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Abstract—It is attempte6 to provide a defidtive statement of the
theoretical bases and the computationally useful manifestations of
integral equation formulations of field problems, and the expansion
of fields in sequences of functions which are proper solutions of ‘tie
wave equation. The reason for doing this is that it has become clear
during the last ten yeara that sophisticated pobts of mathematical
analysis have practical computational significance. For ease of ex-
position, only two-dimensional fields are treated’ in detail. The paper
is in five parts. The fist part (Sections I and II) is introductory.
The second part (Sections III-V) deals with formal diffraction theory.
M&hods particularly suited to digital computation are presented in
the third part (Sections W-XI). The results of computational experi-
ence are assessed in the fourth part (Sections XII-XIV). The fi$th
part (Sections XV-XVII) discusses the types of @vestigation needed
to increase the technological usefulness of existing techniques.

I. INTRODUCTION

T HE development of the digital computer has been the

cause during the past twenty years of increased in-

terest in the manipulation of Maxwell’s equations into

forms convenient for numerical evaluation. It is no longer

a question of whether something can be computed, but

how it can be computed most efficiently. Subtle points

of mathematical analysis, which would have been dis-

dained by engineers in the old slide-rule and desk-calcula-

tor days, have assumed practical computational im-

portance.

This paper reviews in detail certain computational

aspects of the interaction of electromagnetic fields with

passive structures. It is apparent from the recent “global”

reviews by Silvester and Csendes [1] and Ng [2] that the

differential approach to computational problems in micro-

wave engineering predominates over the ~ntegral @pproach

and the series approach. The differential approach is

based on direct solution of the wave equation and is

typified by finite-difference and finite-element methods

[3] and also the transmission-line matrix methods [4].

The concern here is with integral equation formulations

(the integral approach) of field problems, and with the

expansion of fields in sequences of function~ which are

proper solutions of the wave equation (the series approach).

During the last ten years, many different, sometimes

conflicting, techniques have been proposed, usually with
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impressive theoretical and/or computational supporting

evidence. It has been difficult to assess the relative useful-

ness of the various suggestions because they often involve

recondite mathematical notions which are not easy for

engineers either to explain or to understand.

Three things are attempted here:

1) to present a unified development encompassing the

existing methods;

2) to establish those results which are, at least, com-

paratively free from doubt;

3) to suggest the types of, investigation which seem

most urgent and appropriate for improving field computa-

tion techniques in radio and microwave engineering.

The literature contains suf%cient authoritative treatments

to ensure that items 1) and 2) are relatively free of the

aut”hor’s particular pre.i udices. The same cannot be said

of item 3). However, it would be unduly timorous to

neglect to suggest future research possibilities in a review

of this sort.

In an effort to clarify the exposition and to concentrate

on the physical meaning of the many intricate mathe-

matical operations which have to be introduced, the analy-

sis is restricted to fields which vary in only two dimen-

sions. So it is the diffraction of cylindrical waves by

cylindrical structures which is examined. There is no

restriction, in principle, on the cross-sectional shapes or

the material composition of the structures.

A full, three-dimensional treatment would have to be

much more complicated and appreciably harder to under-

stand. It is doubtful if it would add a great deal because

the polarization of the field is not a quantity of overriding

interest in the questions considered here. There is no

coupling between those two-dimensional fields, termed

electrically polarized and magnetically polarized, respec-

tively, which have no magnetic-field component and no

electric-field component parallel to the axis of the cylin-

drical wave system. Another useful aspect of the two-

dirnensional formulation is that it applies rigorously to

acoustical fields.

The interaction of wide-band microwave signals with

passive structures is attracting increasing interest, but

there is no large literature as yet on the computation of

the diffraction of modulated carrier waves. Accordingly,

the treatment is here restricted to monochromatic waves.

Reference is made to the remarkable “singularity expan-
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sion method” [5] which has been developed for the study

of time-dependent scattering and which relies on analytical

techniques related to some of those which are the main

concern here.

This paper is divided into five parts. Part 1 (Sections I

and II), which contains this introduction, sets the scene.

Exact methods are developed in part 2 (Sections III-V).

The theory of methods which are particularly suited for

di~tal computation is discussed in part 3 (Sections

VI–XI). The impact of theoretical constraints on prac-

tical computations is examined in part 4 (Sections XII-

XIV). In part 5 (Sections XVvXVII), future possibilities

are outlined.

II. PRELIMINARIES

Fig. 1 shows an arbitrary point P, having cylindrical

polar coordinates p and p, in a two-dimensional space $2,

which is the plane z = O of a three-dimensional space Y.

The straight line 00’ is an arbitrary datum from which

the angular position of P is defined. A closed curve C,

enclosing the origin O of coordinates, divides $2 into an

interior part 0– and an exterior part fl+. The cylindrical

polar coordinates of an arbitrary point Q on C are r and 0.

The symbol C, besides standing for the curve itself, also

denotes distance along the curve at Q, measured counter-

clockxyise from the point (or from the innermost point,

if there is more than one) where 00’ intersects the curve.

The v direction, which is the outward normal to C at Q,

makes an angle a with the extension of the line OQ. The

distance between Q and P is denoted by R.

Set-theory notation tends to be unpopular with en-

&neers, and rightly ao when its only purpose seems to be

to obscure the argument. But it has the advantage that

it permits one to be precise concisely. The space !J can

be looked upon as a collection of points, a typical one of

which is P. All the points in L, together with all the points

on C, and all the points in Q+ make up all the points in Q.

This is written as

m

Fig. 1. Points, regions, snd coordinate systams, @ Q, the plane
z = O of the threedirnensional space Y. The z direstion is per-
pendicular to the paper.

Q= LUCU Q+. (1)

If E is a region, or a collection of intersecting or non-

intersecting regions, within Q, i.e., Z C Q then the nota-

ti~n P < E indicates that the point P can be anywhere

wthin Z Conversely, the notation P $ E indicates that

wherever P is, it cannot be in E.

The part of space fi+ is partitioned into Q+ - and fl+ +,

interior and exterior, respectively, to the circle 1’+, of

radius r+, centered on Ocircumscribing C. This is indicated

in Fig. 2, which also shows that !2– is partitioned into

!iL _ and !2– +, interior and exterior, respectively, to the

circle I’-, of radius r.-, centerd on O inscribing C. This

partitioning is summarized by

m= f2__ur_um+

!2+=Q+-UI’+UQ++. (2)

In Y there exists an electromagnetic field having an

electric intensity E, a magnetic intensity H, and an

angular frequency u. The field ex&bits no variations in

the z direction and it is conveniently separated into two

independent fields, for which Hs and E=, respectively, are

zero. Using complex exponential notation and suppressing

the time factor exp (jd), either of these fields is fully

characterized by a single scalar [6] denoted here by

9 = *(p,@), which is conveniently defined as

E, for electrically polarized field

S?=

Hz for magnetically polarized field. (3)

A primary, or incident, field Q?o= !Po(P,P) emanates

from impressed sources contained in a region % C fl+,

an arbitrary point of which is PO (see Fig. 1). A scattered,

or reradiated, field WI = VI (p, p) arises if parts of Q are

different from free space, so that the total field can be

expressed as

For the reader not overfamiliar with set-theory notation,

this equation states: V can be taken as the sum of !l?O

and wI, when the point P at which the field is observed is

anywhere in the two-dimensional space il.

Fig. 2. Partitioning of Q- and Q*
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A convenient approach to diffraction and scattering of

waves is the polarization-source formulation [7], in which

all fields are taken to propagate as if they were in free

space. Diffraction is accounted for, rigorously, by postulat-

ing equivalent (polarization) sources at all points where

there are departures from free space. If tuo = wo(p,q) k

the density of the impressed sources within Q, then the

incident field satisfies [7]

VWo + W*O = —Wo, Pco (5)

where k is the wavenumber or free-space propagation

constant.

Space is taken to be free throughout all of Q+ apart from

% A time-invariant inhomog,eneous propagating medium

is permitted within Q_ U C. Consequentlyj the polariza-

tion-source density WI = WI (P,P), which is computed

directly from the variation throughout 0-u C of the

permittivity, permeability, and conductivity of the medium

[7], is zero outside C

W1 = 0, P c Q+. (6)

The reradiated field satisfies

Vwl + Vwl = – WI> PC!J. (7)

The total source density is defined by

W=wo+wl. (8)

It follows f rom (4)–(6) that

VW + hw = –Wj PEQ. (9)

If P! is a source point, i.e., a point in a part of space

where w # O, and Rf is the distance from P’ to P, then *

is given by [7]

*=
//

w(p’,p’) ~PIP dQ (lo)

S)&ln.uc

where p’ and p’ are the cylindrical polar coordinates of

P’, d!il is an element of area, and g denotes the Green’s

function for two-dimensional waves ~6]

g~,~= gpp,= — (j/4)H@ (kR’) (11)

which can be expanded in a form that is often useful by

invoking the addition theorem for Bessel functions [8].

