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In this article a simple derivation of the addition theorems of the irregular solid harmonics, the
Helmholtz harmonics, and the modified Helmholtz harmonics is presented. Our derivation is

based upon properties of the differential operator #7*(V), which is obtained from the regular solid
harmonic Z7'(r) by replacing the Cartesian components of r by the Cartesian components of V.
With the help of this differential operator #7'(V), which is an irreducible spherical tensor of rank /,
the addition theorems of the anisotropic functions are obtained by differentiating the addition

theorems of the isotropic functions. The performance of the necessary differentiations is greatly
facilitated by a systematic exploitation of the tensorial nature of the differential operator Z7(V).

I. INTRODUCTION

In molecular and solid state physics, systems with more
than one electron and with more than one atomic nucleus are
treated. Consequently, it frequently happens that the eigen-
functions or operators which occur there have arguments
that are given as sums or differences of two vectors that rep-
resent the coordinates of electrons and nuclei. Since quan-
tum mechanical computational procedures usually involve
integrations, the dependence of eigenfunctions and opera-
tors on the sum or difference of two vectors may be very
inconvenient and it is often imperative to obtain a separation
of variables, which can be achieved with the help of addition
theorems. The probably best-known example of such an ad-
dition theorem is the Laplace expansion of the Coulomb po-
tential in spherical coordinates,
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There is an extensive literature on addition theorems. Par-
ticularly well-studied are the addition theorems of those so-
lutions of the homogeneous Laplace, Helmholtz, and modi-
fied Helmholtz equations that are also eigenstates of the
orbital angular momentum operators. The addition theo-
rems of the regular and irregular solid harmonics which are
solutions of the homogeneous Laplace equation were studied
by Hobson,' Rose,? Chiu,> Sack,*> Dahl and Barnett,® Stein-
born,” Steinborn and Ruedenberg® and by Tough and
Stone.® The addition theorems of the Helmholtz harmonics
which are products of Bessel functions and spherical har-
monics were studied by Friedman and Russek,'® Stein,!!
Cruzan,'? Sack,” Danos and Maximon,!*> Nozawa,'* and by
Steinborn and Filter.'> The addition theorems of the modi-
fied Helmholtz harmonics which are products of modified
Bessel functions and spherical harmonics were studied by
Buttle and Goldfarb'® and by Steinborn and Filter.!*

In the articles cited a multitude of different methods
was used for the derivation of these addition theorems. Most
of these approaches, however, are relatively complicated and
sometimes rather lengthy and are based upon some special
properties of the functions under consideration. Therefore, it
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is the intention of this article to demonstrate that the addi-
tion theorems of the irregular solid harmonics, the Helm-
holtz harmonics, and the modified Helmholtz harmonics
can be derived in a very simple and unified way. Our method
has the additional advantage that it can also be applied in the
case of other functions.

Our derivation is based upon some special differential
operator, which we call the spherical tensor gradient % 7'(V).
It is obtained from the regular solid harmonic % *(r) by re-
placing the Cartesian components of r—ux, p, and z—by the
differentials d /dx, d/dy, and d/dz. The properties of the
spherical tensor gradient, which was in principle already
used by Hobson,’ were investigated by Santos,'” Rowe,'®
Bayman,'? Stuart,”’ and recently by Niukkanen®"** and
ourselves.”*?* We shall show that there exists an intimate
relationship between the spherical tensor gradient and irreg-
ular solid harmonics of (modified) Helmholtz harmonics, re-
spectively, which can be employed profitably for the deriva-
tion of addition theorems.

il. DEFINITIONS

For the commonly occurring special functions of math-
ematical physics we shall use the notations and conventions
of Magnus, Oberhettinger, and Soni* unless explicitly stat-
ed. Hereafter, this reference will be denoted as MOS in the
text.

