiY) exp (jngst) (27¢)
Hu = [Hw"]
HelT = j=Hn® (kR:) exp ( jme:™) (27d)
Gy = [Gp']
Gpn! = exp [—jkRy! cos (B — ¢,) ] exp (jne,)  (27e)

Gu = [Gpmnj
Gl = exp [—JkR! cos (BT — ¢,) Jexp (jme,). (27f)

I

The vectors E1 and Epr represent values of the incident
field on the surfaces of two scatterers. The matrix Hi
is a propagation matrix which relates the scattering co-
efficients from body I to field values at the appropriate
points on body II and similarly for Hi. Gr and Gu
relate the secattering coefficients from body I and II,
respectively, to the value of the scattered far-field pat-
tern at angle ¢, with respect to the origin 0. We will
designate by gr ! and Sir! the inverses or pseudoinverses
of the B matrices which are presumed to be known for
body I and body II, respectively.

If we designate by ar = [a.r] and amr = [a,'"] the
column vectors for the scattering mode coefficients for
fields scattered from bodies I and II, respectively, we
see that the boundary conditions may be written

Biax + Hiran = —Er
Hior + Buen = — B (28)

It should be noted that (28) includes all the inter-
actions between the two scatterers and is therefore exact
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to the extent of the approximation that the scattering
of the bodies may be completely characterized by the
various matrices in (28). The matrices 81 and B must
have inverses (or pseudoinverses) by the uniqueness
theorem of the single-body scattering problem. Thus we
find the solution of (28) to be

ar = B [U — HufuHipr ' 7 [— Er+-HuBu B ]
an = B [U — Hir ' HuBi ' [~ Fu + Hifr'E1]
(29)

where U designates the identity matrix, The values of
the pattern at various angles are given by the column
vector

Grar + Guan (30)

or the coefficients ar and a;x may be used to calculate
the near fields when these are of interest.

NvuMEeRricAL REsuLts

 The techniques discussed here have been applied to
a number of example problems and where possible these
results have been compared to results found in the lit-
erature. Some of the more important results are given
here.

Fig. 7 shows the scattered pattern produced by an
elliptical cylinder of semimajor axis ke = 1.0 and semi-
minor axis kb = 0.5. Both inside and outside expansions
and the direct mode-matching methods were used and
the results are compared to the method of Burke and
Twersky [11]. The same problem was also solved using
-an integral equation approach and good agreement was
obtained. :

We also show in Fig. 7 the scattered pattern of a
square cylinder of half-length ka = 1.0. Also shown is
the result obtained by Aei and Van Bladel [12]. Here,
the sides of the cylinder have infinite radius of curvature
and only the inside expansion could be used. It should
be noted here that no special precautions need be taken
at the eylinder corners in this formulation of the prob-
lem since the unknown is the field rather than the cur-
rent at the corner and the field is finite at the edge.
Furthermore, it was demonstrated for this problem that
the matrix resulting from the integral equation formula-
tion for the current became ill-conditioned near the
resonant frequencies for the square cylinder [6]. This
does not occur when the problem is formulated with the
field as the unknown. Several different shapes of rec-
tangular cylinders were investigated and the results com-
pared closely to those of Mei and Van Bladel [12] and
with results obtained by the integral equation formu-
lation.

Fig. 7 also shows the scattered pattern of an elliptical
dielectric cylinder of semimajor axis ke = 1.2 and semi-
minor axis kb = 1.0198 with a dielectric constant e;/e =
2.0. The result shown was obtained wusing the direct
mode-matching method. It appears that sufficient data
does not exist in the literature to accurately check the
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Fig. 7. Scattering patterns for conducting elliptic cylinder, con-
ducting square cylinder, dieleetric elliptic cylinder, and two
conducting square cylinders.

TABLE I

Patrers VaLuEs ForR Two CirctLar CyLinDERS CALCULATED BY
MULTIPLE SCATTERING APPROACH AND BY METHOD oF Row [14].

