HYDRODYNAMIC INTERACTIONS OF WAVES WITH GROUP OF
TRUNCATED VERTICAL CYLINDERS

By Oguz Yiimaz'

ABSTRACT: An exact analytical method is described to solve the diffraction and radiation problems of a group
of truncated vertical cylinders. In order to account for the interaction between the cylinders, Kagemoto and
Yue’s exact algebraic method is utilized. The isolated cylinder diffraction and radiation potentials are obtained
using Garret’s solution, and evanescent mode solutions are derived in a similar manner. Numerical results are
presented for arrays of two and four cylinders. Comparisons between the results obtained from the method
presented here and those obtained from numerical methods show excellent agreement.

INTRODUCTION

The phenomenon of hydrodynamic interaction among cyl-
inders in a group, for example between the columns of tension
leg platforms (TLPs) or semisubmersibles, has received con-
siderable interest in recent years. Although numerical calcu-
lations through the use of Green’s function techniques are well
established, their use may be expensive and cumbersome. An
alternative method is to obtain semianalytical solutions that
take the hydrodynamic interactions into account. Linton and
Evans (1990) improved on Spring and Monkmeyer’s (1974)
direct matrix method, wherein the amplitudes of the wave
components around each body are solved simultaneously, to
obtain simple expressions for force and free surface ampli-
tudes. Another approach to the problem is the multiple scat-
tering technique (Ohkusu 1974), in which successive scatters
by each of the cylinders are introduced at each order. Kage-
moto and Yue (1986) combined the direct matrix method and
the multiple scattering technique to obtain an exact algebraic
method. In their interaction theory, the scattered wave field
around each body is expressed as a summation of cylindrical
waves with undetermined amplitudes. By using addition the-
orems for Bessel functions, the scattered potential at one body
is evaluated in the coordinate systems of other bodies. A set
of linear algebraic equations that relates the total incident po-
tential to the scattered potential is then solved simultaneously
for all the unknown amplitude coefficients. Kim (1992) re-
viewed the diffraction theory of Linton and Evans (1990) and
extended it to the radiation problem.

However, some researchers used a large-spacing approxi-
mation to solve the problem, ignoring the evanescent waves.
Simon (1982) developed a plane wave approximation in a di-
rect matrix solution of a uniformly spaced linear array of ax-
isymmetric bodies. In this method, the diverging waves at one
body due to the scattering of another body are replaced by a
single wave plane. Errors introduced are not significant, and
computational time is reduced significantly. Simon applied his
method to the heaving motion of axisymmetric bodies only.
Mclver and Evans (1984) extended Simon’s approach to the
study of wave forces on arrays of fixed vertical circular cyl-
inder by including a correction term in the plane wave ap-
proximation. They obtained significantly improved results,
even when the body spacings are fairly small compared with
the wavelength. Mclver (1984) extended this method to the
calculation of added mass and damping. Williams and Demir-
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bilek (1988) used the modified plane wave method of Mclver
and Evans to calculate the diffraction forces between the mem-
bers of an array of stationary truncated circular cylinders of
equal radius. Williams and Abul-Azm (1989) extended their
method to calculate added mass and damping, using Mclver’s
method. By using the same approach, Williams and Rangappa
(1994) calculated hydrodynamic loads and added mass and
damping coefficients for multicolumn offshore platforms con-
sisting of arrays of semiimmersed or submerged cylindrical
structures.

In this paper Kagemoto and Yue’s (1986) interaction theory
is used to obtain analytical solutions for the diffraction and
radiation problem of truncated cylinders. The diffraction and
radiation potentials of an isolated cylinder are obtained using
Garret’s (1971) solution, and evanescent mode solutions are
derived in a similar manner to Garret’s (1971) solution. Nu-
merical results are presented for arrays of four cylinders. Com-
parisons between the resuits obtained from the method pre-
sented in this paper and those obtained from numerical
methods are excellent.