For the spherical harmonics Y 7*(6,¢ ) we use the phase
convention of Condon and Shortley,?® i.e., they are defined
by the expression

my jmtim (21 + l) (1 - lml)! 2
Yrog) =it = (l+|m|)!]
Pl™\(cos §)e™. 2.1)

Here, P{™\(cos 6) is an associated Legendre polynomial
my2 dl+m (x?. . l)l

m — 2
Prx)=(1—x% PR ET=SYT

— (1 __ x2)m/2

dm
£ px). 2.2
Pl 2.2)

For the regular and irregular solid harmonics we use the
notation
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Yr(r) =rYT6.8), (2.3)

Friy=r"'"'Y6,0). (2.4)
For the integral of the product of three spherical harmonics
over the surface of the unit sphere in R® we write

(| Lymallymy) = f Y@ )Y Q)Y T2 )2,

(2.5)

These Gaunt coefficients may be expressed in terms of
Clebsch-Gordan coefficients?’ or 3jm symbols

{lsms|lma|lim,y)
172
=( - 1)m3 [(211 + 1)(2[24+ l)(2]3 + 1)]
T

. (l1 1, 13) ( L L 1 )
0 0 0/\m m —my’
With the help of the Gaunt coefficients the product of two

spherical harmonics can be linearized
YT(0.6)YT0:4)

(2.6)

lnax  (2)
= z (Imy + my|lym\[Lm) Y+ ™0,4).  (2.7)

I=1n
The symbol = indicates that the summation is to be per-
formed in steps of two. The summation limits in Eq. (2.7) are
direct conseqences of the selection rules satisfied by the
Gaunt coefficient and are given by?®

Imax = Il +’ Izy
max(|l; — bL|,jm; + my)),
if I, + max(|l, — L},|m; + m,|) is even,
Imin = and
max(|/; — b|,m, + m,|) + 1,
if I + max(|l, — L,|,[m, + m,|) is odd.
{2.8b)

{2.8a)

lil. SOME PROPERTIES OF THE SPHERICAL TENSOR
GRADIENT

In this section we shall review only those properties of
the spherical tensor gradient %/7'(V) which are needed for
our derivation of the addition theorems of the irregular solid
harmonics and the (modified) Helmholtz harmonics.
Further properties can be found elsewhere.'’-**

The spherical tensor gradient is an irreducible spherical
tensor of rank /.?° Therefore, if the spherical tensor gradient
is applied to a function ¢ (r) which only depends upon the
distance 7, i.e., to an irreducible spherical tensor of rank
zero, we obtain in agreement with the angular momentum
coupling rules an irreducible spherical tensor of rank /,
which is given by

1o = |(- Y40 orin.

As we showed recently’® this relationship can be derived
quite easily with the help of a theorem on differentiation
which was published by Hobson®! already in 1892. Equation
(3.1) can also be obtained by considering special cases in
more recent publications by Santos,*> Bayman,*® Stuart,**
and Niukkanen®® who, however, apparently were not aware

(3.1)

665 J. Math. Phys., Vol. 26, No. 4, April 1985

of Hobson’s theorem.*! If the spherical tensor gradient is
applied to another spherical tensor of nonvanishing rank,
i.e., to a function that can be written as

nr) =/,nY6,8), (3.2)
the structure of the resulting expression can also be under-
stood in terms of angular momentum coupling,®
Y VIF (r)

4

ey
XV, (VY T+ "40,8). (3.3)

For the functions 7, in Eq. (3.3) various representations
could be derived, for instance®’

1/1,12(")
ar (_ Al)

=3 q(;aﬂ)_%’" 207+ =2

{2)
{Im; + lellmlllsz)

1 d\~-9/,(n)
—— = 34
X (r dr) r- (34)
- ak ("’AIZ)s(All +%)s 2sph—b—2s—1
5=0 S!
I, —s
x (-2 3.35)
r dr
Al={l, +1,=1)/2, Al ={—1,+1L)/2,
(3.6)

AL=(I+L-0)2, al)=+L+1)/2

It is a direct consequence of the selection rules satisfied by
the Gaunt coefficient in Eq. (3.3) that 4/, Al,, Al,, and o{l ) are
always either positive integers or zero.

