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General inequalities of type (5) for eigenvalues were established as early as 1912 
by H. WEVL [11] through consideration of integral equations; he used them for 
studying the asymptotic behaviour of kn when n --> oo. These inequalities seem to 
have been forgotten, as some of them were independently re-discovered by several 
authors (see [4], p. 314 and [101, pp. 483-484). - Such inequalities are here derived 
and applied in various ways to special problems (vibrating strings, rods, membranes 
and plates). Explicit lower bounds for 41 are obtained in a somewhat similar manner 
in terms of the GREEN'S function. For SCHRODINGER'S equation (15'), the very 
simple inequalities (17') are found. Analogous inequalities are established for a 
class of equilibrium problems. Many of the inequalities thus obtained express 
convexity properties (cf. the Post-scripture above and the paper by P6LYA and 
SCHIFF~R quoted there). 

(Regu: le 3 dficembre 1960.) 

Green's Function for Laplace's Equation in a Circular Ring 
with Radiation Type Boundary Conditions 

By JAMES I;. HEYDA, Cincinnati,  Ohio, USA z) 

1. I n t r o d u c t i o n  

Let (~, 0) be the polar coordinates of a point  of the circular ring 
0 < q < r < r 2 and consider the problem of solving P o l s s o # s  equation,  

_ 02T 1 0 T  1 0 ~ T  F(r ,  0 ) ,  (1) 
V2T = ~ r  2- + 7- 0-7- + r ~ 002 - -  

i) Aircraft Nuclear Propulsion Department, General Electric Company. 
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subject  to the bounda ry  conditions 

o r  hi T I Or I . . . .  = r 0) (h~ > 0 ) ,  (2) 

01" 
O-r- + h2 T[ = r O) (h 2 >= O) , (3) 

ir~r2 

where the source function F and the functions r r are given. 
Equa t ion  (1) describes the flow of heat  in a long hollow cylinder, the flow 

tak ing  place in planes perpendicular  to its axis, with h i ~ H d k ,  where H i is 
the coefficient of surface heat  t ransfer  at  r = r~ and k is the thermal  conduct iv i ty  
of the cylinder material .  We shall assume the h i constant .  

When  r = r - 0, the bounda ry  conditions (2), (3) describe cooling b y  
forced convect ion and are somet imes referred to as radiat ion bounda ry  con- 
ditions. 

The solution of the problem defined by  equat ions (1), (2) and (3) is 

T(r,  O) =./~G(r,~ 0; r 0, 00) F( r  0, 00) dAo + [ r  o , _  0o) G(r, O; r O, 0o) ds o , (4) 
R C 

where G(r, O; r o, 0o) is the appropr ia te  GREEN'S function;  dA o is an element  
of area  of the plane annulus R: r 1 C r < r2; C is the complete  bounda ry  of R;  
the function r = r when r 0 = r i and ds o is an element  of arclength on C. 

2. D e r i v a t i o n  o f  G(r, O; ro, 0o) 

I t  is convenient  to denote the point  (r, 0) by  the vector  z = r e i~ and to 
write G(r, 0; r o, 0o) - G(z, Zo). The GREEN'S function G(z, zo), where z, z o are 
distinct points  of R, is defined to be the solution of 

v ~ G ( z ,  z0) = - d (z  - z0) (5) 

with the bounda ry  conditions 

OG 
0~- + (--1)i h / G  0 

Ir-  rf 

I t  m a y  be wri t ten 
G = G * + S ,  

(i = 1, 2) .  (6) 

(7) 

where the singular component  S is given by  

1 R e l o g ( r e i  o roeiO. ) (8) S(Z, Zo) - 2 ,~ 

and the non-singular  componen t  G* is a solution of V2G = 0 subject  to condi- 
t ion (6). 
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One shows readily tha t  

1 

while the most  general G* in terms of circular harmonics is 

(r o < r) 

(ro > r) , 

(9) 

oo 

G*(z, Zo) = A o + Bo logr + ~ ( A , r  ~ + Bnr-~ ) cosn 0 
1 (1o) 

D o  

+ ~ (C,~ r" + D n r-") sin u 0 , 
1 

wherein the ' cons tan t s '  A o, Bo, A. ,  B n, C,. D n (n = 1, 2, ...) are now to be 
determined so tha t  