The expansion is illustrated conveniently in terms of the

notation introduced in Fig. 1

j4gQp = HO(2)(kR)

= ~ J~(lcr)Hm@J (kP) exp (jm[p – 8]), p > r
—m

= ~ H~(2) (kr)J~(kp) exp (jm[q – o]), P < r
m==—w

(12)

where J~(. ) and H~t2) (. ) are, respectively, the Bessel

function of the first kind and the Hankel function of the

607

III. SERIES EXPANSIONS

Fig. 3 shows a region E contained within 0. A general

expression for a particular field x = x(w) s[~tisfying the

free-space wave equation in fi is [6]

x=+l+@2 (13)

@, = j &Hm(2) (kP) exp (@9) (15)
*— m

where the Am and 11~ are constants. The expression (14)

for % can represent “standing waves,” whereas the

Hankel functions of the second kind in (15) imply that

@z consists necessarily of “outward traveling waves”

propagating away from O. Another way of writing a general

expression for x is to separate it into “inward” and

“outward” traveling waves. However, (14) and (15) are

more convenient for the development pursued in this

paper.

Since Hankel functions are singular wherll their argu-

ments are zero [8] and since, on physical grounds, the

field must be well behaved everywhere in free space, it

follows that:

It is of interest to define the class ~{ ~ ) of field expan-

sions which are entirely outgoing (irrespective of the

values assumed by their expansion coefficients) through-

out d, with respect to the origin O of coordir]lates. If V is

in this class, the notation

is invoked. It follows that:

since the Am must assume special forms for @lIto represent

pure traveling waves; in fact, if the Am are all real, for

instance, then =%represents pure standing waves.

There are three fundamental principles which should

be kept in mind when representing fields by infinite series

~- ——-.,/
/

/’
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/
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I
\
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/’-’=. .—----
second kind, of order m. Fig. 3. The region ~.
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of wave functions, such as the expressions on the right

hand sides (RHS) of (14) and (15). The first principle

can be stated without preamble.

First Fundamental Printiple

An injinite series of wave functions is a useful representa-

tion of a jield, within a region of space, only if the series has

a unique value at each point within the region, i.e., if the

series converges (in the sense that when the ser<es is truncated

to a sujlikient number of terms, its value is negligibly in-

creased by adding further terms) everywhere in the region.

Bessel functions of the first kind of integer order can be

written as series in nonnegative powers of their arguments

[8]. Consequently, the series for @l in (14) can be re-

arranged as a Taylor series, for p less than the maximum

radius oj convergence [9]. The magnitude of a Hankel

function decreases monotonically as the magnitude of its

argument increases [8], and all Hankel functions are

singular when their arguments are zero, so that the ex-

pression for *2 in (15) has a minimum radius oj convergence.

Defining the quantities 7 and rOby

? = maximum radius of convergence of RHS (14) (19)

To = minimum radius of convergence of RHS (15) (20)

it is seen that all of E must lie within the ann~us rO <

p S ?, as is illustrated in Fig. 3.

The concept of analytic continuation is most familiar

in complex-variable theory [9], but it applies to real spaces

of any- number of dimensions [10]. It has been applied

with effect to electromagnetic theory by Waterman [11],

by Mittra and Wilton [12], Imbriale and Mittra [13],

by Weston et al. [14], and Weston and Boerner [15].

The second principle, the importance of which has been

emphasized by Mil.lar [16], is based on the uniqueness of

analytic continuation [10].

Second Fundamental Principle

Consider two regions fi and E, such that 6 C E, where ~

is contained within the part oj space where a particular jield

exists. Ij a series representation oj the jield is known to be

valid within the region 6, but is subsequently jound to

converge within the wider region Z, then the uniquemss oj

arwlytic continuation ensures that the series is a valid rep-

resentation oj the jield throughout E.

It is a necessary corollary to this second principle that

90 can be expressed as

~0 = ~ %Jn(kp) exp (jmp), P E L - (21)
-m

where the am are constants. In Section 11, the sources of iko

are defined as existing entirely in f% C !J~, so that ?POis

analytic at the origin. ‘O. Consequently, (21) agrees with

(16) in that no series such as the one in (15) can be part

of a representation of XJ?Othroughout Q___ The maximum

radius of convergence of the series in (21) cannot be less

than”r_ (see Fig. 2), by the second principle, because *O

can only cease to be analytic within G. So 14?0must be

expressible as in (21) within tl -.

Is it worth recalling that if VO has the form of a plane

wave, incoming from infinity at an angle @ to the datum

00’ (see Fig. 1), then [8]

am = j“ exp (jm&). (22)

Although a field must have a unique value at any point

in a homogeneous source-free region, there is an infinite

number of possible series of wave functions which can be

used to represent the field within a finite region containing

that point. Note that the functional dependence of ahnost

all of these wave functions will be unseparated, because

there are only eleven separable coordinate systems.
Suppose that there are two sets of wave functions,

{ V~(’J (p,p) ] and { V~(2)) p,p) }, both of which satisfy the

free-space wave equation. It will be found that a particular

field V = V(p,p) can be expressed as

v = g cm(l)vm(l) (p,q) , Pezl
m==—m

= : cm(z)vm(z) (P,P) , PEE, (23)
m==—w

where the Cm(l) and Cfi(2) are constants, and % and Zf,

respectively, are the widest regions throughout which the

two series converge. Millar’s studies [16] demonstrate

the importance of the third principle.

Third Fun&mental Principle

Within %11 %, i.e., the hatched region shown in Fig. 4,

it is usejul to rearrange the V~(l) and V~@ in terms oj each

other, so that the set oj constants { C~(2J) can be determined

jrom { C~(lj ), and vice versa. However, within the noninta-

secting parts oj El and %, swch a rearrangement cannot lead

to a unique result jor these sets oj constants.

Suppose that there is a field V = V(p,p) which is

entirely outgoing in a region El+, i.e.,

v E a{%+}

where El+ is all space outside the circle

(see Fig. 5). Then V can be written as

V = 5 CI,Jfm(2) (~PI) exp (jrnpl),
—m

(24)

I’01 of radius rol

p,> ro, (25)

where the Cl,~ are constants, and pl and 91

Fig. 4. Intersecting regions.

are polar
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Fig.5. Change of coordinate origin.

coordinates referred to origin 01, which is the center

of J701.If rol is the minimum radius of convergence of

RHS (25), then there must beat least one point, &, say,

on I’01 at which V is singular (i.e., either V does not exist

at & or derivatives of V of an order higher than some

finite order do not exist at SJ.

In Fig. 5, the point OZ is the center of the circle I’M of

radius r~, and is origin for the polar coordinates p2 and qz.

Also, %+ is all space outside rw. Now the addition theorem

(12) for Bessel functions can be extended to functions

of any order [8], so that when the position of P is such

that P2 > PH, it is found that (25) can be rewritten as

m

V = ~ C2,Jl~(2) (kP2) exp (jnw2) (26)
7?2==-.

C2,m= exp (jmpn) Z Cl,~J.(kpJ
n==-- m

. exp ( —jn[plz + ~]) (27)

which is, in effect, a rearrangement of terms of the kind

referred to in the third fundamental principle. So (27)

has meaning only in the part of space for which RHS (25)

and (26) both converge. Denoting the minimum radius of

convergence of RHS (26) by m, it is seen that (26)

applies only for P > m, and the rearrangement of terms

expressed by (26) and (27) is only valid in %+ n %+.

Also, there must be at least one point, S2, say, on I’02 at

which V is singular.

It is important to realize that SI must lie either on I’m

or inside it. By the third fundamental principle, RHS
(25) is identically equal to RHS (26) throughout %+n Ez+.

So, if S~ were in %+, then RHS (26) would have to be

singular in %+, but this cannot be true because the defini-

tion of r02 ensures that RHS (26) .is analytic throughout

%+. Similarly, SZ must lie either on or inside I’01. This

ensures that the field V must be singular at S1 and S2,

whatever expressions are used to represent the field. By

continuously changing the origin of coordinates, the con-

tinuous, closed, convex curve ~. can, in principle, be

traced out where W, which is called the “convex hull” of

the singularities, is the convex envelope of the singularities

of V. Note that the origin of coordinates must follow one

of a special set of paths if the true convex hull is to be

traced out.

IV. INTEGRAL FORMULATIONS

In Section II, when considering the whole of Q the seat

of the reradiated field VI is taken to be the polarization-

source density within !2.–U C. However, when considering

only Q+, *1 can be expressed conveniently in terms of

equivalent sources on C, as is demonstrated by, for in-

stance, Baker and Copson [17]. Refer to ( 11) and the

definitions preceding it and then consider the quantity

% = %(p,q) which is defined by

% = /!~9spv2% –**V2gsP] dQ (28)

&

where the point S lies within the element of area dSt,

and P is the point in Q at which % is computed. Now gsp

is analytic (i.e., regular or well behaved) unless P coincides

with S, so that the integrand in (28) can only fail to be

analytic in the neighborhood (denoted by !31P) of P. The

Green’s function gsp can be thought of as the field radiated

by a point source at S, so that [6]

v2gsp + k2gsP = – 6SP, Pee! (29)

where 13spis the two-dimensional delta function

J..
13SPda =

//
aspd~ = 1. (30)

Q Xp

If follows from (6), (7), (29), and (30) that (28) can be

rewritten as:

Since

gw? = v. (gvv) – Vg. w (32)

one can rewrite (28) as

% =
/.