Since the spherical tensor gradient is obtained from the
regular solid harmonic by replacing the Cartesian compo-
nents of r by the Cartesian components of V we may con-
clude that the spherical tensor gradient and the regular solid
harmonics must obey the same coupling law. Hence we ob-
tain from Eq. (2.7) (see Refs. 38 and 39)

gy )
VeIV = Y (Imy+my|lim,|Lmy)

X Vh+b—lgm+myg), (3.7)

Let us now assume that a spherical tensor F (r) and a radi-
ally symmetric function ¢ () are known, which satisfy
Far) = ZTHV)g (7). (3.8)

If the spherical tensor gradient &7"{(V) is applied to
F (r) we then can couple the two spherical tensor gradients
according to Eq. (3.7) and finally obtain with the help of Eq.
(3.1)

G T(VIFTr)
=TIV ()

lyms (2)
= Y (Imi 4+ my|lim|lm)Vhth—!
I=Imin

<[ o] oromm

This relationship is particularly well-suited for the functions

(3.9)
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which are treated in this article since in these cases the differ-
ential operators which occur in Eq. (3.9) can be applied quite
easily. Under these circumstances Eq. (3.9) is in our opinion
preferable to other, more general expressions which were,
for instance, given by Santos,'” Niukkanen,?! and our-
selves.?* Relationships of the type of Eq. (3.9) were already
used by Novosadov® and ourselves*! in connection with
- functions related to modified Bessel functions.

IV. THE ADDITION THEOREM OF THE IRREGULAR
SOLID HARMONICS

Our derivation of the addition theorem of the irregular
solid harmonics will be based upon the fact that the addition
theorem of the Coulomb potential, Eq. {1.1), is known and
that the application of the spherical tensor gradient to the
Coulomb potential yields the irregular solid harmonic

Zrr) = [(— 1)//(21 = W] V) 1/r).

This relationship, which was already known to Hobson,
can be proved quite easily with the help of Eq. (3.1). In order
to facilitate the application of the spherical tensor gradient
we rewrite the Laplace expansion of the Coulomb potential,
Eq. (1.1), in the following way, which is more convenient for
our purposes:

_____l____ - < L 1) m* m,
e. +r, | =4 X ;121+1@ r )27l )
(4.2)

Here, r _ is the vector with the smaller magnitude andr., is
the vector with the greater magnitude.

The spherical tensor gradient is invariant with respect
to translation. Consequently, Eq. (4.1) can be rewritten in the
following ways: '

(4.1)

1,31

=l gy 1
(27— 1 e, +r_ |
(4.3)

I +r, )=

(=1

= o )

re +r, |
(4.4)
Here, V_ implies a differentiation with respect to r . and
V. implies a differentiation with respect tor . If we com-
bine Eqs. (4.2) and (4.4) we find
(= i & (=1
(21— 1)" L=om=-—1 211 +1

XY VPV )T, ) (45)

The remaining differentiation can be performed quite easily.
The easiest way would be the use of Egs. (3.8) and (3.9) in
connection with Eq. (4.1). We then obtain

EANE SR

Zr. +r,)=

Ame @ 27 1)
= ( —_— l)’l' 2 _(___)_.
AT, (2, -1

XAAp, + P Ay | At )VH H =AM+ ia(r), (4.6)

If we take into account that the irregular solid harmonics are
solutions of the homogeneous Laplace equation we see that
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in Eq. (4.6) only the term with / =/, 4 I, can be different
from zero. This implies
&5 VIZ4r)

=(— 124, + 2, — jit/(24, -1

XA+ Agphy + phof A [Agpan) 252 T4 (x). 4.7)
Inserting this result into Eq. (4.5) yields the addition theorem
for the irregular solid harmonics
I, +r,)

204+21 — 1

= 45 1 A ( 1

2 2 (=1 (27, + 127 — 11

L=0m= —1

XA+ Lyn + my|Im|lm Y Y e )74, ).

(4.8)

The Gaunt coefficient in Eq. (4.8) can be expressed in closed

form. In that case one obtains the factorless form of the addi-

tion theorem which was given by Steinborn’ and by Stein-

born and Ruedenberg.®
If we now combine Egs. (4.2) and (4.3) we find

g;n(r (— 1)1477. < d (— l)lI
-1 1 Eom &2 +1

XYV I e e, ). (4.9)

The remaining differentiation again poses no problems.