THEORETICAL DEVELOPMENT
Diffraction Problem

An array of N truncated cylinders of equal radius a are
placed in water of uniformn depth d. The clearance beneath
each cylinder is denoted by 4. Used here are N + 1 coordinate
systems: (r, 0, z) with the origin at the seabed and the z-axis
positive upward. Local coordinates (r;, 8,, 2), i=1, ..., N
centered at the origin of each cylinder (x;, y;) are also used.
The coordinate systems and the parameters used are depicted
in Fig. 1.

Assuming that the fluid is ideal and waves are of small
amplitude, the fluid motion may be described by a velocity
potential &(x, y, z, £) = Re{¢(x, y, z)e”*'}. This potential must
satisfy Laplace’s equation together with boundary conditions
at the free surface, on the body, and at the sea bottom, and a
suitable radiation condition for the diffraction potential at in-
finity.

An incident wave potential for a plane wave of amplitude
H, frequency w, and wave heading angle B has the following
form:

H .
Poy = % Yo(2)l,e'*eor oo™ (la)

o

Po; = %.1 Yo(2)1; E ei"(wz)_eﬁm-,n(ko"j) (1d)
where [, = e"*e®*F*%s"® = phage factor associated with cyl-
inder j; and i = \/—1. Wave number k, and frequency w sat-
isfy the dispersion relationship w” = kog tanh kod with g being
gravitational acceleration. J,, is the first kind of Bessel function
of order n.
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FIG. 1. Plan View of Two Cylinders and Coordinate Systems

_ cosh(kez) _
Yo(2) = woshtkd) eod) for m=0 2a)
Y.(z) = cos(kn,z) for m>0 (2b)

By replacing n with —n, (1) is rewritten as follows:

o -
o0 = v 3 ajmwin 3)
where al(n) = Le"™?™® and W(n) = J,(kor)e'™.
The general form of scattered wave field outside the im-
mediate neighborhood of body i can be expressed as a sum-
mation of cylindrical waves as follows:

H -
¢ = % [Yo(z) 2 Aon,-Hf.l)(kori)em'

n=—o0

+ i Yn(2) 5: A,,,,,‘K,,(k,,,ri)e'""‘]

mm=l nm—co

@

where H’ and K, = nth-order Hankel function of the first kind
and modified Bessel function of the second kind, respectively;
and the wave number %, (m = 1, 2, ...) = positive real root
of the dispersion equation o’ = —k,g tan k,d. The condition
m > 0 corresponds to the evanescent modes.

In order to express the scattered potential in the other cyl-
inders’ coordinate systems, addition theorems for Bessel func-
tions (Abramowitz and Stegun 1964) will be used:

HP(kor)e'™ = Z H (ko Lii(kory)e'™ ™€ ™% (5a)

= —w

Koknr)e™ = 3, Kyi(knLiliknr)e' 2" (5b)

Im—

where I; = Ith-order modified Bessel function of the first order.

By substituting (5a) and (5b) in (4) and replacing I by —|,
one obtains

. - .
of =5 [Yo(z) 2 Am, X, H2U(koLye' " I (kore"

n=—x {m—o0o

+ D V@ D, A D, Kn-,(kmL,,)e‘“u‘"*"(—1)’1,(k,.r,)e“°f]

mm=] == I —c0

©)
Eq. (6) can be written in matrix notation as follows:
H
¢ = % [Yo@AT ()T (n, D)
+ YA (m, m)T(m, n, Dsj(m, D] a
where

Ty(n, 1) = H (koL,)e™1"™"

and () = Jikor)e" for m=0 8a)
Ty(m, n, 1) = K,_(knL)e™ " (- 1)’

and ¥i(m, 1) = L(k,r)e"* for m>0 (8b)

The total incident velocity potential near body j is the sum-
mation of the ambient incident wave field and the scattered
wave field due to other cylinders:

N N
@ =gy + 2 AT @ = (af + > ATT,,) ¥ (Sab)
i=] jml
[(Y)) (inf)

According to Kagemoto and Yue (1986), the total incident
and scattered waves for any body j are related to each other
by the isolated body diffraction characteristics of that body,
which will be denoted by B, (j=1,2,..., N):

N
Am)=Bn D [a,(z) + > Thn, I)A,(n)] for m=0 (10)
im]
[¢23)]