V. (gsPVVl – TIVgsP) dO. (33)

Q+

On referring to the notation introduced in Fig. 1, it is

seen that this equation can be transformed with the aid

of the divergence theorem into

where dC is the element of arc along C. When transforming

from the surface integral over Q to the line integral along

the contour enclosing Q, there is a line integral along a

circle at infinity as well as the line integral along C. But

the integral at infinity vanishes because both gsp and *1

are outgoing at infinity. This is the famous “Sommerfeld

radiation condition” ausstrahlungsbedingun:T [6], [17].

Combining (31) and (34) gives
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/[

@QP avl(r,e)
Wl(p,p) = Xq(r,e) --$- – gQP 1dC, P < Q+.

c av

(35)

Using (30) and the notation of Fig. 1, (5) can be written

as

VWll + EWo = –
//

WP06POPdil (36)

00

where WPOdenotes the value of WOat the point PO in %.

On replacing the subscript 1 in (28) with the subscript O,

and retracing the reasoning which leads from (28) to
(31), it transpires that

30 = o, PEQ+ (37)

because the contributions from the sources of VO in G

cancel the term

//
9o13sP d~.

%p

By analogy with (32)–(34) it follows that:

To remove any ambiguity concerning the meaning of

the integrand in (41) when Z = m, the following definition

is necessary:

F’(C) = O and ZQF(C) = G(C) when ZQ = co

(43)

where G(C), an alternative definition of the density of

reradiating sources on C, is a well-behaved function of C.

Z depends upon the form assumed by the field in il.,

which means that, in general, the interior and exterior

(with respect to C) fields have to be treated in conjunction

before either can be computed accurately. However, if the

medium occupying Q. U C is highly reflecting or very

lossy, Z can be specified usefully a priori [18]. In particu-

lar, if the medium is totally reflecting (e.g., C is the cross

section of an infinite, perfectly conducting cylinder) then

Z is zero or infinity, respectively, depending upon whether

the field is electrically or magnetically polarized.

When Z and *O are specified, the determination of *I

in Q+ is a properly formulated boundary value problem

which can be posed as an integral equation, derived from

(39)-(41)

/[

dgQp awo(r,e)
Vo (r,o) --$- – gQI’

av 1dC = O, P 6 $2+. (38)
c

[F+~[%-zQ-]F(c) dc]ZQ

Combining (35) and (38) gives an expression for the

reradiated field in terms of the total field on C and its

normal derivative there. The ratio of the field to its

normal derivative can be looked upon as a normalized

impedance, denoted here by

/

W(r,O)
Z = ~(r,6) —

av
(39)

which in general varies along C

Z = Z(~,@ = Z(C) = ZQ. (40)

These different notations expressing the functional depend-

ence of Z are useful later.

Combining (4), (35), and (38)–(40) gives

/
*I = [gQP – zQ@QP\aV]F(C) dc,

c

where the linear density of reradiating

defined by

F(C) = – tlv(r,o) /a~.

P c Q+ (41)

sources F(C) is

(42)

It should be noted that F (C) is proportional to the density

of equivalent surface currents on the wall of the infinite

cylinder of cross section C. For electrically and mag-

netically polarized fields, respectively, F(C) is propor-

tional to the equivalent electric and magnetic surface-

current densities. For perfectly conducting cylinders,

F(C) is proportional to the actual surface-current density.

Remember that there can be no magnetic surface current

on a perfect conductor, in which case ZQF (C) is propor-

tional to the electric surface-current density when the

field is magnetically polarized.

!
= 90Q’ + ~ [(/Q.’ – ‘Q@QQ’/av] F(c) dc (44)

where *oQ? is the value on C of *O at the point Q’, at which

the outward normal direction to C is the v’ direction.

The unknown in (44) is F(C) which can be evaluated

numerically by a number of different moment methods

[19], [20]. Once F(C) is determined, ikl can be computed

by substituting F(C) into (41).

It is often convenient to expand VI in an angdar

Fourier series, which is what the physicists call its “partial

wave expansion. ” To do this, it is first necessary to divide

C into parts on which the radial coordinate of Q is less

than, or greater than, the radial coordinate of the point P

at which the field is being examined

C= L_u L+ (45)

Q~L- when p<r (46)

QCL+ when p>r. (47)

Note that both L– and L+ are functions of the position

of P

L* = L+ (p). (48)

By inspection of Fig. 2 it is seen that

L_=~ and L+=C, P c 0++ (49)

L+=~ and L_. =C, PEQ_ (50)

where @denotes the null set (e.g., the region of space with

no points in it).

It is convenient to return to the quantity X, which is

introduced in Section III, and to define it throughout all
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!J by

Comparison with (41) shows that

x = *1, P E a+. (52)

It is now necessary to widen the definitions of the quan-

tities % and %, introduced in (14) and (15), respectively.

The series in (14) and (15) are quite general, but it is

only in particular regions, such as 6, that it is useful to

choose the expansion coefficients (the Am and the B~)

as constants. Define

@l = ~ k- (p) Jm(kp) exp (~~w) (53)
*— -

% = ~ k~+(p)H~[2J (kp) exp (jmp). (54)
-—Q

It follows from the notation of Fig. 1 and from (12), (40),

(45)-(48), and (51) [and also fr;m (106)] that:

Am-(p) =
J

F(C)~~t2) (k)r) exp ( –j@) dC
L–(P)

!
h+ (P) = ~+(p) F(C) ~m(k,r) exp ( –jnzO) dC

where the tilde on H and J is a shorthand notation

j4~~(k,r) = W~(kr) – #c[W~-l(lc?) exp (ja)

– ~n+,(kr) exp ( –ja) ]Z(C)

,,

(55)

(56)

(57)

where W denotes either J or H(2). The easiest way to

confirm the preceding results seems to be to expand gQp

in (51) by the addition theorem (12) before differentiating

with respect to v. Reference to (49) and (50) shows that

X~-(p) = An kv+(p) = O, P < G!- - (58)

km+(p) = Bm km–(p) = o, P c Q++ (59)

where An and B~ ‘are introduced in (14) and (15). It then

follows from (52) that:

VI E @{Q++] (60)

on making use of the notation introduced in (17). On

referring to (18) and (52)–(59), it is seen that (60)

implies that

T1 = ~ BJI~(2) (kp) eq (jwo), P 6 !2++. (61)
*— m

The analytic continuation procedure by which (26) is

got from (25) can only trace out the convex hull K?. of

the singularities of a field. A different procedure [12_J-[15]

is needed to isolate the concavities (if there are any) in

the actual hull x of the singularities.

It follows from the second fundamental principle of

Section III that RHS (61) is a valid representation of the
analvtic continuation of VI for all of !2 outside the circle I’0,

centered at 0, and of radius TO(see Fig. 6), where rO is the

minimum radius of convergence of RHS (61). However,

a different expression is needed to represent the analytic

continuation of ‘3?1throughout the interior of the circle F,

centered at ~, and of radius?, shown in Fig. 6. Note that .17

intersects both 170 and 32.. Using the addition theorem

referred to in the derivation of (26), the analytic continua-

tion of RHS (61) into the interior of T is found to be

~ &Jm(lc.) exp (jnz*), 7 <:7 (62)
+— m

n-— m

where the & are determined by comparing (61) and (62)

within the intersection of the interiors of 170and ~ (refer

to the third fundamental principle of Section III).

If? is the maximum radius of convergence of RHS (62),

then F must be tangent to w at one point at least. Since,

as was indicated in Section III, the singularities of fields

are unique, F cannot intersect the interior of ~. In fact,

F can only intersect the interior of WCif K? itself possesses

concavities.

By successive applications of the addition theorem, WI

can be continued analytically throughout the exterior

of 3C.

When C has a sharp corner, as at QOin Fig. 7, then w

almost always touches C at the corner. Using the polar

coordinates r and # introduced in Fig. 7, the total field

in Q+ in the neighborhood of Q. must be expressible in

the form [6]

Fig. 6.

-.= /--. ——..--

Analytic continuation inside the convex hull of singularities.

T P
Q.

/

.

Q1

Fig. 7. Curve C having a corner.
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where the cmare constants, and the pm satisf y the boundary

conditions set by the surface impedances ZI at $ = O,

and Zz at # = (27r — L?), in the neighborhood of QO. So

the Km and the f% are the values of y and (3, respectively,

which satisfy

I.JZI = tan (e) ~Z, = tan ([27 – p]IJ + e) (65)

where, because the physical field * must be finite at

r = O, the real part of ~ must be nonnegative. Measuring

distance along C from QO, the surface-source density is

given, from (42) and (64), by

F(C) = ; ; F.-JPm(–kC), C<o
m-l

= ; : F.+Jpm (kC) , C>o (66)
???,-1

in, at least, a neighborhood of QO, where the constants

F~~ are given by

F~- = –pmcm Cos (em) (67)

F~+ = ~A~ cos ([27r – @]p~ + Ek) . (68)

Provided that C is analytic and Z varies analytically

along C then, by the second fundamental principle of

Section III, the series in (66) are valid representations

for F(C) for values of C for which the series converge.