With the help of Eqgs. (3.3) and (3.4) we obtain after some
algebra

@4 (VI 1)

< HT)=

24 m
= ———_—(2/1( 22—; _)‘_ m Ay — Ay oy + po| Ay |Aopt,)
2 1 1
X Y+ (r), (4.10)

If we insert this result into Eq. (4.9) we find another version
of the addition theorem of the irregular solid harmonics

Zir. +r,)
{
\ 25 — 1
1,2_::,.,,_ Ly (21— OM2L — 21+ 1)
X lym,|Im|l; — Im, — m)
X(= )P ) Z ). (4.11)

In order to prove the equivalence of Eqgs. (4.8) and (4.11) we
introduce new summation variables in Eq. (4.11)

12-_—’11—1, m2=m1—"m-
With these definitions we find for Eq. (4.11)
g;”(“( + r> )

=47

(4.12)

= & 20+ 20, — 1)
=4 TV 2
1120 my _—Z~ L (=1 (27 — 127, + 11
XA+ Lm + mz(lmllzmz)@z,;(r V2T ).

(4.13)

Obviously, Egs. {4.8) and (4.13) are identical.

V. THE ADDITION THEOREMS OF THE HELMHOLTZ
HARMONICS

In this section C, (z) stands for any of the Bessel func-
tions J, (z) and Y, (z) or Hankel functions H {!)(z) and H ?(z),
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which are defined by (MOS, pp. 65-66)
& (= e/

L= Y =
meoml'iv+m+ 1)
z/2)" z
((v+) 1) °F‘( T)’ G-1)
Y, (z) = [1/sin(mv)] [ cos(mvV, (2) — J _ . (2)], (5.2)
Hz)=J,(2) + 1Y, (2), (5.3)
HYz) =J,(2) —iY,(2). (5.4)

This generalization is possible because for our derivation of
the addition theorems we shall only need the following dif-
ferential formulas and the recurrence relationship of these
functions (MOS, p.67)

(L&Y zcm=zc, b (5.5)
(%%)mz"’cv(z)z(— yz-r="C,, @ (5.6
C,_.1@)+C, (2= (2v/2)C, (2). (5.7)

With the help of these formulas the following relationships
can be proved quite easily:

[1+a?V2J(@r)~'~*Cp 1 pplar)¥ Tar) =0, (5.8)
[1+a7?V2](ar) '~ 2C_,_p(@n/¥ ar) = (5.9)
The functions in Egs. (5.8) and (5.9) are usually called Helm-
holtz harmonics. It seems that we have obtained two differ-
ent classes of solutions of the homogeneous three-dimen-
sional Helmholtz equation. However, in the case of

half-integral orders v =n + 1, n € Z, there exist symmetry
relationships among Bessel functions, for instance (MOS, p.

72)

Y _woin@=(—1", 120, neN (5.10)
Hence, if C,, ;. stands for one of the Bessel functions
Josr2r Yas12sHY 1)2,and HY, )y, then C_, ), can

J

(@lr. 41, )7V2C_yplalr. +r, )

© !
=2aP? Y 3 lar )T TV plar 0¥ ar, )T T VC Ly plars )% ar ., ),

I=0m= —1

alre +r, l)"”Cm(aIr +r. )

= (2m)"? z z (_1 Har )~ '7 V2 plar VT ar, )7 7 V2C L plar, )2 Mar, ).

I=0m= —
Again, r_ is the vector w1th the smallerandr
we differentiate Eq. (5.16) with respecttor
(@r. +r. )7'2C_ i plalr,

=a I@;n(v> )(a,l‘< +

+l‘> l)@r(a[Q
l‘> |)_1/2C—l/2(a,r< +l'> I)

also be expressed in terms of one of these functions. Conse-
quently, it would in principle be sufficient to derive the addi-
tion theorems for either the functions in Eq. (5.8) or those in
Eq. (5.9). However, since the derivation is in either case quite
simple we shall derive the addition theorems for the func-
tions in Eqgs. (5.8) and (5.9) independently.

In Egs. (5.5) and (5.6) the differential operatorz~' d /dz
acts as a kind of a shift operator for the order v. Hence, if we
combine Eq. (3.1) with either Eq. (5.5) or (5.6) we immediate-
ly find

(@r)’C, (@)% Tar) = a = '¥ 7 (V)an**'C, . (ar), (5.11)
(ar)~"C (an¥(ar) = (— a) " '] (Var) ~"C, _ (ar).
(5.12)

Bessel and Hankel functions with orders v = 1 } are essen-
tially trigonometric functions, for instance (MOS, p. 73)