A similar equation can be written for m > 0. Single body
diffraction matrices B; are obtained by solving the diffraction
problem of a truncated cylinder including both progressive and
evanescent modes. These solutions are given in Appendix I,
and B, is given as follows:

Jitkea) = DY cosh(kod)
B@n )= — f =0 (11
D= "Hites) T HiGNE T M0 19
Ii (kna) Dy
= — +
B;(m, n, I) Xt & KhaNE for m>0 (11b)
where
1 sinh 2k,d 1 sin 2k,d
==(1+——= No=={1+——2=
No=3 (1 2kod ) and 2 <1 2k,d ) 12

Once B, is determined, A, can be obtained from (10) and
first-order forces can be evaluated by integrating the total po-
tential on the cylinder. The surge force on cylinder j is cal-
culated as follows:

2% pd N
F, = —ingf f [(af + 2 A:TTU> B{{sj(a, 6)Y.(2)
0m0 Jzmh

[}
=)

N
+ (af + > AT Tu) G 9,)Y,,(z)] acos 8,do,dz (m = 0)

im]

(=) (1 3)
where §; = H{"(kor))e"® for m = 0; and ¥ = Ky(k,r))e"” for
m>0.

The first term in (13) is due to the diffraction effects; the
second is due to the ambient incident field and scattering of
all the other bodies. The heave force is evaluated in a similar
manner, but the B, matrix used in the heave force calculation
is different from the one used in the interaction theory and is
given as follows:

cP
Byn, 1) = E for m=0 (14a)
C(l)
B, (m, n, 1) = Z— (1" for m>0 (14b)

mwa
«(%59)

The derivation of these matrices is given in Appendix I.
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In addition to this, the incident wave potential must be sub-
tracted from the first term and integrated since the interior
region potential obtained from the single body diffraction so-
lution contains both incident and scattered wave fields:

2m a N
F, = ingf J’ l:(ajr + E AITTIJ> B, 6))
=0 Jr=0 i=l

Gxf)

N
+ (af + > AT Tu) W7, )Yalh)
i=]
[(£5)]

N
- (af + E ATT,,> Y,,.(h)i’.l,(kor,)e“”/] r;de,dr, (m=0)

in]
i,
=]y (15)
where W} = rlfle" for m = 0; and s} = I(mmrih)e"™ for m > 0.
Pitch moment is calculated about an axis that is parallel to
the y-axis and passes through the geometrical center of the
bodies on the still water plane. The shortest distance between
the bodies and the pitch rotation axis is denoted as X, (i = 1,
» N). Therefore the pitch moment arising from the heave
forces can be calculated by taking the moments of the forces
about the axis, i.e., the integrand in (15) is multiplied by the
lever (X; — r, cos 8). To calculate the pitch moment arising
from the surge forces, the integrand in (13) is multiplied by
the lever (d — z). Summation of the two components gives
the total pitch moment.
Integrals in (13), (15), and their modified forms used to
calculate the pitch moment are very easy to evaluate, and the
details will not be given here.

Radiation Problem

Formulation of the problem follows closely that of the dif-
fraction problem. Radiated waves will replace the incident
waves, therefore (10) is rewritten as follows:

An) =Bn, D) [Z T(n, DR(n, D) + >, Ti(n, I)A,(n)] (16)

i=] iml
Gzf) G=f)

where R;(n, |) = single body radiation characteristics. For
heave motion R,(n, I) exists for / = 0 only and is given by

cosh k,d
=Dy —5—mr— =0 17
R0, 0) = D, NP (ko) for m (17a)
Ry( 0) = ——D"—— for >0 (17b)
A b = NPKykea) "

As for the surge motion, there are two modes to be considered,
l=—-land!=1:

RO, —1) = ~D, cosh kod

(0, =1 = =Do Fomrt eom)

cosh kod
= Dy ————— fi =0
and R,0, 1) =D, ANV HD (koa) or m (18a)
D, D,

Ram n. =) = Sy ¢ R D= SR

for m>0 (18b)

These matrices are derived from (55) and (67).