OG* ' OS +(-1)~h,G*l (i 1,2) .  (11) Or i r r i 

Finding and simplifying these ' cons tan t s ' ,  a l though somewhat  of a pro- 
digious task, is well wor th  the effort in view of the reasonably simple results. 
One finds, upon introducing the substitutions 

tha t  

An - 

/3 n - 

r _ e ~ ,  r ~ = e ~ , ,  r2 _e , j ,  (O<'t],'~o<='qe) , (12) 
Yl Vi I/1 

1 hi qo + " h2 lnr2 h, + (13) 
A ~  2~  a~ 

hi he ~e + + "'~ 
f l  ?/2 

1 

/,1 h~ (~e - 'Jo) + r~ , (14) 
/3~ 2~  hlhe~le+ h ~ +  h~ 

V 1 7/2 

I hi(he -- '-tsinhn,r]o + l~(he-- .n~lcoshn r]o l 
, n e ~ n - -  _ r 2 / ,  . . . .  r i  , ~  ~,re~ - - - -  , ( 1 5 )  

| + /41 he~ sinhn 'tl2 + n [ ' ~  + ,~e~ coshn ,]2 
\ rl r2 ] \ ~'2 fl / 

h, \( bin -- 1~1rl ! sinhn ( ' 1 , -  ~0) + 1re \(h 1 -- ~ ) c o s h n  ( r e -  %) ] ,  (16) 

\[rln~re + hlhe~sinhn~?e/ +n(a+~)coshn~],\ r, 

cosn 0 o 
2 ~r~ 

- r~ cos n 00 
2~  

Cn D~ -- t a n n  0o. (17) 
A n B n 
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The final form of the GREEN'S function G(r, O; %, 00) m a y  now be obta ined 
b y  subst i tu t ing the above evaluat ions of A o, Bo, A,, B,, C,,, D~ into equat ion 
(10) and combining the result  with equat ion (9) in accordance with relation (7). 
After  much  algebraic ref inement,  the final result turns out to be: 

For r 1 =<r o < r  =<r 2, i.e., for 0 = < ~ 1 o < ~ = < ~ o ,  

g(,~, 0; ~0, 0o) = 27= h~ h 1 
hi k~ ~ + r l  + r~- 

o o  n ) 1 coshn(~2- -~)+  h= s i n h n ( ~ - - ~ ) )  ] 

n=l \(rl n2r2 + hi h2 s i n h n , / ~ + n  ~ +  coshnr]~ 

(18) 
Since G(z, Zo) is symmet r ic  in z, zo, the form of G when r 1 ~ r ~ r o --< r 2 is 

obta ined from equat ion (18) by  interchanging , / a n d  %. 

3. G r e e n ' s  F u n c t i o n  V a n i s h i n g  o n  t h e  R i n g  B o u n d a r i e s  

By let t ing h I + o~, h 2 + ~ in formula  (18) we obtain 

G(7~' O;~]~ O~ [~1~ r1~) + 2 ~  sinhn~~ *]) c~176 ~ 1  .nsinhn~7~ 

a reasonably  simple form of the GREEN'S function which vanishes on the outer  
circle r = r2, i.e., r] = rj~. Equa t ion  (19) applies when 0 =< */0 < ~1 ~ ~2; the 
applicable form when 0 =< ~1 < ~10 =< ~2 is obta ined from (19) by  interchanging 
t] and ~1o, thereby  yielding the GREEN'S function which vanishes on the inner 
circle ~ /=  0. 

This case is t rea ted  b y  HILBERT and COURANT [112) who derive the equi- 
valent  of (19) using complex variable methods.  Although their  analysis is 
short  and painless, their  final result, expressed in te rms of t he t a  functions, does 
not lend itself easily to analyt ical  computa t ions .  I t  is of some interest  to show 
tha t  the two results, superficially very  dissimilar, are indeed equivalent.  

HILBERT-COURANT take r 1 = qIl~, r~ = q-l12, (0 ~ q ~ 1), so tha t  r, r~ = 1. 
Free of the the ta  function notat ion,  their  result is 

V( } G(Z, Zo) -- 21x logq + Ioglz-'~176 I + log= VzoJ/~-- + Iog lO I , (20) 

=) Numbers in brackets refer to References, page a~7. 

(19) 
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where oo 

,v= 1 ~ 

(21) 

I t  is sufficient to compare (1.9) and (20) for z o real, 1.e. z o = r o, 0 o = 0 or ~. 
To be specific we take 0 o = 0. Equat ion (20) can then be rewrit ten,  when 
F 0 ~ T, a s  

1 [ l~176  r r l ]  
2 ~ a =  ~ logr,  log 

_ r,, (22) 

I t  is then a simple mat te r  to identify the term 

2l [ logr 01og2/llogr _ log ( ,;!~_)]__ 

with the term r]0(r~2 -- fl)/fl2 of equation (19). I t  remains then to show that  

oo 
2 X  sinhnr~0sinhn(~2--,~) cosn 0 

n sinh 'n r h 
' ~  (23) 