Jy22) = [2/72]"? sin z. (5.13)
Therefore, we see that the Helmholtz harmonics with higher
angular momentum quantum numbers may be generated by

applying the spherical tensor gradient to some trigonometric
functions,

(@)™ I=12C 1—12lan? ar)

=a~'Y7(V)ar)"'?C_y Har), (5.14)
(@r)~'7V*Cy ppl@n)¥ Tar)
=(—a)~'F7(V)ar)"2C, slar). (5.15)

These relationships suggest that the addition theorems of the
Helmholtz harmonics can be derived in exactly the same
way as we derived the addition theorem of the irregular solid
harmonics in Sec. IV. We only have to apply the spherical
tensor gradient to the addition theorems of the relatively
simple functions (ar)”'"*C_ ,,,(ar), which are usually
called Gegenbauer addition theorems (MOS, p. 107), and
which can be compactly written as

(5.16)

(5.17)

is the vector with the greater magnitude. Following our procedure in Sec. IV
and obtain with the help of Eq. (5.14)

+r. 1)

0 A
=2 Y Y (e )T sler ) Ja T YRV, ar, )T 2C _plar, ) er, ). (5.18)

I,=0m = —1I

The remaining differentiation can be done quite easily. With the help of Egs. (3.8), (3.9), (5.8), and (5.14) we obtain immediately

a~ 4 (Var) =" 2C_,, 1 plan)/F i ar)
A

max (2}
= ¥ (-

A= Amin

)Al</1,u1 + Lo Ay [Adar) ™ i-12c _a—1nl@n@h tar), A=

Ar+ A, — )2, (5.19)

If we insert this relationship into Eq. (5.18) we obtain the addition theorem
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(a|r< +l'> ’)-I-I/ZC—I-llz(a'r< +l‘> l)@;n(a[r< +l'> ])

=(2n)" 12) 1 @r )=V alar ) ) lg ) (— 1)
(=0 m =~ 1, Zqmin
X{Lm +my|im|lmMar, )"~ 2C_, _ plar, ¥ T ™Mar,), AL =(+1,-1L)2. (5.20)
This addition theorem can also be derived by differentiating Eq. (5.16) with respect tor _ . We only need
(—a)~ &4 (Var) =~ V2C, 1 plar)¥ i lar)
= AE Y= 1P G+ palAir|Angodar) = F T2, L plan T ar), A=A, + A, — A2, (5.21)

A= Ain

which can be proved with the help of Eqs. (3.8), (3.9), (5.9),.and (5.15) to obtain a somewhat different representation of the
addition theorem,

19 @)

w 1
=P Y 3 far,)7hTVC_, _iplar ) ar,) Y

1w 0 omy == - Ixznin

(— 1)

L=
X{hm|Im|lymy, —mM}ar )22, alar )FT "™ ar,), Al =(—1+1L)2. (5.22)
To prove the equivalence of Egs. (5.20) and (5.22) we only have to introduce in Eq. (5.22) the new summation variable
Uy = m; — m and to change the order of the two / summations.

The addition theorem of the function (@r) =~ 12C, . |, (@r)¥ar) can be derived in exactly the same way. If we
differentiate Eq. {5.17) with respect tor, we find

(a§r< + l.> i)‘—z“ 1/2014- 1/2(0‘“’

=(2ﬂ.)3/2 i
L=0m = ~1

19 @)
X Z (= 14 (Lm + m|im|lim)ar_ | I 1/2C12+ walar )T ™Mar, ), AL ={+1— Ly/2.

1 rznlx

< +r. @Melr. +r.])

(= ar_ )52, , alar )% Par )

(5.23)

L=

If we differentiate Eq. (5.17) with respect tor _, we find

(a|r< +l‘> |)"1-l/2C1+1/2(0!il'< +r> l)@r(a[k +l‘> ])

«© A
=P Y Y (—=1ar,)"""2C, L ipnlar, ¥ er )
L=0m = —1
1pe (2)

>

L=Ip"

(— 125 m,|Im|lm — m)ar_ )~ b= l/2-712+ 12lar, )@Z"m?'(m.< ). (5.24)

The equivalence of Egs. (5.23) and (5.24) can be proved by introducing the new summation variable y, = m — m, into (5.24)
and by changing the order of the two / summations.