Pattern Values g(¢)

Angle of Observation

(Degrees) Multiple scattering  Row’s Method

0 3.136 3.1359
20 2.591 2.5912
40 1.511 1.5105
60 0.8793 0.8792
80 0.8011 0.8011
100 0.8064 0.8064
120 1.029 1.0293
140 1.576 1.5760
160 2.170 2.1700
180 2.429 2.4290

results in this instance. However, the elliptical dielectric
scatterer was also solved for a number of cases with
very small wavenumbers and the results agreed with
the well-known low-frequency Rayleigh approximations
[13]. It should be remarked that even though the ge-
ometry of the dielectric elliptic cylinder conforms to a
separable coordinate system, a closed form solution in
this instance cannot be obtained. Even in elliptic ¢ylin-
drical coordinates, one obtains an infinite set of linear
equations for the modal coefficients, so that one might
prefer to solve the problem numerically in circular cylin-
drical coordinates in order to use Bessel functions rather
than Mathieu functions.

Fig. 7 also gives the scattering pattern of two square
cylinders of the type considered and spaced a distance
kb = 3.0 apart. This pattern was obtained using the
matrix which resulted from solving the scattering problem
of an isolated square cylinder. Although data for this
case do not exist, the method was checked using the
same program to calculate scatiering by two circular
cylinders, the results for which are known (Row [14])
and are given by Imbriale and Mittra [15]. Table I
gives a comparison of the pattern values for the two
circular cylinders of radius ke = 1.0 and spaced kb = 3.0
apart for various angles. The configuration is similar to
that of the square cylinders in Fig. 7.
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CONCLUSIONS

It has been demonstrated that the scattered field of a
two-dimensional cylindrical scatterer can be determined
directly without first solving for the induced current.
The method proves to be useful for scatterers in the
range 0 < kd < 20, d being the largest dimension of the
scatterer and k the wavenumber. It should be noted
that for seatterers of this size the physical or geometrical
optics approximations are not applicable and one must
resort to inverting an integral or matrix operator.

We bave also demonstrated a method for calculating
seattering from two parallel perfectly conducting exlin-
ders. The method may be extended to the case of three-
dimensional and dielectric scatterers.

It should be mentioned that in cases when the in-
duced surface current or the polarization current is the
quantity of interest, the problem should be formulated
with the current as the unkmown. This is because the
higher order multipole terms contribute substantially to
the near fields and it is the higher order Fourier pattern
coefficients which have the greatest relative error, even
though the coeflicients themselves are very small com-
pared to the low-order coefficients. Thus the far-field
pattern may be quite accurate, whereas the near field
may be somewhat in error resulting in larger errors in
the surface or polarization current. The lower order
coefficients are relatively” more accurate because the
higher order multipole terms do not couple significantly
with the lower order terms when the mean-square error
in the total field is minimized on the body con-
tour.

The formulation of the scattering problem in terms
of modal wavefunctions also has certain computational
advantages over the integral formulation. In particular,
one does not have to consider singularities in either the
induced current or the kernel function in the integral.
Furthermore, numerical instabilities due to the resonances
of the interior problem do not arise. Partially offsetting
these advantages, however, is the disadvantage of
calculating the higher order multipole wave fune-
tions.

=1

In the case of the dielectric seatterers, it appears that
the modal formulation has an additional advantage. In
the integral equation formulation, the integral cquation
is satisfied at a sufficient number of points per wave-
length internal to the seatterer to Insure a reasonable
approximation to the polarization current. Thus the
number of unknowns is proportional to the cross see-
tional area. In the modal formulation, however, the
number of unknowns, the far-field coefficients, is pro-
portional to the largest dimension of the scatterer. For
moderate size scatterers in terms of wavelengths, the
difference in the number of unknowns required in the
two formulations can be significant. It is apparently for
this reason that few results appear in the literature for
the dielectric scatterer.
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