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This article provides a perspective on the current status of the formulations of dual boundary
element methods with emphasis on the regularizations of hypersingular integrals and divergent
series. A simple example is given to show the dual integral representation and the dual series rep-
resentation for a discontinuous function and its derivative and thereby to illustrate the regulariza-
tion problems encountered in dual boundary element methods. Hypersingularity and the theory of
divergent series are put under the framework of the dual representations, their relation and regu-
larization techniques being examined. Applications of the dual boundary element methods using
hypersingularity and divergent series are explored. This review article contains 249 references.

1 INTRODUCTION

The boundary element method (BEM), or sometimes called
boundary integral equation method (BIEM), has received
much attention since Rizzo [188] proposed a numerical
treatment of the boundary integral equation for elastostatics
[130]. Even earlier, Kinoshita and Mura [130] derived the
singular boundary integral equations for elasticity. Most of
the efforts have been focused on singular boundary integral
equations for primary fields (eg, potential u or displacement
u). For most problems, the formulation of a singular bound-
ary integral equation for the primary field provides sufficient
conditions to ensure a unique solution. In some cases, eg,
those with Hermite polynomial element [220], degenerate
boundaries [29, 109, 110], corners [44], the construction of a
symmetric matrix [7, 8, 126, 194], the improvement of con-
dition numbers [38], the construction of an image system
[38], the tangent flux or hoop stress calculation on the
boundary [48], an error indicator in an adaptive BEM [147],
fictitious (irregular) eigenfrequencies in an exterior problem
[33,116, 117, 134, 135], spurious roots in a multiple reci-
procity method (MRM) [50, 51], and the Tikhonov formula-
tion for inverse problems [237], it is found that the integral
representation for a primary field cannot provide sufficient
conditions, however. Watson [220, 221] presented the nor-
mal derivative of the displacement boundary integral equa-
tion for the development of a Hermite cubic element where
the number of unknowns is larger than the number of equa-
tions. For the case of a degenerate boundary, the dual integral
representation has been proposed for crack problems in elas-
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ticity by Hong and Chen [29, 35, 38, 109, 110], and bound-
ary element researchers [60, 91, 94, 166, 180, 197, 231, 242]
have increasingly paid attention to the second equation of the
dual representation. The second equation, which is derived
for the secondary field (eg, flux ¢ or traction t), is very popu-
lar now and is termed the hypersingular boundary integral
equation. Hong and Chen presented the theoretical bases of
the dual integral equations in a general formulation which in-
corporates the displacement and traction boundary integral
equations. Huang and So [120] extended the concept of the
Hadamard principal value in the dual integral equations [109]
to determine the dynamic stress intensity factors of multiple
cracks. Gray [91, 94] also found the dual integral representa-
tions for the Laplace equation and the Navier equation, al-
though he did not coin the formulation dual. Martin, Rizzo,
and Gonsalves [160] called the new kernel in the dual inte-
gral equations hypersingular, while Kaya [127] earlier called
the kemel a superstrong singularity. Since the formulation
was derived for the secondary field, by analogy with the term
natural boundary condition, Feng and Yu [83, 244, 245,
246, 247] called the method natural BEM or canonical inte-
gral equations. Balas, Sladek, and Sladek in their book [9]
proposed a unified theory for elasticity problems which con-
tains the displacement boundary integral equation and an-
other integro-differential equation for the traction field.

Based on the dual integral representation, Hong and Chen
developed the dual BEM program for crack and potential
flow problems. Also, Chen and his coworkers extended the
dual BEM program for the Laplace equation to two pro-
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grams. One is for the Helmholtz equation by the dual MRM
[225]. The other is for the Helmholtz equation by the com-
plex-valued formulation [55]. A general purpose program,
BEASY, was developed for crack problems by the WIT
(Wessex Institute of Technology) group and termed the dual
boundary element method (DBEM) approach [180]. This
program has been extended to crack propagation more effi-
ciently by using the benefit of the single-domain approach
[174]. Mi and Aliabadi [166] extended two-dimensional
cases to three-dimensional crack problems. A program im-
plemented by Lutz et al [155] was also reported.

The dual representations have recently been extended to
dynamic problems [45, 47, 248], random vibration [234], de-
convolution in site response [59, 114], heat conduction [39],
and active control [115] using the concept of modal analysis.
In this way, dual integral representation is transformed into
dual series representation. The extension of the hypersingular
integral to elastodynamics was fully developed by means of
direct transient dynamics [137]. According to the literature to
date, the closed-form kernel functions related to the funda-
mental solution in dual integral equations have first to be re-
placed by Green’s function and its derivatives and then ex-
panded into degenerate series by means of spectral decompo-
sition, resulting in a dual series representation. In so doing,
hypersingular integrals are transformed into divergent series,
while the integrability and the principal values for the hy-
persingular integrals are changed to the summability and the
finite parts of the divergent series [31, 47, 49, 111].