If Cl is the distance along C from Q, to Q,, and if Cl is the

radius of convergence of the second series in (66), ‘then

F(C) = : ~ Fm+Jpm(kC), O < C < C,. (69)

It is important to realize that the nature of Bessel

functions [8] is such that, unless all the pm are positive

integers, F(C) must cease to be analytic at QO.

V. THE EXTINCTION THEOREM

On repeating the derivation of the quantities TOand TI,

as presented in Section IV, but for L, as opposed to ti+,

it is found that [17]

x = —*O, PcQ_ (70)

where x is defined in (51). Now x represents the reradia-
tions, throughout all ~, from the equivalent surface

sources on C. So it follows from (70) that these reradia-

tions extinguish the incident field in o–. This is obvious,

on physical grounds alone, when C is perfectly conducting;

but it is nevertheless true in the general case, as seems

to have been noticed first by Love [21]. However, this

‘extinction theorem, ” as it is called, dates back to 1915

in the optical literature, in which it is usually associated

with the names of Ewald and Oseen. It has been reexamined

in detail by optical scientists recently [22], [23]. Water-

man [11] has developed it, under the name of, the ‘[ex-

tended boundary condition” (EBC), into a systematic

technique for solving boundary value problems. There

have been a number of extensions of Waterman’s methods

and these have been reviewed very recently [24], [25].

Since fl- _ c 0- (see Fig. 2), it follows from (70) that

x = —wCl, Pen_.. (71)

At any radial distance p from the origin O, the angular

coordinate p spans the interval O ~ p < 22r continuously

within fl _. This means that within W _ individual

angular Fourier coefficients of x and ( —Vo) can be equated.

It then follows from (13), (21), (53), and (54) that:

x~– (p) J~(kP) + k+(p) If~(2) (kp) = – a~J~(~p),

O ~ p “< r+ (72)

for all integers m. It is useful to introduce a notation for

the set of integers 11 to 12, inclusive

9(11,12) = {11,11 + 1,11 + 2,...,12 – 1,12}. (73)

Reference to (49), (50), (55), and (56) then shows that

(72) reduces to (note that L+(p) = O for p < r_)

Am-(r-) =
J

F(C)~~f2J (k)r) exp ( –jmO) dC = –~,
c,

m Eg(–m, m) (74)

which is an infinite set of nonsingular integral equations

for F(C), the null-field equations [26]. They shou~d be

compared with the single, singular integral equation (44).

It is singular because gQQ~ceases to be analytic as Q

tends to Q’. The relative merits of (44) and (74) are

discussed in Sections XII-XIV.

Choosing a suitable set {fn(C); n ~ 9( – co, co) } of

basis functions, F(C) can be expressed as

F(c) = ~ Fnfn(c) (75)
n==—m

where the F. are constants. By the first fundamental

principle of Section III, this expansion is only useful if it

converges everywhere on C, except at those points, such

as corners, where F(C) must be singular (~efer to the final

paragraph of Section IV). Substituting (75) into (74)

gives

~ F.Km,m = –a., m :J(–co, co) (76)
%-m

K n,m =
J

f. (C)lIn(2J (k,r) exp ( –jw@ dC,
c

‘nz,’n Eg(—cm, w). (77)

The numerical solution of (76) is discussed in Section IX.

When F(C) satisfies (74), then x, which is defined by

(51), satisfies

X+wo=o, Pca_- (78)

which is merely another way of writing (71). But both x
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and T!. are analytic throughout D_, because the sources

of x are on C, and the sources of TO are in 00 c L& The

uniqueness of analytic continuation [10] then ensures that

X+wo=o, Pcfi. (79)

in agreement with (70).

It is worth noting that x actually does cease to be

analytic on C, since [refer to (51) ] gQp ceases to be analytic

as P tends to Q. The point is that x represents different

quantities on either side of C. This is important, because

if it were not true, the uniqueness of analytic continuation

would force x and ( —TO) to be equal in fl+. To belabor

this: the integral in (51) does not have to cease to exist

(i.e., become indeterminate) as P approaches C; it is

merely that derivatives, of (an) order higher than some

finite order, of this integral with respect to p and/or p

must cease to exist as P approaches C.

VI. THE RAYLEIGH HYPOTHESIS

In the nineteenth century Rayleigh [27] realized that

theoretical descriptions of diffraction phenomena would be

much simplified if any reradiated field could be represented

by a single expansion everywhere outside the object

scattering the incident field. This conjecture is now known

as the Rayleigh hypothesis. It can be stated concisely

using the notation introduced in Section III.

Rayleigh Hypothesis

that

rll < r+. (80)

It is clear that the Rayleigh hypothesis is valid if and only

if rO < r– This means that x (see Fig. 6) must not

intersect L+ (see Fig. 2).

What is required is an a priori method for gauging the

validity of the Rayleigh hypothesis. The analytic continua-

tion procedures introduced in Sections III and IV are

of no use for this because they permit x to be traced out
only a posterior. However, as has been discussed in

physical terms by Nevi&e et al. [28], and as is examined

in a little detail which follows, the method of conformal

transformation can be adapted to estimate the positions

of (at least some of) the singularities of the field.

In Fig. 8 the point P is accorded Cartesian coordinates z

and y as well as polar coordinates p and p. It is convenient

to think of a complex plane [see Fig. 9(a)] superimposed

upon the physical z,y plane. This complex plane is called

the z plane, where

.z=z+j~. (81)

Since the complex number z is employed only in this

section, there need be no confusion with the Cartesian

coordinate z introduced in Section I. If fi~ is all of 0+

apart from fk, then it follows from (4)– (9) that:

vi E @{Q+]. which can be rewritten as

It has already been demonstrated [refer to (60)] that

VI C @{Q++}. It remains to examine VI in f?+ _ (see 4—82* + ~2* = f), PC5+
&&*

(83)

Fig. 2).

It is helpful to introduce a “critical circle,” denoted by

I’O in Fig. 8. This is the same as the I’O shown in Fig. 6.

Its radius n, the “critical radius,” is the minimum radius

of convergence of the series on RHS (61). By the second

fundamental principle of Section III, this series is a valid

representation of VI for p > ro, and it follows from (60)

/’

//

!7++
\
\

\

\
\

\
\

\
\

=___ _— ---

on using (81). The asterisk denotes the complex conjugate.

A new complex variable ~ is introduced

(b)

Fig. 8. Regions and coordinate systems needed for examining the Fig. 9. Conformal transformation of C. (a) C mapped onto complex
Rayleigh hypothesis. z plane. (b) C transformed into circle in complex f plane.
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t=t+jv (84)

This variable f is thought of as a function of z, and z is

also thought of as a function of f

j- = r(z) .? = z(~). (85)

The form of f(z) is chosen so that C is transformed into

a circle in the ~ plane [see Fig. 9(b)], and !2+ is transformed

single valuedly onto the exterior of this circle. Now

~zq a~ 2 a2*
—= ——

a2a2* aZ a~a{*
(86)

so that (82) is transformed into

$+$+W: 2*=(), PEG+ (87)

which implies that the original problem of an arbitrarily

shaped diffracting body embedded in a homogeneous

space has been exchanged for a body of simple shape

(a circle) embedded in an inhomogeneous space. The

factor I &/a~ I playes the part of a variable refractive

index.

It seems that provided Q- is simply connected, z(f)

is analytic throughout Q+. Algorithms useful for computing

z(r) are known [28>[30]. It is obvious on purely physical

grounds that a field must exhibit singular behavior at

points in a medium where the refractive index ceases to be

analytic. Consequently, at least some of the singularities

of the analytic continuation of VI into ~_ (see Section IV)

must coincide with the singularities of I t)z/dt 1.

Suppose that points S* (see Fig. 9) are singular points

of I 3z/t?~ 1. Note that the positions of these can be com-

puted in either the z plane or the ~ plane, depending upon

which of z(~) or f(z) is the easier to examine. If any

points such as h’+ exist, - then the Rayleigh hypothesis

must fail because. [refer to Fig. 9(a)] these are singulari-

ties in %+. The Rayleigh hypothesis may be valid if the

only singularities of ( tlz/tJ~ 1 are at points such as S_.

It should be kept in mind that it is not yet clear how

important are singularities other than those of I t)z/af ].

Known algorithms [28~[30] for numerical computa-

tion of conformal transformations seem suitable for com-

puting the points in the z and ~ planes where a~/az and
dz/df, respectively, are zero. All these points are singulari-

ties because, on physical grounds, the field must be sin-

gular wherever the refractive index is zero or infinite.