r

Vi. THE ADDITION THEOREM OF THE MODIFIED
HELMHOLTZ HARMONICS

The differential operator of the modified Helmholtz
equation, 1 — @~ ?V?, can be obtained from the differential
operator of the Helmholtz equation, 1 + o~ 2V?, if the pa-
rameter a is replaced by ic. Consequently, the solutions of
the homogeneous modified Helmholtz equations can be ex-
pressed in terms of modified Bessel functions. This follows
also from the following relationships, which can be proved
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quite easily using known differential and recursive proper-
ties of the modified Bessel functions,

[1 —a VY ar)~ '~ _,_ e Tiar) =0, (6.1)
[1—a™V2l(ar) '~ 2L, 1, lar)¥ ar) =0, (6.2)
[1—a *V?]{er) ™'~ K, 1 plar)¥ Tar) =0. (6.3)

Here, I,(z) is a modified Bessel function of the first kind
(MOS, p. 66),
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o0 (z/z)v+2m
Lig= ¥ —22
/) ,.,z=o mI'v+m41)

- F({Z/Z)v p ol ( _f:") ’

and K, (z) is a modified Bessel function of the second kind
(MOS, p. 66),
K, (2)=7/[2sin(av)][I_,(2) — I,(z)]. (6.5)

The functions of the first kind, Z, {z), increase exponentially
for large arguments z whereas the functions of the second
kind, K, (z), decline exponentially (MOS, p. 139). Conse-
quently, it is not surprising that only the modified Helm-
holtz harmonics which occur in Eq. (6.3) have been of phys-
ical interest so far.

The modified Helmholtz harmonics in Eq. {6.3) may be
considered to be some special B functions which are defined
by42

By =

(6.4)

(2/m!2/[2"* (n + 1) (@r) 17

XK, (an)Z Tar). (6.6)

Because of the factorial in the denominator, B functions are
only defined in the sense of classical analysis if the inequality
n + 130 holds. However, it can be shown that the definition
of the B functions, Eq. (6.6), remains meaningful evenifnisa
negative integer such that n + 7/ <0 holds. In those cases B
functions are distributions which can be identified with de-
rivatives of the delta function.?*

If B functions are used Eq. (6.3) can be rewritten as

[1—a ?¥?*]B™ ,(arx)=0. {6.7)
If the spherical tensor gradient is applied to a scalar B func-
tion, one obtains*

Bo(ar) = (4m)H(—a) "I (VB plar).  (6.8)
If we set in Eq. (6.8) n = — [ we find
7 plar) = (47)' 3 — a) " 'Y P (VIBG (). (6.9)

However, the function B, is proportional to the Yukawa
potential,

BYo(ar) = (4m)~ V2%~ */(ar), (6.10)
for which an addition theorem is known (MOS, p. 107). We
rewrite this addition theorem in the following way:

Bislar, +r.)
=@ 3 S (~1flar )=
=0ma= 1
X 1plar )3 lar B lar, ). (6.11)
Again, r . is the vector with the smaller andr_ is the vector

with the greater magnitude.

The derivation of the addition theorems of the modified
Helmholtz harmonics can now be done in exactly the same
way as the derivation of the addition theorems of the irregu-
iar solid harmonics and of the Helmholtz harmonics. If we
differentiate Eq. (6.11) with respect to r, we find

B” ylarx. +r,)
= (47)""(—a) 'YV, )Bolar
— (2,”,)312 i

L=0m= —1I

+r.)

(= 1ffar )b
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X1 plar . )@Z’f(ar< )

X(—a)"' ¥V, )BTy, ., ). (6.12)
Now we only have to insert the relationship*
{— a)'{’@”il (V)B*2 ;, 41,(a.x)
Amgn (2}
= ) (A pa| A Ap) B L oar)  (6.13)

A= Ao
into Eq. (6.12) to obtain the addition theorem of the modified
Helmholtz harmonics,

+r.)
= (2,”.)3/2 2 2

X1 1 plar )@':. (f—"’< )

1pe (2)

>

min
hL=13

XB™ Mar, ). (6.14)

This addition theorem can also be derived by differentiating
Eq. (6.11) with respect to r _ . We then obtain

B™ lar. +r,)
= (4m)'*( —a)"'F PV
o 1,
— [2,”.)3:‘2 z

L=om=—1

B” lar

(= 1ar )=

{Lm + m,|Im|lym,)

< )‘Bg,o(a’r<
(=) —a)”

+r.)