Once B, and R, are determined, A, can be obtained from
(16) and added mass and damping coefficients can be evalu-
ated by integrating the total potential around the cylinder. The
surge and heave added mass and damping coefficients of cyl-
inder j are calculated as follows:

in]
(i=f)

N
L+ ,—l = —pd j [(a} + A,’T,,) BIYi(a, 6)Y(2)
Bwl Jzmh

N
+ (a,’ + > A,.TT,,) W, 9,)Y,,.(z)] acos 6,de,dz (m = 0)

i=]

=N (19)

bzz 291 a N
Gy, + i =< ph j J’ [(a,’ + > A,TT,,) B (r;, 6))
6=0 Jrm0

im]
(i=))

N
+ (af +> A.-’T,,) W, 0)Y,(h)
im]
[("Y)]

N
- (aj + 2 AiTTu> Ym(h)i"]l(ko':l)e”oj] r; d8, dr,
i=l

G=f) (20)

Pitch added mass and damping coefficients can be calculated
in an identical manner to heave and surge.

Most of the literature mentioned in section 1, such as Linton
and Evans (1990) and Kim (1992), solves the hydrodynamic
interaction problem of bottom-mounted cylinders. Williams
and his colleagues tackle the problem for truncated cylinders
using the approximate modified plane wave method of Mclver
and Evans. But the formulations derived in this section to cal-
culate hydrodynamic forces are for truncated circular cylin-
ders, and they are exact within the context of linear theory.
Numerical implementation of the equations is quite easy. Once
the single body diffraction (radiation) problem is solved, hy-
drodynamic interaction between the cylinders could be cal-
culated by solving algebraic equations (10) or (16). After that,
substituting coefficients 4, in (13) and (15) will give diffrac-
tion forces [(19) and (20) will give added mass and damping
coefficients).

NUMERICAL RESULTS AND DISCUSSION

Configurations chosen to validate the present method are
depicted in Fig. 2. The first geometry is an array of two cyl-
inders; the second one is an array of four cylinders. The dis-
tance between the centers of the adjacent cylinders is 2.6 m
for geometry (a) and 76 m for geometry (b).

Ninety unknowns, four angular components, and four eva-
nescent modes are used for configuration (a). Dimensions of
the cylinders and the water depth in geometry (b) are chosen
to be in the same scale as a TLP geometry. For geometry (b),
156 unknowns and 19 angular components are used. However,
evanescent modes are not employed for this geometry due to
computational difficulties that arise from the larger number of

g G
pea—2-6 Dy
4m
- 2m
2m

(a) (b)

FIG. 2. Configurations Used in Calculations: (a) Two Trun-
cated Cylinders; (b) Four Truncated Cylinders
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FIG. 3. Results for Two Truncated Cylinders (O = Interaction
Based on Incident Wave Phasing; K = Kagemoto’s Results; | =
Present Method)

unknowns involved in the single body diffraction calculations,
compared to geometry (a). Surge and heave forces shown in
Figs. 3 and 4 are nondimensionalized by B = pgma(d — h)AN
and pitch moment in Fig. 5 by B = pgwa®(d — h)HN. Wave
forces and moments are calculated for 0° wave angle of attack.
Added mass and damping values shown in Figs. 6 and 7 are
nondimensionalized by A = pwa*(d — h)N and A = wpma’(d
— h)N, respectively. Surge and heave forces produced for the
first geometry are compared with Kagemoto and Yue’s results,
and the agreement is very good (see Fig. 3). Interaction that
uses forces on a single column and incident wave phasing
only, denoted by O in Fig. 3, produces reasonable results for
heave forces. Wave forces and moments and added mass and
damping values produced using interaction theory for geom-
etry (b) are compared with the results of a 3D diffraction ra-
diation code based on the 3D source distribution technique
developed by Chan (1990) in Figs. 4—7. Chan (1990) made
the usual assumptions of a 3D linearized potential theory in
deriving the first-order and second-order hydrodynamic forces
acting on a body placed in regular, monochromatic waves. In
the calculation of forces he used a 3D translating pulsating
source model. Chan (1993) extended his method to predict the
motion and wave loads of twin hull ships. Agreement between
the 3D results and the present method results is very good for
surge and heave forces and also for pitch moment (see Figs.
4 and 5). However there are small discrepancies for added
mass and damping coefficients in Figs. 6 and 7, especially in
the low frequency region of heave added mass and damping
(see Fig. 7). These differences can be attributed to the imper-
fections that exist in the discretization of the bodies. Effect of
local waves is not important in this case, since the distance