Consequently, there should be no difficulty in computing

the positions of all points such as S+.

VII. STRAIGHTFORWARD POINT MATCHING

When the Rayleigh hypothesis holds, RHS (61) is a

valid representation of WI everywhere in O+. A useful
approximate expression for VI is then

Wl(p,q) % S 13Jf~f2) (kp) exp (jmp), P ~ Q+ (88)
—M

where the positive integer M is large enough that VI is

approximated to within some required accuracy.

A set {Q. ) of (2il!f + 1) points is chosen on C. The

polar coordinates of Q. are rn and On.

The normalized impedance, introduced in (39), can be

looked upon as a boundary condition. So if both *O and Z

are known (or specified) at each Q., the B~ can be found

by solving the (2M + 1) linear algebraic equations

aw (rn,on)
Z(r.,e) 3P = V(rn,en) , n E g(l,2M + 1) (89)

n

where (40) and (73) have been used, and the outward

normal direction to C at Q. is the V%direction. It follows

from (4) and (88) that:

~ B~ ~(rn,(?n)
a(lYmt2j (h.) exp (jmo.) )

m==-M av.

_ Hm(t) (Iwn) exp (jm%) 1
avo(~n,en)

= ‘zO(rn,en) – Z(rn,f?n) 3V , ‘n, E 9(l;2il!f + 1)
n

(90)

from which the B~ can be found numerically by standard

elimination procedures. This straightforward point-match-

ing (SPM ) method, the electromagnetic applications of

which are due initially to Mullin et al. [31] and Yee and

Audeh [32], has been reviewed lately [33], [34]. It is

discussed further in Sections XII–XIV, together with

other more sophisticated point-matching techniques.

VIII. BOUNDARY SMOOTHING

Since *I is analytic throughout Q+, there must exist
a set {V~ = V~(p,y) ; m c 9(— CO,co) ) of wave functions

such that

*I = ; c.vm, PCQ+ (91)
m==-=

where the Cm are constants, and each of the V~ satisfies

the impedance boundary condition (39)

where use has been made of (40). Full mathematical

justification of (91) is probably difficult, but the existence

of an infinite number of V~, each satisfying (92), is a
physical necessity to ensure that variations in the expan-

sion coefficients, the am [refer to (21)], of the incident

field result in corresponding, unique variations in the

expansion coefficients, the Cm [refer to (91)], of the

scattered field.

By the third fundamental principle of Section III, the

B~ in (61) can be found in terms of the C% in (91),

provided that RHS (61) and RHS (91) are compared

in S2++. Remember that (61) is exact, because of (60).

If P travels around a circle centered at the origin O of

coordinates, it does not cross C if p > r+, i.e., if P is in

Q++. So it follows from (61) and (91) that
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p > r+. (93)

When C and Z are arbitrary there is no simple way of

constructing the V~, which means that (93) is not useful

in computational practice. However, neither is (61)

useful in computational practice because it contains an

infinite number of unknowns. Recourse must be had to

(88) which implies that the expression

should be used instead of (91).

Each of the H~@J(lip) is analytic throughout Q+, so

that a finite sum of these functions can never cease to be

analytic within !2+. Somewhat similar reasoning has led

Ikuno and Yasuura [35] to suggest that (88) should be

valid throughout Q+, whether or not RHS (61) converges

throughout Q+_. In order to overcome the deficiencies of

SPM in cases where the Rayleigh hypothesis fails, the

boundary condition (39) is satisfied in a least squares

sense on C. This accounts for the title “boundary smooth-

ing” given to this section. Combining (4), (39), and (88)

gives

5 l?~ [~ (.H~f2J(kr) exp (jmO) )Z(r,O)
711==-M

1–Hm(’) (h) exp (jmO) = V0(r,6) – Z(r,O) f3WO(r,0)/dv.

(95)

There are several ways of estimating the B~ from (95).

A convenient method is begun by expressing r as a func-

tion of O. It may not always be possible to do this single

valuedly in O 50 < 27r. However, provided that the

curve C is singular at no more than a finite number of

points, it is always possible to divide C into a finite number

i, of parts throughout each of which r is single valued in O.

On the nth part, r can be written unambiguously as

“r = r(e) 8.1 < e < en’, ‘n E9(l,i). (96)

The set {0.1 <0< On,, where n ~ g ( l,i) ) of i intervals

spans the complete interval O g 0 < 2T without any

gaps, but intervals must overlap (if it is found that no

intervals overlap then r is, in fact, single valued in 6;

and i can be reduced to unity). After (96) is substituted

into (95), the form of the latter is suitable for direct

evaluation of its trigonometrical Fourier coefficients.

From those of order –M through M, a set of (2M + 1)

inhomogeneous linear algebraic equations is obtained

for the B~. These can be solved numerically by standard

elimination procedures. The B~ computed in this way are

optimum in a least squares sense, because of the orthog-

onality of trigonometrical functions in the interval

o<o<27r.
This method is equivalent to Bolomey and Wirgin’s
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[36] total support moment treatment of tlhe Rayleigh

hypothesis. Its theoretical justification and its practical

computational significance are much the same as Davies’

boundary residual method [37] and the simplified ap-

proach to the EBC (see Section IX). Ikuno and Yasuura

[35] evaluate the integrals by which the Fourier coef-

ficients of (95) are obtained by a point-matching ap-

proximation.

IX. EXTENDED BOUNDARY CONI)ITION

To obtain numerical values for the quantity F(C) dis-

cussed in Section V, the summation in (75) must be

truncated

F(C) % ~ Fnfm(C) (97)
n==-N

so that (74) becomes

~ FXn,m = –am, ‘m E 9( —N,N) (98)
n=-N

where the K.,~ are defined in (77). The integer m in (98)

is restricted to 9 ( —N,N) so that a linear system of

(2N + 1) equations in (2N + 1) unknowns is obtained.

Provided the integrations in (77) are carried out with

sufficient numerical accuracy, the F. can be determined

from (98) by standard elimination procedures to the

accuracy inherent in (97). This accuracy can be improved

by increasing N.

Waterman [11] shows how to compute the scattered

field without first having to evaluate F(C) explicitly. This

computation can be simplified when the Rayleigh hy-

pothesis is valid. Using (4), (21) with the summation

truncated to (2M + 1) terms, (42), and (88), it follows

that all the expansion coefficients in (97) CalJlbe replaced

by unity, i.e.,

Fn = 1, n <9(– N,N) (99)

provided that N = M and the basis functions have the

form

–j4j. (C) = a.~(Jn(kr) exp (@)) /av

– B.d (Hm(2J(kr) exp (jno) ) /aV. (100)

It is convenient to define

. exp ( –jmfl) dC

. exp ( —~”mo) dC

where 6P,gis the Kronecker delta

8P4 = 1, P=q]

101)

102)

I) p,q <9(–aJ, co). (103)
. 0, p#q
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Substituting (99)–(102) into (98) and (78) gives

E BnKn,m(’) =&, m E J(–M,M) (104)
n=--M

M
ii~ = ~ a~n,~(o). (105)

n=-M

If the incident field and the scattering body are given,

& can be computed directly from (21) and (101), so

that the B. (which characterize the scattered field com-

pletely) can be obtained from (104) by standard elimina-

tion procedures.

X. STATE-VARIABLE FORMULATIONS

Vincent and Petit [38], Petit and Maystre [39], and

Hizal and Tosun [40], [41] have noticed that wave

scattering can be cast in a generalized Riccati equation

form, so that the extensive theoretical and computational

apparatus associated with state variables [42] can be

invoked.

Inspection of Fig. 1 indicates that

a
– cos (a) ~ — sin (a) & .

G–
(106)

Combining (4), (21), (13), and (52)–(54) leads to

V = ~ [(am + k-(p) )J~(kP) + km+(P) ~m(2) (~p) 1
m==—w

.exp (jump ), P < Q+. (107)

Substituting (106) and (107) into (42), and using the

recurrence relations for Bessel functions [8], gives

F(c) = ?)(r,e)

– Cos (a) ~ [hm–’ (r).lm(kr)
-m

+ x~+’ (r)H~f2j (kr) ] exp (jmO)

+ ;k g ([km-( r)cl+l(kr)
.==---

+ A~+(r)Hm+lt2) (kr) ] exp (ja)

– [Am- (r).lm-,(kr) + Am+(T) Hm-,@) (k?”) ]

. exp ( —ja) ) exp (jmO) (108)

where the prime denotes differentiation with respect to r,

and

q(r,O) = ~lc ~ aJJxl (ih-) exp (@) J%l(kr) exp ( –ja) ]
9n==—m

.exp (jti). (109)

Inspection of (45)– (48), (55), and (56) indicates that

Am–’(r) = –F(C) ~~(’) (k,r) exp ( –jti) csc (a) (110)

(111)L+’ (r) = l’(C) J~(k,r) exp ( –jn(?) csc (a)

where use has been made of

dC/dr = csc (a) (112)

which follows from inspection of Fig. 1. On postulating that

Am- (r) = km+(r) = O, I m I > M = M(r) (113)

where M is a finite positive integer, it is seen that substitut-

ing (108) into (109) and (110) leads to a generalized

Riccati equation for the Am+.

