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Summary

General inequalities of type (5} for eigenvalues were established as early as 1912
by H. WEevL [11] through consideration of integral equations; he used them for
studying the asymptotic behaviour of 4, when » - co. These inequalities seem to
have been forgotten, as some of them were independently re-discovered by several
authors (see [4], p. 314 and [10], pp. 483—484). — Such inequalities are here derived
and applied in various ways to special problems (vibrating strings, rods, membranes
and plates). Explicit lower bounds for 4, are obtained in a somewhat similar manner
in terms of the GREEN’s function. For SCHRODINGER'S equation (15°), the very
simple inequalities (17’) are found. Analogous inequalities are established for a
class of equilibrium problems. Many of the inequalities thus obtained express
convexity properties (cf. the Post-scriptum above and the paper by Pérya and
SCHIFFER quoted there).

(Regu: le 3 décembre 1960.)

Green’s Function for Laplace’s Equation in a Circular Ring
with Radiation Type Boundary Conditions
By James F. Hevpa, Cincinnati, Ohio, USA?)

1. Introduction

Let (#,6) be the polar coordinates of a point of the circular ring
0 <, <y <r,and consider the problem of solving Poisson’s equation,

ot T v o v 062

per = 0L 1oL 1 0L gy gy (1)

1) Aircraft Nuclear Propulsion Department, General Electric Company.



Vol. XI1I, 1961 Green’s Function for Laplace’s quation 323

subject to the boundary conditions

T
%7 o hl T;r—fl = ¢1(71’ 0) (hl 2 O) ’ (2)

T !
%17 e T!r:rz - ¢2(72’ 0) (h,=0), (3)

where the source function F and the functions ¢, ¢, are given.

Equation (1) describes the flow of heat in a long hollow cylinder, the flow
taking place in planes perpendicular to its axis, with %; = H [k, where H, is
the coefficient of surface heat transfer at » = #, and % is the thermal conductivity
of the cylinder material. We shall assume the %; constant.

When ¢, = ¢, =0, the boundary conditions (2), (3) describe cooling by
forced convection and are sometimes referred to as radiation boundary con-
ditions.

The solution of the problem defined by equations (1), (2) and (3) is

T(r, 0) = || G, 0: 7, 00 Flra, 00) Ao + [ 97, ) Glr, 0: 70, 00) sy, (4
R ¢

where G(#, 0; 7,, 0y) is the appropriate GREEN’S function; d4, is an element
of area of the plane annulus R: 7; < » < #,; C is the complete boundary of R;
the function ¢ = ¢, when », = 7, and ds, is an element of arclength on C.

2. Derivation of G(r, 0; ry, 6,)

It is convenient to denote the point (#, 8) by the vector z = 7e¢'® and to
write G(r, 0;7,, 0,) =G(z, z,). The GREEN’s function G(z, z,), where z, z, are
distinct points of R, is defined to be the solution of

12G(z, 2) = —6(z — 2,) : (5)
with the boundary conditions

S HENKG, =0 (=12). (6)

It may be Writtén
G=G*4 S, (7)

where the singular component S is given by
S(3, 7) = — 5= Relog(r ¢ — 7, ¢%) (8)

and the non-singular component G* is a solution of 2G = 0 subject to condi-
tion (6).
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One shows readily that

14

~ 1 ad 1 7 "
Sz, zg) = Tl [— logr +41‘:% (j/i) cosn (6 — 60)} , (o<
- L (o 60 >
- — |~ logr, +;‘7 (1;:) cosn (6 — 0p)|, (rg>7),
while the most general G* in terms of circular harmonics is
G*(2, 29) = Ag + Bylogr + Y (A, 7+ B,r=") cosn 6
1

+2(Cn vt + D, y=* sinn 0,

1

(10)

wherein the ‘constants’ A4, By, 4,, B,, C,. D, (n=1,2,...) are now to be
determined so that

2 (= 1) by G¥| z_%;ﬂwniflhis (=12 . (1)

or r—¥; -7

Finding and simplifying these ‘constants’, although somewhat of a pro-
digious task, is well worth the effort in view of the reasonably simple results.
One finds, upon introducing the substitutions