XYV _Nar.) ™", plar )P ar )
X B n:.l,,l, (a,l'> ). (6.15)

To perform the remaining differentiation we use (MOS, p.
67)

(l—i)mz“’lv(z)—z_" "I, ) (6.16)
z dz
in connection with Eq. (3.1) to obtain
(@)~ planP Tar)

=a~ 'Y (V)ar)" 2L, ar). (6.17)
If we now combine Egs. (3.9), (6.2), and (6.17) we find
a G (Var) =TV, alan P ar)

Amax (2)
= =EA Ay + s A Ao Yar) =5~ 12
XI; o1 plar)Z+ “ar). {6.18)

If we insert this result into Eq. (6.15) we obtain a somewhat
different representation of the addition theorem of the modi-
fied Helmholtz harmonics,

B lar  +r,)
o I
=@ 3 B lar, )
L=0m=—1
jmx Q)Y
X z (— Ve(lym,|im|lymy — m)
L, =17

Xlar )7V plar NPT T M ar ). (619)

To prove the equivalence of Egs. (6.14) and (6.19) we only
have to introduce the new summation variable u, == m, — m
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into Eq. {6.19) and to change the order of the two / summa-
tions.

VIl. SUMMARY AND CONCLUSIONS

In this article simple and unified derivations of the addi-
tion theorems of the irregular solid harmonics, the Helm-
holtz harmonics, and the modified Helmholtz harmonics are
presented. Our derivations are based upon differential rela-
tionships of the following type:

Fr{r)=27(V)é (7). (7.1)

Here, F"(r) is an irreducible spherical tensor, ¢ (7) is a func-
tion that only depends upon the distance 7, i.e., a spherical
tensor of rank zero, and % 7Y(V) is the spherical tensor gradi-
ent which is obtained from the regular solid harmonic % 7{r)
by replacing the Cartesian components of r by the Cartesian
components of V.

The differential relationship (7.1) assumes a particular-
ly simple form for the functions under consideration because
in these cases the application of the spherical tensor gradient
merely leads to a shift of angular momentum quantum
numbers. If the spherical tensor gradient %7V) acts upon
the Coulomb potential which is the irregular solid harmonic
of rank zero we obtain Z [*(r). In the same way we obtain the
{modified) Helmholtz harmonics of rank / by differentiating
the (modified) Helmholtz harmonics of rank zero.

The remarkable differential properties of the irregular
solid harmonics and the (modified) Helmholtz harmonics
can be employed profitably for the derivation of addition
theorems. We simply have to apply the spherical tensor gra-
dient to the addition theorems of the Coulomb potential or
the {(modified) Helmholtz harmonics of rank zero and obtain
the addition theorems of the anisotropic functions.

The idea of applying differentiation methods for the
derivation of addition theorems is not at all new. Methods
that are in some sense equivalent or closely related to our
method, which is based upon the spherical tensor gradient
and its tensor character, have already been employed by
Hobson,! Rose,? Chiu,®> Dahl and Barnett,® Steinborn and
Ruedenberg,® Tough and Stone,” and Nozawa.'* However,
in the references cited the differential operators were applied
in their Cartesian form and the tensorial nature of the differ-
ential operators was not exploited systematically. The direct
application of differential operators, which involve differen-
tiations with respect to x, y, and z to irreducible spherical
tensors, leads to relatively complicated and sometimes rath-
er messy expressions which cannot be manipulated easily. In
our approach we utilize the fact that the application of the
spherical tensor gradient to an irreducible spherical tensor
leads to an angular momentum coupling. Therefore, only
differentiations with respect to the radial variable r have to
be done. It is the systematic exploitation of the tensor char-
acter of the differential operator % 7(V) which makes our
derivation of the addition theorems almost trivial.
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It should be noted that our method for the derivation of
the addition theorem of an anisotropic function is not re-
stricted to irregular solid harmonics and (modified) Helm-
holtz harmonics. If the addition theorem of an isotropic
function ¢ {r) is known one only has to apply the spherical
tensor gradient % (V) to it. According to Eq. (7.1) one then
obtains the addition theorem of the anisotropic function
FPr).
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