A circle of radius r and centered at O, in general, in-

tersects C at an even number of points, each of which is

denoted by Q,(r) where q C g ( 1,2.!) and where, as is

seen from (96),

l=l(r)~i. (114)

The Q,(r) are ordered counterclockwise around the circle.

It is convenient to denote the values, at Qg(r), of A~&, 0, and

a by &,~*, Oa,and a~, respectively. Note that

0, = Or(r) % = %(~). (115)

It follows from ( 108)– ( 114) that the Rlccati equation

can be written as:

(l+ X) A’+YA=W (116)

where 1 is the identity matrix, X and Y are square

matrices, and A and W are column matrices, all of order

4 (2M + 1)1. The elements of A and W are defined by

A’plhq = ~–M~p ,q+(r)
\

7 P ~ 9(0,2M)

A2(2M+1J42p2+g = LW+p$g+ (r)

JV2pZ+g= –n (r,0g)Em(2) (k,r) >

. exp ( —jmtlq) csc (aq)

7 q E~(l,21).
~2(2M+l) Z+2P2+r4= q (r#g)7?n(k)r)

. exp ( —.jmf?q) csc (ag) , (117)

The elements of X and Y are now found by inspection of

(108)–(111).

Inspection of Figs. 1 and 2 shows that (116) needs to

be solved in the range r_ ~ r < r+. Two general methods

of solution are now considered.

A. Two-Point Bou,ndary Value Problem

On referring to (58), (59), Figs. 1 and 2, and (117) it is

seen that

A2(2M+1) z+2pwg (7+) = A2Pz+, (T–) = o,

p < 9(0,2M) , q ~ 9(1,21). (118)

The solution of the Iticatti equation gives the initially

unknown quantities Am and B~ quoted in (58) and (59).

Because the boundary conditions (118) are specified only

partly at each end of the range r– < r < r+, a two-point

boundary value problem results, as in the work of Vincent
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and Petit [38], Petit and Maystre [39], and Hizal and

Tosun [40].

B. Initial Value Boundary Value Problem

On using (74) and the part of the boundary condition

(118) referring to r = r_, the column matrix A is com-

pletely specified at r = r_, so that, as in the work of Hizal

[41], an initial value boundary value problem results

AzN+, (r–) = O ], P E 9(0,2M)

tAZCLW+I~z-w&-) = —% , q cg( 1,21). (119)

Note that, as reference to (21) shows, the ap specify the

incident field.

XI. FORMULAS FOR CLOSED

EMPTY WAVE GUIDES

The methods so far discussed have practical application

to the computation of the characteristics of closed, empty,

metallic waveguides, for which the fields are confined

to L. This section lists those pertinent formulas which

differ from the ones already presented.

Because the fields do not vary in the z direction, the

formulas apply to waveguides only at cutoff. But this is

not a significant restriction from a practical point of view,

because the behavior of a propagating mode in a closed

waveguide can be deduced straightforwardly from its

cutoff characteristics [43].

A line source running the whole length of a closed

waveguide is rarely of interest. What matters are the

modes which can be supported by the waveguide. Because

common metals in their commercially available states are

so highly conducting, modal characteristics can usually

be computed to acceptable accuracy by assuming that the

waveguide wall is perfectly conducting

O for electrically polarized field

z=

m for magnetically polarized field (120)

which means that the currents running in the waveguide

wall can be looked upon as the sole seat of the field

V=vl Vl)=o. (121)

The hull & of the singularities of v is unique and lies. in

Q+ u C. It can be traced out by the same types of analytic

continuation procedure which are appropriate for tracing

out XC and x (see Sections III and IV, respectively).

The singular integral equation corresponding to (44) is

![l?gQQ, ~gQQr
—–ZQ

(J 13v’ 1~ F(C) dCZQ,

/= ~gQQ’ – zQ+k@/~~]F(c) dc (122)
c

which is the genot ype of the equations studied by Spielman

and Barrington [44].

The extinction theorem requires that

W=o, Pea+ (123)

so that the null-field equations, corresponding to (74),

are [45]

(124)

An internal Rayleigh hypothesis [33] can be postulated

v = 5 AmJm(?CP) exp (@w), P (: Q._ (125)
%—m

which is equivalent to assuming that TO2 T+, where TOis

the radius of convergence of RHS (125). Whether or not

the analytical continuation of * into ~+ has singularities

in ~+ _ can be estimated by the conformal transformation

procedure described in Section VI. However, in this case,

L is mapped single valuedly onto the interior of the circle

in the f plane; and singular points S+ are in :!2+, S+ being

in @ –.-,and S_ in 0+ ~.

The SPM equations, which are based on (125), become

[33]

– Jm(bn) exp (jkz%) 1=O, n ~9(l,2kf+ 1) (126)

where the coordinates r. and 19~are defined in the second

paragraph of Section VII. The boundary-smoothing

method is still expressed by (95), but with zero on the

RHS and with 11~ replaced by Am. For the simplified

EBC method (based on the internal Rayleigll hypothesis)

the basis functions appearing in (97) are given by

~.(C) = ~jA. d (J. (kr) exp (jnO) ) /c% (127)

and H is replaced by J in the integrand in ( 1102). The B*

are then found from

~ B.K.,m(’) = o.
~.—ll

The Riccati equation, derived from

formulation, is still (116) but with

W=o.

(128)

the state-variable

(129)

The boundary conditions for the two-point problem are

still expressed by (118). For the initial value problem,

however, the boundary condition is

A(7_) = o. (130)

When any of the methods are reduced to computable

form, a set of homogeneous equations results, so that only

trivial solutions exist except when k takes on one of its

eigenvalues (i.e., a cutoff wavenumber for one of the

modes appropriate to the waveguide of crow section C).
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XII. DISCUSSION OF SOME PARADOXES

It has only been during the last fifteen years that there

have been systematic digital computational approaches

to the solution of diffraction problems of interest in radio

engineering. For the last ten of these, mild controversies

have arisen over the validity of certain methods which

were introduced for their computational convenience.

This section discusses several of the apparent paradoxes

from which the controversies arose.

A. Symmetries and Straightforward Point Matching

Yee and Audeh’s [32] SPM method is equivalent to

the numerical technique of Mullin et al. [31]. It is known

that in certain cases the fields computed by SPM are very

inaccurate, even though the cutoff wavenumbers are given

with an accuracy acceptable for some engineering pur-

poses [33].

SPM involves finding those values of k which force

to zero the determinant of the coefficients of the Am in

(126). For any one of these cutoff wavenumbers, (126) is

transformed into an inhomogeneous set of 2M equations,

in 2M unknown Am, by fixing the value of one of the A.,

i.e., it is usual to set AO = 1. After the Am are found by

standard elimination procedures, the field is computed

from (125), with A~ = Ofor I m I > M.

It is clear from the first fundamental principle of

Section III and from the discussion presented in Section VI

that the SPM fields are suspect if the (internal and/or

external) Rayleigh hypothesis is invalid. But why are

the cutoff wavenumbers more trustworthy?

The earliest comment [46] on SPM was unfavorable

because of the reliance of SPM on the Rayleigh hypotheses.

It was then suggested [47] that the excellent results

obtained with SPM were due to certain symmetries ex-

hibited by the waveguides- used in illustrative examples

[32], [48]. It was afterwards found that satisfactory

results could be got from an asymmetrical waveguide

[49]. It was finally noticed [50] that the crucial symmetry

was not the waveguide cross section, but rather a cor-

respondence between the equations expressing approxi-

mate and rigorous approaches to the problem. The deter-

minant, which is nulled to obtain the cutoff wavenumbers,

is essentially the same whether it is derived from the

SPM equations (126) or from the complete point-matching

(CPM) equations, themselves obtained by a point-
matching approximation to the rigorous null-field equa-

tions (124). The only difference between the SPM and

the CPM determinants is that their rows and columns

are interchanged.

A final point worth making is that the accuracy of the

SPM cutoff wavenumbers falls significantly when the

internal Rayleigh hypothesis fails, even though they are

the same as the CPM wavenumbers; and the CPM is

derived from rigorous equations. It has been established

[33], [45] that the reason for this is the crudity of the

CPM approximation to the null-field equations. The

integrand in (124) tends to vary more rapidly with C in

cases for which the internal Rayleigh hypothesis fails,

which implies that when using the null-field method, the

numerical integrations should be performed with increasing

care as C becomes increasingly complicated, as has been

confirmed in a study of the ridge waveguide ~45].

B. Singularities of the Field

Millar’s analysis [16] establishes that the analytic

continuation of VI into Q– has unique singularities there.