Fomen, Do T2 g O <119 =< n) (12)
61 71 7y
that
1 1
1 (hl o + ;/—-) (hz Inv, + ;—)
dg= 5— : =, (13)
2m Bk © Ny i .}.LL
12 M2 7 7
h — ) + —
By = by E e ,/j_,-_@_ (14)
2n hy by g + =2 h
£
hy (ﬁ — —h) sinh#» ny + 1 (h2 — l) coshn 7, '
_ —cosn B, % 7y 7y Yy (15)
“dn = 2 !
2y (1,%7 + 7y hz) sinh# 1, 4+ # (% + %) cosh# 17,
172 2 1
by 1YL , 1 n
B — v cosm 0, by (7 - 71) sinh# (75 — 1) + 7y (hl - 7"1) coshn (1, — 1)
" 2 LAy hy hy) sinh + (hl hz) coshn
(1,172‘1‘ 1 2)1 71 n72+71 N2
Cn __ DVL —
4 =g =tannb,. (17)

n n

, (16)
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The final form of the GREEN’s function G(z, 8; 7, 8,) may now be obtained
by substituting the above evaluations of 4, By, 4,, B,, C,, D, into equation
(10) and combining the result with equation (9) in accordance with relation (7).
After much algebraic refinement, the final result turns out to be:

For nSr,<7v <7,, ie, for 0=Zny<<n=1,,

G(n, 0; no, O) = 2

1
0 (; cosh# 5y + A, sinhzn 170) (— cosh# (n, — n) + —}Lsmhn (ns — n))
+22 1 A —~ cosn (B8 — B,)}.
-1 i 2 M
n (711/24-}11 )smhnnz+n(71+7

2

)cosh n Ny

(18)
Since G(z, %) is symmetric in z, 2, the form of G when 7, <r <7, <7, is
obtained from equation (18) by interchanging # and #,.

3. Green’s Function Vanishing on the Ring Boundaries
By letting %; - oc, ky > o0 in formula (18) we obtain

G(n, 6;ny, 0y) = % Ho A11e — 1) (77;2_ ") + 22 sinbn 1, Sinhe (g, = 1) oy, (60— 0,1, (19
=1

% sinhz 7,

a reasonably simple form of the GREEN’s function which vanishes on the outer
circle 7 = 7,, ie., ) = 5,. Equation (19) applies when 0 < 5, < 5 < 7,; the
applicable form when 0 < < 5, < 5, is obtained from (19) by interchanging
n and ), thereby yielding the GREEN’S function which vanishes on the inner
circle = 0. ‘

This case is treated by HILBERT and CoURaNT [1]2) who derive the equi-
valent of (19) using complex variable methods. Although their analysis is
short and painless, their final result, expressed in terms of theta functions, does
not lend itself easily to analytical computations. It is of some interest to show
that the two results, superficially very dissimilar, are indeed equivalent.

H1LBERT-COURANT take 7, = @12, r, = ¢=12, (0 < ¢ < 1), so that 7,7, = 1.
Free of the theta function notation, their result is

Gz, z) = zln [ logg + log |z~ '8%/108 9] 4. Iogll/j— V + log [Q(} (20

2) Numbers in brackets refer to References, page 327.
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where 0
Tt v )
o=t e
1,ljl(l—qﬂ znz)(TA 2,;2)

It is sufficient to compare (19) and (20) for z, real, i.e. z, = 7,, 8, = 0 or a.
To be specific we take 8, = 0. Equation (20) can then be rewritten, when
7o < 7, as

_ 1 [logrylogr 77,
27 G = ) [ Tog 71 log Yo ]
1 2 (22)
v ¥
- 710g[1 + (7") -2 7"c050] —log | Q] .
Tt is then a simple matter to identify the term
L [ logrglogr 4 (77
2 [ logr, log( Yo )]
with the term #y(n, — 5)/n, of equation (19). It remains then to show that
> sinh# 7, sinhw (ny — %)
#ee (23)