=3
L

o
'S

Surge Force/B
Phase Angle

0.1}

Heave Force/B
Phase Angle

1 2 3 ¢ 5 6
2ak

FIG. 4. Results for Four Truncated Cylinders (3D = 3D Pro-
gram Resuits; | = Present Method)

between the cylinders is quite large compared to the diameter
(see Kagemoto and Yue 1986).

APPENDIX 1.

Scattering of Progressive Incident Waves by Single
Truncated Cylinder

The solution given by Garret (1971) is followed. It is a well-
known boundary value problem: Fluid motion is governed by
Laplace’s equation together with the boundary conditions on
the free surface, seabed, and body surface and radiation con-
dition at infinity.

V=0 @
%2%+ga—z=0 on z=d (22)

%?:0 on z=0 (23)
%:0 on z=h O0=<r=gq 24
%:0 on r=a, h=z=d (25
\/?(%—ikd)):O ro 26)

The fluid domain is divided into two regions, one beneath the
cylinder, the interior region (1), the other exterior to the cyl-
inder, exterior region (2) (see Fig. 8).
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FIG. 5. Resuits for Four Truncated Cylinders (3D = 3D Pro-
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The incident wave potential is defined as follows:

gH cosh koz 2 MMy g it 2"

1= w cosh kod

Potential in the interior region that satisfies (21), (23), and (24)
is given as follows:

¢l - _ 2 x(l)(r Z)eue —iwt (28)

fm—
XP(r, 2) = Co(r " + i c® Ipmrik) cos(nmz/h)  (29)
’ 2 \a < 7" I(nwalh)

where C¢ is given by

h
cs>=3f
h zm0

The exterior potential that consists of incident and diffracted
wave fields satisfies (21), (22), (23), and (25) [diffracted waves
also satisfy (26)]:

x{"(a, z)cos(nmz/h) dz 30

4)2 = _._ 2 x(l)(r Z)euo —iwt (31)
N {J,(kor) - HS“(kor)}
k r)
+ > po kD
2 " Vitk,a) 2@ 32)
where
Vitkor) = H{P(kor) for q=0 (33a)

o o -

Surge Added Mass/A

o

o =1

o

Surge Damping/A
(=1 (=]

o

o

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2ak

FIG. 6. Results for Four Truncated Cylinders (3D = 3D Pro-
gram Results; N = No Interaction; | = Present Method)

Vitk,r) = Ki(k,r) for g >0 (33b)

DY is given by

(1)
(l)
DY =g f (@ DZ,(2) dz (34)

The functions Z,(z) are orthonormal over the interval [0, d]
and are defined by

cosh &
Zo(t) = o for g=0 (35a)
No
k
Z,@) = ci;m"f for ¢>0 (35b)
q

N, and N, are defined in (12).

The matchmg conditions, i.e., continuity of mass flux and
pressure, should be applied on the interface r = a, to determine
the coefficients C% and D",

xXP=x¥ on r=a, O0=z=h (36a)
() ()]
a;(r a;(r on r=a O0=z=h (36b)
()
a: =0 on r=a h=z=d (36¢)
" :

Applying the matching condition (36a) to (30), and (36b)
and (36¢) to (34) yields two sets of infinite complex matrix
equations
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CY + > FODY =RY; DY = 2 GUCP  (37ab)

g=0 n=0
where
_ 2 Vitkea) hko(—1)" sinh koh
I43) - I\ o >
o = R Vikowy NPGew + iy =0 (89)
2 Vitk,a) h*,(—1)" sin kh
F,(.” = L0 q q
q h Vi(k,a) N‘ll/z(_nz,n,z ¥ kzhz) @g=1n=0) (38b)
I sinh kqh
G4 = 5‘;—]‘7—2,—2 (38¢)
I sin k k
et = 2aany @ =D (38d)

o _ li(nmalh) nh(—1)" sinh koh
* 7 I(nwalh) (B*w* + K2h)dNY?

n=1) (38¢)

o _ li(nmwalh) _nwh(—1)" sin kh
"7 Lnmalh) (—n’m* + KR)dNY?