However, James and Gallett [34] have put forward an

argument based on Millar’s discussion of scattering from a

perfectly conducting elliptical cylinder [51 ]. Millar points

out that VI can be expanded in Mathieu functions, all of

which cease to be analytic at the left and right foci, jL and

.fR, respectively, of the ellipse (see Fig. 10). James and
Gallett reply that this is certainly true, but if VI is ex-

pressed by RHS (88), then its analytic continuation only

becomes singular at the origin O. This counter is irrefutable

as long as V1 is expressed by a jirvite expansion. However, a

rigorous expansion involves an infinite number of terms,

as in RHS (61). It then follows from the third fundamental

principle of Section III that the minimum radius of con-

vergence of RHS (61) is rO (see Fig. 10). Note that if I’O

intersects ~+, the Rayleigh hypothesis is invalid.

C. Simplified Extended Boundary Condition

The null-field equations (74) follow rigorously from the

extinction theorem, so that if N is a large enough, F(C)

can be found from (97) and (98) to arbitrary accuracy.

The simplified approach (to computing the scattered field)

based on the Rayleigh hypothesis (refer to Section IX)

is not, of course, universally valid [36]. However, it does

not seem to have been generally realized that this simplified

EBC method is inherently arbitrarily accurate, if it is

first used to compute the surface-source density. Express

F(C) by RHS (97) and choose the basis functions to

have the form of (100). Assume for the moment that the

solution to the problem is known so that the correct value

of B., for each n g 9( –N,N), can be inserted in (100).

The F. can be calculated from (97) by standard elimina-

tion procedures. If the Rayleigh hypothesis is valid, (99)

will be found to be satisfied. However, if the Rayleigh

hypothesis is invalid, so that the form of VI in the neighbor-

hood of all points Q on C cannot be computed directly

r P,+~-——. >
,/

//

\ 0’

\

\\

Q+>,
~.. .

-— ----

Fig. 10. Elliptical scatterer.
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from (88), the F. will be found to have values different

from those given by (99), but if these F. are substituted

into (97), and the B. are computed from (56) and (59),

with m replaced by n, then they must be the same as the

B. in (100), because no approximation has been made

apart from the truncation (97) of the exact summation

(75). This emphasizes a point that Millar has made [16]:

any complete set of basis functions is satisfactory for ex-

pressing F(C). However, if RHS (61) does not converge

throughout Q+ -, F(C) cannot be equated with (j/4) o

a ( –v) /tb at each point Q on C, when v and WI are given

by (4) and (88), respectively.

XIII. CONCLUSIONS DRAWN FROM

COMPUTATIONAL PRACTICE

As is confirmed by Ng’s Table I [2], SPM [313--[34]

is by far the most economical method from the points of

view of programming effort and computer time. But it

can only be used with confidence when C is such that the

(external or internal) Rayleigh hypothesis is valid. It

is now clear that when C is such that the Rayleigh

hypotheses are invalid, the field computed by SPM

applies to a boundary curve quite different from C. As

might be expected, the Rayleigh hypothesis appears to

be valid for the new curve [33], [45].

If C has corners for which all the pm (refer to the final

paragraph of Section IV) are not integers, and if all these

corners do not touch F+ or I’-., then the internal, or

external, Rayleigh hypothesis fails necessarily. Note that

for the internal hypothesis, the angle pin Fig. 7 is replaced

by (27 – 13) because it is the field in ~- which is of

interest.

There does not seem to have been any systematic use

as yet of conformal transformation for estimating a p?iori

the validity of the Rayleigh hypothesis (refer to Section

VI). Certain computations of the analytic continuation

of fields confirm that the Rayleigh hypothesis can be

expected to fail if C has appreciable concavities [33],

and the occurrence of singularities is suggested by numeri-

cal instabilities. It is the present lack of a general method

of estimating ro a priori from the shape of C that is perhaps

the chief difficulty regarding fitting SPM into a general

computational scheme.

There are sophisticated point-matching methods which,

while being almost as economical as SPM, are uniformly

valid, e.g., the methods of overlapping domains [52] and

of intermediate expansions [53], and the extended point-

matching method [33]. However, every C represents a

special case, and the accuracy and efficiency of the com-

putations depend upon the ingenuity of the user.

The various boundary-smoothing methods, which are

listed at the end of Section VIII, are much more widely

applicable than SPM and are as easy to use. They are

much less economical because of the numerical integra-

tions which are necessary, e.g., abstracting the Fourier

coefficients of (95). They cannot be used with the same

confidence as the methods discussed in the previous

paragraph because they rely on the Rayleigh hypotheses.

Ikrmo and Yasuum [35] have modified the Rayleigh

hypothesis such that the scattered far field can be com-

puted with useful accuracy in many situationfi where the

conventional Rayleigh hypothesis fails. In their particular

boundary-smoothing procedure they (effectively) invoke

the finite summations (88) and (94), so thal,t they can

rearrange terms within Q+ - even when the conventional

Rayleigh hypothesis fails. This is not allowable in the limit

when M = co, by the third fundamental principle of

Section III. Consequently, the larger M becomes, the less

confidence the procedure inspires. In fact, while they note

the wider applicability y of boundary smoothing in com-

parison with SPM, Bolomey and Wirgin [36] observe

significant deficiencies in some results computed by

boundary smoothing when the Rayleigh hypothesis is

invalid. This is reminiscent of Lewin’s [54] comment

on the null-field method: that the more complicated C is,

the more accurately must F(C) be computed to ensure

that the extinction theorem is obeyed by x in L+, for

scattering problems, or in !2+ –, for closed waveguides.

The final sentence of Section XII-A makes the same

point.

An immediate corollary to the arguments raised in the

previous paragraph is that it is usually easier to compute

far fields, rather than surface sources, to a specified ac-

curacy. This is because surface sources often exhibit

intricate ‘ %iggles” which are needed to represent the

near field accurately in order to satisfy the boundary

conditions, but which have negligible effect in the far

field. Consequently, far fields computed by boundary

smoothing, and even by SPM methods are often satisfac-

tory wlien the corresponding computations of near fields

and surface sources are inadequate.

Methods based on state space formulations, singular

integral equations, and the null-field equations always

give accurate results, provided that proper care is taken

in computing the coefficients in the equations from which

numerical, solutions are obtained. When a solution is

obtained by a standard elimination procedure from a

system of linear algebraic equations of order N, say, the

required computer time is proportional to -W. This puts

a premium on techniques for reducing the value of N

needed to produce a solution to a particular accuracy. The

most significant existing technique is the employment of

basis functions, such as the jn(C) introduced in (97),

which satisfy physical requirements of the problem.

If C is an analytic curve and Z(C) is an analytic function,

then the jn (C) should be analytic. Because of the singular

behavior of gQQ$it is often inconvenient to use smooth

basis functions, and the .f~(C) are frequently chosen to

be pulselike [20], [44]. An advantage of methods based

on the extinction theorem is that smooth bafiis functions
can be incorporated straightforwardly. Considerable de-

creases in N, for a given accuracy of the final solution, are

observed when smooth basis functions are used [33],

[45]. When C has corners, the electromagnetic edge

conditions [6] require F(C) to exhibit singullar behavior
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at the corners, and it is found that N decreases significantly

when singular basis functions, such as the JPm(kC) in-

troduced in (64), are used instead of either smooth or

pulselike basis functions [33], [45], [553[57]. It is

suggested that the shapes of those scattering bodies which

caused Waterman [11] difficulties (which surprised him)

may be such that Waterman’s basis functions—a set of

functions derived by Gram–Schmidt orthogonalization of

the appropriate null-field equations—were computationally

awkward. Similar difficulties have been noted in another

context [24].

Spurious internal resonances can contaminate numerical

solutions to field problems posed for Q+. As Jones [71]

remarks, explicit use of the extinction theorem prevents

this. It should be noted that the null-field equations (74)

(see also [26]) represent a “reliable systematic procedure”

of the sort which Jones hopes could replace the ad hoc

procedures discussed by him (Jones’ [67] new approach

is interesting in this context).

XIV. INHOMOGENEOUS MEDIA

The practical computational experience reflected in

Sections XII and XIII is based almost entirely on studies

of diffraction by perfectly conducting bodies embedded ig

homogeneous media. Certain problems involving in-

homogeneous media have been tackled successfully by the

differential approach (refer to the second paragraph of

Section I). The polarization-source formulation, which is

an integral approach first developed as a systematic

computational method for microwave engineering by

Richmond [58], has led to a number of useful solutions

[7], and, in particular, it provides convenient formulas

for dielectric-loaded waveguides.

Recent results of James and Gallett [53], [59] may

have considerable computational significance because

they hint that the consequences of the failure of the

Rayleigh hypotheses are less severe for penetrable media

than for perfectly conducting structures.

Enormous computational effort is often required for

accurate numerical evaluation of diffraction problems

involving inhomogeneous media, so that methods of ac-

celerating the computations are welcome. James and

Gallett’s method [59] of correcting point-matched solu-

tions for the fields of dielectric waveguides is interesting

in this context. It should be mentioned that this method

would become highly significant if the eigenvalues as well
as the fields could be corrected (without increasing the

computation time to that required for a numerical solu-

tion based on, for example, the rigorous polarization-

source formulation).