1 [ 7 \2 7,
— 10g[1+(r;’—) —2(7/0') COSO] —log|Q] - }
On the right side of equation (23) we have, for the first term, the known

expansion ) RV &S ey cosn b
— gt () 27 cost] = 3 (7o) 0 (24)

no1

From equation (21),

0 .z 00 L7
log]szloggH~7f o +logg11_7‘{ s

(25)
y—2 i
logHil—y‘“’ 7o 7| »AlogH 1- 4---
Consider the first term of equation (25). We may write
i 001__ 41'757‘:()0] l]‘ i
oot = S
(26)

i log[] +( ;;)2 -2 (7‘?” ]:) COSO]. l

il
lMg
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Since

1 r_ <
, =t i< forv=1,2, ...,

2
71

4y 7

7
Loy,

4v

we may rewrite (26) as

1Ogﬁi1_yiyil Zoo’zw'yvn(:)n COSWMO

v=1n-1

) (27)

rin ( 7 )” cos#u 0 l

1 —rin Ly, n

»
#a=1

where we have used an expansion as in (24), interchanged orders of summation
(which is permissible here) and summed the resulting geometric series. Observ-
ing that %, = — 2log r,;, we may write finally

log JTIN- 2= ! f(’) 7" cosn 0 )
gv=1' 7 ‘~> 2 vy msinhun,

0 n—1

Proceeding similarly with the other terms of (25) one easily obtains the
result

oo 737 cosh|n log j o )
—log| Q| —2 ___._(__,,,’0} cosn ) — 3 cosh (n 1087 70) sy g, (29)

ot n sinhz 7, “~ n sinh# #,

whence it is a simple matter to show that when (29) and (24) are added and
simplified, the result is the required left member of (23).

Other specializations of the general form (18) are also of interest. Thus
one might keep #, finite and let 4, - oo, as would be required in determining
the steady temperature in a long hollow cylinder with cooling at the inner
surface and temperature 0 at the outer surface.

The form (19) is only slightly more involved when the ring boundaries are
non-concentric. This result, involving bi-polar coordinates, was previously
presented by the writer in reference [2].
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Zusammenfassung

Es wird die Greensche Funktion der Laplaceschen Gleichung fiir einen Kreisring
hergeleitet, wobei Randbedingungen vom Strahlungstyp angenommen sind. In
demjenigen Spezialfall, in dem die Randbedingungen das Verschwinden der
Greenschen Funktion verlangen, wird gezeigt, dass die gefundene Darstellung der
Greenschen Funktion iibereinstimmt mit der Formel, wie sie im Buch von HiLBERT-
CouraNTt unter Verwendung von Thetafunktionen hergeleitet ist.

(Received: October 10, 1960.)

A Boundary-Layer in 2 Non-Newtonian Fluid

By JouN R. JoNEs, Swansea, Great Britain?)

1. Introduction

The boundary-layer theory was developed by Pranptr [1]1?) for fluids of
constant viscosity, initially for the case of laminar flow, and later was extended
to include compressible viscous fluids and turbulent flow in the boundary-
layer. In recent years experiments have shown that several phenomena obser-
vable in fluids are not predicted by the classical theory of viscous flow. This
has led to the formulation of more complicated rheological equations of state,
either deduced from a molecular picture or microscopic model of the material,
or based on idealizations of simple experiments. The invariant forms of
rheological equations of state for a homogeneous continuum, suitable for
application to all conditions of motion and of stress, have been discussed ge-
nerally by OLDROYD [2]; restrictions are imposed on their form by the physi-
cal conditions that the rheological properties they describe are independent
of the frame of reference and independent of the motion of the material
element in space. With the growing interest in non-Newtonian behaviour it
seems that one should now, if possible, extend the boundary-layer theory so
as to include a wider range of fluids. In the present paper the effect of a
variation of viscosity with rate of shear and of a normal-stress coefficient
{representing‘ cross-viscosity ') are examined in a simple type of two-dimensional
boundary-layer. For reasons of mathematical convenience the case which is
worked out in detail, by way of illustration, is one in which the viscosity co-
efficient is a linear function of the rate of shear, the normal-stress coefficient
is arbitrary and the mainstream velocity is proportional to the one-third
power of distance measured from a stagnation point. It is of interest to note

1y Department of Applied Mathematics, University College of Swansea.
2} Numbers in brackets refer to References, page 343.