@zln=1) (38f)

hko(—1)" sinh koh 2i
(n*w? + kih®cosh kod whoaH " (koa)

R¥ =2} n=0 (38g
These equations may be truncated after a finite number of
terms and the coefficients obtained by standard matrix solving

techniques. Now the single body diffraction matrices given in
(11a) are obtained from (32),

DPV/2 cosh(kod)
HY (kga)\/T + sinh(2kod)/(2kod)

Ji (ko)
H ?)I(koa)

B,() = — (39

B, matrices used for the heave force calculations given in (14)
are obtained from (29) as follows:
(&

c
B, = g"m forn=0 (40a)

co
nmwa
! (_h_>

Heave force given by the real part of F,e ™ is derived as
follows by integrating the potential around the cylinder:

Byn, I) = -1 for n>0 (40b)

—iwt

29 a  ®
F,= ipgH f > xP(r, ¢"°r dr db (41a)
(V]

0 Im—w

cP a - I{nwalh) ha
+ E co

F,=2i H P
‘P8 [ 2 2 “ Iy(nmalh) nw

— (- 1)] (41b)

—iwt

Surge force given by the real part of F.e™™ is obtained as

follows:
2
F,= —ipgH f E X (r, 2)e'a de dz 42a)

B Im—o

. 2i(sinh kod — sinh kyh) 2i
F, = —ipgHaw ay
ko cosh kod TkoaH " (koa)
+ Z (D( Y4 p (1) Vl(k a) 'Y(q)
perd V’(k a) k, N"2 (42b)

where y(0) = (sinh kod — sinh koh) for g = 0; and y(q) = (sin
k,d — sin k,h) for g > 0.

Pitch moment about the axis shown in Fig. 8 is given by
the real part of Me ™™, where M is made up of M,, arising
from forces on the bottom of the dock, and M,, arising from
forces on the side of the dock.

M, = -ingf 2 X, 2)e"®r dr dér cos 8 (43a)
(g
C("l) + C(l) 4
M, = —inpgH u 2
2a 4

= I Ih) ha?
+ s + oy BRma i (—1)"]

=] L(nmwalh) nw (43b)

d =
2 x(zl)(r, 2)e"®a do dz(d — zZ) (44da)

b m—o

M, = —ipgH f
0
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2i 2iN0)
cosh kod wkoaH V' (koa)

Vi(k,a) Mq)]

M, = —iwpgHa [

+ 2 oy D 4 pby e

et Vi(k,a) N (44b)
where
A(O) = (h — d)sinh kyh + cosh kod ~2 cosh koh for g=0
k(] ko
Ag) = (h — dk)sm k.h 4 Sos k. ;2 cos k.d for g=0
q q

Scattering of Evanescent Incident Waves by Single
Truncated Cylinder

Evanescent incident wave potential is given by

gH
& =& cos ko E e lk,)e ™ m=1,2,... (45)
f=—o0
Evanescent mode solution is similar to the progressive mode,
only the exterior region potential will be different:

I/ (kna)

K (k. )Kz(k r)]

XP(r, 2) = cos knz [Il(kmr)

ED“’ JED 7@y n=12 ...

! Vik,a) (46)

q=0

Matching conditions and the solution procedure are identical
to the progressive mode. B, matrices used for the interaction
theory given by (11b) are derived from the foregoing expres-
sion as follows:

Li(kea) | _ DY
K/kya)  Ki(kna)Ny?

By(m, g, 1) = — @7

APPENDIX Il.