On the  right  s ide of e q u a t i o n  (23) we  have ,  for the  first term,  the  k n o w n  

expans ion  

?i "~ 0 ] 2  
F r o m  e q u a t i o n  (2l ) ,  

o o  o o  
4 v  Z , 45' ]/0 

= _ : + l o g H ] l  - r 1 1~ l ~  "' ~o 
,,=, ~=1 (25) 

- - r  1 r o z  - - 1 0 g  1 - • z  ;" 
v = l  'v 1 

Consider the  first t erm of equat ion  (25). We  m a y  wri te  

log II-.r, ,,0Ix - " '  ;o 
,,=1 , ~ 1  (26) 
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Since 

4v 1 ~ 4v 2 < 2 ~,, r < r l  = r  1 = r  1 <  1 f o r v =  1 ,2  . . . .  
~1 % r'f 

we m a y  rewrite (26) as 

H i  " r ,, o nO log 1 r 1 r0 

r~n (r)~ oo~nO 
n = l  

(27) 

where we have  used an expansion as in (24), in terchanged orders of summat ion  
(which is permissible here) and summed  the result ing geometr ic  series. Observ-  
ing tha t  ~7.2 = - 2 log rl, we m a y  write finally 

2() l o g H ! l - ~ "  ~ = 1 r ~ r ~ c o ~ n 0  

f t= l  

(27) 

Proceeding similarly with the other  te rms of (25) one easily obtains the 
result 

oo r ~ c o s h ( n l o g  r )  2 c~176176  
r0 cosn 0 - -~sin-~n~- i cosn 0 (29) -Jogj  O I = Z '  n s ~ h n  ~ 

n - 1  n -1 

whence it is a simple ma t t e r  to show tha t  when (29) and (24) are added and 
simplified, the result is the required left member  of (23). 

Other  specializations of the general form (18) are also of interest.  Thus 
one might  keep h 1 finite and let h 2 + oo, as would be required in determining 
the s teady  t empera tu re  in a long hollow cylinder with cooling at  the inner 
surface and t empera tu re  0 a t  the outer  surface. 

The form (19) is only slightly more involved when the ring boundaries  are 
non-concentric.  This result, involving bi-polar  coordinates,  was previously 
presented b y  the wri ter  in reference [2]. 
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Zusammenfassung 

Es wird die Greensche Funktion der Laplaceschen Gleichung flit einen Kreisring 
hergeleitet, wobei IRandbedingungen vom Strahlungstyp angenommen sind. In 
demjenigen Spezialfall, in dem die Randbedingungen das Verschwinden der 
Greenschen Funktion verlangen, wird gezeigt, dass die gefundene Darstellung der 
Greenschen Funktion iibereinstimmt mit der Formel, wie sie im Buch yon HILBERT- 
COURAN'r unter Verwendung yon Thetafunktionen hergeleJtet ist. 

(Received: October 10, 1960,) 

A Boundary-Layer in a Non-Ncwtonian Fluid 
By JOI~N R. JONES, Swansea, Great Britain 1) 

1. In t r o duc t ion  

The boundary-layer theory was developed by PRANDTL [1] 2) for fluids of 
constant viscosity, initially for the case of laminar flow, and later was extended 
to include compressible viscous fluids and turbulent flow in the boundary- 
layer. In recent years experiments have shown that several phenomena obser- 
vable in fluids are not predicted by the classical theory of viscous flow. This 
has led to the formulation of more complicated theological equations of state, 
either deduced from a molecular picture or microscopic model of the material, 
or based on idealizations of simple experiments. The invariant forms of 
rheological equations of state for a homogeneous continuum, suitable for 
application to all conditions of motion and of stress, have been discussed ge- 
nerally by OLDROYD E21 ; restrictions are imposed on their form by the physi- 
cal conditions that the rheological properties they describe are independent 
of the frame of reference and independent of the motion of the material 
element in space. With the growing interest in non-Newtonian behaviour it 
seems that one should now, if possible, extend the boundary-layer theory so 
as to include a wider range of fluids. In the present paper the effect of a 
variation of viscosity with rate of shear and of a normal-stress coefficient 
(representing' cross-viscosity') are examined in a simple type of two-dimensional 
boundary-layer. For reasons of mathematical convenience the case which is 
worked out in detail, by way of illustration, is one in which the viscosity co- 
efficient is a linear function of the rate of shear, the normal-stress coefficient 
is arbitrary and the mainstream velocity is proportional to the one-third 
power of distance measured from a stagnation point. I t  is of interest to note 

1} Department of Applied Mathematics, University College of Swansea. 
,a) Numbers in brackets refer to References, page 343. 