XV. NEEDED INVESTIGATIONS

To obtain numerical solutions of integral equations,

such as (44) or the infinite set (74), it is necessary to

expand the unknown function [i.e., F(C) in the integral

equations just alluded to] in a finite number of basis

functions. Using, for example, the expansion (97) the

number of basis functions is seen to be (2N + 1). The

most serious deficiency of existing numerical techniques

is the lack of means for estimating a prori how large N

must be for the solution to possess a specified accuracy.

In practice, the only way of checking whether numerical

convergence is apparently occurring is to repeat the com-

putations several times, increasing N successively [60],

[71]. Tb.is is a wasteful process since the numiber of

operations required to invert a matrix of order (2N + 1)

is proportional to (2N + 1)3. As a result, numerical con-

vergence is sometimes disregarded and N is chosen on the

basis of previous computational experience [61]: an ac-

ceptable engineering compromise, provided that new

problems to which the method is applied do not differ

too much from the ones that were originally solved and

checked against measurements.

Jones [62] shows how to modify the kernel of an integral

equation so that the solution of a truncated system of

algebraic equations, derived from the integral equation,

is less in error than that obtained with the original kernel.

A bound on the error can be computed. To be useful, the

error bound needs to be sharpened, but this approach or

something similar may well lead to useful a priori estimates

of how large N should be to achieve a specified accuracy.

When N is large, perturbational solutions of integral

equations can be expected to be more economical com-

putationally than solutions b y matrix inversion. Hashimoto

and Fujisawa [19] show that a matrix inversion solution,

obtained with a sujiciently large N, can be used to start

a convergent iterative scheme. However, it seems to be

very difficult to obtain an accurate a priori estimate of

how large is .@iciently large. But it might be worthwhile

attempting to combine this approach with that of Jones

[62].

It seems both possible and worthwhile to develop the

confotrnal transformation method described in Section VI

so that it can be applied to a curve C of arbitrary shape,

to estimate whether the internal and/or external Rayleigh

hypothesis is valid for that particular C. Unfortunately,

complex-variable theory is necessarily two dimensional.

It is not clear how to develop mebhods which might be

useful for three-dimensional diffracting bodies.

The most promising aspect of the state-variable for-

mulations described in Section X is that the dimension of

the state vectors, needed to give a specified accuracy, can

be estimated while the computations are being performed.

This does not apply to the two-point boundary value

problem (Section X-A) since, before it can be solved,

a matrix has to be inverted, and there seems to be no

a priori means of gauging how large its order should be

to give a specified accuracy. However, the initial value

problem (Section X-B) is solved serially, and at each

value of r the value of M(r) [refer to (113)] can be esti-
mated in terms of the final, required accuracy. It must be

remarked, however, that Hizal (in private correspondence

with the author) now feels that analysis more intricate

than that outlined in Section X is required to establish

a viable initial value boundary value procedure.

On occasion, as with extended point matching [33]

for example, more than one set of expansion functions
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must be truncated simultaneously. This leads to what are

called relative convergence problems [60], all of which

have so far been treated as special cases. Since relative

convergence can be critical as regards numerical accuracy,

general methods of examining it are needed.

XVI. ADVANCED METHODS

The literature boasts a number of methods [56],

[63}[67] which are more sophisticated, or advanced,

than the methods described in Sections III–XI. These

advanced methods are powerful and illuminating, but

they do not offer any striking computational advantages,

nor do they provide even partial solutions to the problems

noted in Section XV.

In three dimensions, the only thing that is significantly

different-apart from the impossibility, already noted in

Section XV, of applying standard complex-variable theory

in relation to conformal transformation—is that the linear

dimensions of the largest diffracting body that can be

handled conveniently by a given computer are appreciably

smaller than in two dimensions. Mittra [60] has organized

a comprehensive collection of three-dimensional treat-

ments which incorporate comparisons of various computa-

tional appro~ches.

The diffraction of modulated carrier waves can be

treated by first solving the problem monochromatically

for a number of frequencies, spaced sufficiently closely to

satisfy the sampling theorem, thereby obtaining the

“transfer function” of the diffracting body. The time

history of the diffracted field is then found by Fourier

transforming the transfer function. This is a tedious under-

taking which the proponents of the singularity expansion

method [5], [68] claim can be accelerated by replacing

the Fourier integral by a contour integral in the complex

frequency plane. In those cases for which the only sin-

gularities of the transfer function are, or appear to be,

simple poles, the contour integral reduces to a conveniently

computable form. For certain diffracting bodies, in par-

ticular, antennas and scatterers constructed from thin

wires, the singularity expansion method seems to be com-

petitive with direct Fourier transformation of the transfer

function. However, for diffracting bodies of arbitrary

shape, the location of the singularities of the transfer

function is an enormous computational task. It may be

significant that lately Tesche [69] has reverted to the

direct Fourier transform.

Something which so far does not seem to have been

attempted is to formulate the singularity expansion

method assuming that the Rayleigh hypothesis is valid.

This might lead to computational advantages for dif-

fracting bodies of suitable shape.

XVII. ENVOI

The methods and approaches discussed in this paper are

mere intellectual gymnastics unless they can form the

basis of straightforward computational procedures which

can be applied with complete confidence to any diffracting

body that is small enough (in terms of the wavelength)
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to be handled by an available digital computer. No

engineer is going to use a complicated, expensive technique

if he has any doubts about its validity.

As remarked in Section 1, the differential approach

seems most popular at present for treating localized

fields (e.g., fields associated with guiding ~,tructures and

cavities). In fact, several generally applicable program

packages, based ,on the differential approach, already

exist and are in use [70]. So it might be argued that there

is no real need to bother with the integral and series

approaches since they have (‘missed the boat. ” However,

it must be emphasized that, for a given dij!fracting body

and a specified accuracy of solution, the orders of the

matrices and determinants obtained with integral and

series approaches are dramatically smaller than those

obtained with differential approaches [2]. Tll~e significance

of this will increase as the power of computers increases,

permitting the investigation of bodies of increasing size.

It should also be remembered that the differential approach

is inconvenient for some scattering and antenna prob-

lems [71].

The series approach would become generally adopted

if computationally convenient methods couldl be developed

for estimating a priori the validity of the Rayleigh hy-

pothesis; and if necessary, modifications to SPM, in

cases for which the shape of the diffracting body makes

the Rayleigh hypothesis invalid, could be incorporated

systematically into a computational scheme.

The most urgent requirement for integral approaches

is an accurate technique for estimating a priori the order

of the matrices and determinants requireld to provide

particular accuracies of solution.
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Numerical Solution of Steady-state Electromagnetic

Scattering Problems Using the Time-Dependent

Maxwell’s Equations

ALLEN TAFLOVE AND MORRIS E. BRODWIN, SENIOR MEMBER, IEEE

Absfracf—A numerical method is described for the solution of the
electromagnetic fields within an arbitrary dielectric scatterer of
the order of one wavelength in diameter. The m~thod treats the
irradiation of the scatterer as an hdtial value problem. At t = O,
a plane-wave source of frequency f is assumed to be turned on.
The diffraction of waves from this source is modeled by repeatedly
solving a dnite-dMerence analog of the time-dependent Maxwell%
equations. Time stepping is continued untif sinusoidusf steady-state
field valuee are observed at all points within the scatterer. The en-
velope of the standing wave is taken as the steady-state scattered
field. As an example of this method, the computed results for a
dielectric cylinder scatterer are presented. An error of less than
+10 percent in locating znd evaluating the standing-wave peaks
within the cylinder is achieved for a program execution time of 1min.
The extension of this method to the solution of the fields within
three-dimensionaf dielectric scatterers is outlined.

I. INTRODUCTION

T HE accurate determination of the electromagnetic

fields within an arbitrary, inhomogeneous, dielectric

scatterer is both an important theoretical problem and a

practical objective of workers investigating the effects of
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microwaves upon living tissue. Exact analyt; cal solutions

are obtained only for simple scatterers like the sphere and

the circular cylinder, which may be solved using separa-

tion of variables. For complicated scatterers like most body

organs, we must resort to some numerical method if an

accurate model is to be examined.

The computer techniques relevant to this problem that

have appeared in the literature may be called, as a class,

frequency-domain methods. These methods are based upon

the assumption of an exp (j2@) time dependence in the

fundamental Maxwell’s equations. In general, methods of

this type derive a set of linear equations for either field

variables or field expansion coefficients, and t Ihen solve the

linear system with a suitable matrix-inversion scheme.

Wu and Tsai [1] solve two-dimensional scattering by an

arbitrary dielectric cylinder. They develop a coupled in-

tegral equation pair for the electric field and its normal

derivative at the surface of the scatterer. The;y then derive

a corresponding set of linear equations for the surface

fields using the moment method of Barrington [2]. Solu-

tion of this set of equations allows computation of the in-
terior fields using Huygens’ integrals. This method allows

the very accurate solution of a homogeneous dielectric

cylinder, about one free-space wavelength in circumference,

by inverthgan 80-by-80 matrix.