Radiation Problem of Single Truncated Cylinder in
Heave Mode

Presentation of the problem and the solution is very similar
to the diffraction problem: the governing equation is Laplace’s
equation together with the boundary conditions at the free sur-
face, body surface, and seabed and radiation condition at in-
finity. However, body boundary conditions are different and
(24) and (25) should be modified as follows:

@=Vz on z=h, O0=r=<a 48)
a9z
0
ad: O on r=a h=z=d “9)

The fluid domain is divided into two regions, one beneath the
cylinder, the interior region (1), the other exterior to the cyl-
inder, exterior region (2) (see Fig. 8).

Potential in the interior region that satisfies (21), (23), and
(48) is given as follows:

by = VAL(r, 2)e™™ (50)

L) =Au(r,2) + Alp(rv 2) s1)

where A,,(r, 2) = particular solution that satisfies (21), (23),
and (48) and is given by

A7) = EE @ - ri) (52)

Au(r, 2) is the homogeneous solution and is given by

Ann ==+ 2 Io(nwrih)

2, ]:(—_——/h_) cos(nmz/h) (53)

where C, is given by

2
C,=- J’ Ay(a, 2)cos(nmz/h) dz 54)
=0

The exterior potential satisfies equations (21), (22), (23),
(26), and (49):

¢2 = Vzh§2(rs z)e_iw‘ (55)
_% p Yotk
L 2 = 2% Do 242 (56)
where D" is given by
[
D, = %d j o (a, 2)Z,(2) dz &)

The matching conditions, i.e., continuity of mass flux and
pressure, should be applied on the interface r = a, to determine
the coefficients C%) and D",

ti={, on r=a, 0=<z=<h (58a)
W _d

o = Br on r=a, 0=<z=<h (58b)
a

'(%"0 on r=a, h=z=<d (58¢)

By applying (58a) to (54) and (58b) and (58c¢) to (57), one
obtains two sets of infinite complex matrix equations

Co+ Dy FuDy=Ry; Dy= Y, GuCo + S, (59a,h)

q=0 n=0

where F,, and G,, are given in (38a)—(38f) with I being zero.
R, and S, are given as follows:

1 a 2(—1)"
Ry= —= + — = -
o = 3 s n=0;, R, oy n>0 (60a,b)
a sinh koh a sink,h
=g gy 1% ST Tapgay 170 ©eb

Heave added mass and damping are obtained by integrating
the interior region potential over the cylinder bottom,

z = = ph f j Li(r, Dr dr db (62a)

b, a
au+¢m—2'rrp [4 16h2+C°:1_

+ Z I,(mra/h) ha ha 1y ]

Io(mra/h) nw (62b)

n=1

Radiation Problem of Single Truncated Cylinder in
Surge Mode

Presentation of the problem and the solution is similar to
the heave problem. Only body boundary conditions are dif-
ferent, therefore (48) and (49) should be modified as follows:

[
oz

9 _
or

=0 on z=h 0=r=<a (63)

=V,co88 on r=a, h=z=<d 64)

Potential in the interior region is given as follows:
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&, = Vidl\(r, 2)cos Be™™* (65)
L= Ap(r,2) + Alp(r! 2) (66)

The particular solution, A,,(r, z) is equal to zero. The ho-
mogeneous part of the interior potential is given by the fol-
lowing equation:

o

Au(r, ) = % <£) + E C, Lnwrlh) cos(nmz/h)  (67)
n=l

Ii(nwalh)
The exterior potential is given as follows:
&, = V.dl,(r, 2)cos e~ (68)

where {,(r, 7) is given by (56) with the order of Bessel
function being 1 instead of 0.

The matching conditions (58a) and (58b) still hold; how-
ever, (58¢) should be modified as follows:

9L _
ar

There are also changes to the coefficients of the two sets of
infinite complex matrix equations given in (59a) and (59b).
F,, and G,, are given in (38a)-(38f) with [ being one. R, is
equal to zero since the particular solution is zero. S, is given
as follows:

1 on r=a, h=z=<d (69)

Y@
S, = W n=0 (70)
where y(q) is as described in (42).
Surge added mass and damping are obtained by integrating
the interior region potential over the cylinder surface,

2w a
bxx
a, t+i—=—pd j J- {.(r, Z)cos Ba dO dz cos O
© o Jo

- —mpad [2 D, Vitka) v(q)] o

* Vi(k,a) kN2

q=0
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