Mathematically speaking, all these problems, either hy-
persingular integrals or divergent series, stem from taking de-
rivatives of the double layer potentials. In fact, the original
idea came from the applications of the continuous and dis-
continuous properties of the single and double layer poten-
tials and their derivatives when the field point approaches to
or passes through the boundary. These properties are classi-
cal results, and in the mathematical literature the relation-
ships between the boundary integral operators of various
layer potentials are obtainable through the so-called Calderon
projector. Detailed discussions can be found in [169, 170,
171, 172]. These mathematical problems were first studied
by Hadamard [100] and Mangler [156]. The hypersingular
integral equation was treated by Hadamard in solving the cy-
lindrical wave equation using a spherical means of descent.
The improper integral was then defined by Tuck [214] as the
Hadamard principal value. Almost at the same time as
Hadamard’s work, Mangler derived the same mathematical
form in solving the thin airfoil problem. This is the reason
why the improper integral of hypersingularity is also called
the Mangler principal value in theoretical aerodynamics.
This nonintegrable integral of hypersingularity [172] arises
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naturally in the dual boundary integral representations espe-
cially for problems with degenerate boundaries, eg, crack
problems in elasticity [29, 35, 38, 109, 110], heat flow
through a baffle [36], Darcy flow around a cutoff wall [29,
37, 40], a cracked bar under torsion [54], screen impinging in
acoustics [S1, 52, 55, 56, 152, 209], acoustic holography
[112, 113], or aerodynamic problems of a thin airfoil [218].
A general application of the hypersingular integral equation
in mechanics was discussed in Martin et al [160] and by
Chen and Hong [38]. Combining the singular integral equa-
tion, eg, Green’s identity or Somigliana’s identity, with the
hypersingular integral equation, we can construct the dual
integral equations according to the continuous and discon-
tinuous properties of the potential as the field point moves
across the boundary [41]. From the above point of view, the
definition of the dual (boundary) integral equations is quite
different from the dual integral equations given by Sneddon
and Lowangrub [201] and Buecker [21], which, indeed,
come from the same equation but different collocation points
in crack problems of elastodynamics. The solution for the
conventional dual integral equations was first studied by
Beltrami [66]. The dual boundary integral equations for the
primary and secondary fields defined and coined by Hong
and Chen are generally independent of each other, and only
for very special cases are they dependent [31, 33].

Dual integral equations have four kernel functions in total,
which make a unified theory encompassing different schemes
possible with various derivations and interpretations. The
equivalence between the direct and indirect methods has
been discussed using four lemmas for the kernels in dual in-
tegral equations [109]. The constraint relationships derived
from dual integral equations are dependent for boundary un-
knowns on a nondegenerate boundary and are independent
for boundary unknowns on a degenerate boundary. The as-
sertion can be proved by using degenerate kernels [31, 33].
The singularity order of the hypersingular kernel in the dual
integral equations is stronger than the Cauchy kernel by one
order. The paradox of the nonintegrable hypersingular kernel
is introduced due to the wrong change of the integral and
trace operators from the viewpoint of the dual integral repre-
sentation. L’Hospital’s rule should be considered for the
trace process in the limiting sense. From another point of
view in the commutativity diagram as shown in Fig 1a for the
dual integral representation, the nonintegrable kernel results
from wrongly putting the differentiation operator directly into
the integral of the singular Cauchy kernel. In order to ensure
a finite value, Leibnitz’ rule should be considered when the
derivative of the Cauchy principal value (CPV) is taken since
the integration boundary is dependent on the differential
variable, so that the boundary term cannot be neglected. In

U,T kernel limit U,T kernel
for domain point | nrocess | for boundary point
traction l Leibnitzl traction
operator y rule operator
L, M kernel I’Hospital L, M kernel
for domain point |~ ryle * | for boundary‘point

Fig la. Commutativity diagram in dual integral equations

U,T kernel c:sg:-o U,T kernel
for domain point C(N,1) | for boundary point
traction |C(Nv,2) “PerAOr v 11 traction
operatorl operator nm operatorl operator
L, M kernel mode No. L,M kernel
for domain point |icreasing| for boundary point

Fig 1b. Commutativity diagram in dual series representation
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the dual series representation as shown in Fig 1b, the diver-
gent series results from the illegal operation of termwise dif-
ferentiation in a similar sense. In other words, the differen-
tiation operator is wrongly put inside the summation opera-
tor. By using the legal method of series differentiation,
Stokes’ transformation can extract the finite part in a similar
way as Stokes’ theorem due to integration by parts. Stokes’
transformation will introduce a boundary term which is
similar to the boundary term derived by Leibnitz’ rule since
the integration boundary for the Cauchy principal value de-
pends on the differential variable. This may be the reason
why Stokes’ transformation has been called summation by
parts [129]. It is interesting to find that Stokes’ transforma-
tion is very similar to the alternative series in the textbook of
engineering mathematics [230]. Another regularization tech-
nique for a divergent series using the Cesaro sum with an in-
creasing number of modes is similar to I’Hospital’s rule in
the limiting process by moving the field point to the bound-
ary point. The reconstructing function can be proved to con-
verge to the original function by using the reproducing ker-
nel. Therefore, the finite value can be extracted in different
ways as shown in Fig 1a for the dual integral equations and
in Fig 1b for the dual series representation.

In this article, the dual representations including dual in-
tegral representations and dual series representations will be
reviewed first. A simple example to represent a function with
discontinuity by three different methods is given in Section 2.
The hypersingularity and divergent series are linked from the
viewpoint of dual representations in Section 3. Sections 4
and 5 summarize the regularization techniques for hypersin-

0.25
02!
o
0.15:
0.1}
|
O.OSFr closed form
------- series form
0

0 0.2 0.4 0.6
moment diagram(U kernel)

<
ll 3
F e -y e s 3

0.8 1

!
0.4§ ’(;ibf:; phenomenon ™ ‘.“ ;
0!
-0 2 i
- 4; == closed form "':‘ y
i ....... series form _';‘I_":\w%,‘
0 02 RCY: 0.8 1

shear diagram(L kernel)

Chen and Hong: Dual BEMs with emphasis hypersingular integrals

19

1 ~
=5 My =

moment diagram moment diagram

shear diagram shear diagram

(@) (b)
Fig 2. A simple beam subjected to: a) a concentrated force b) a con-
centrated moment and the corresponding moment and shear dia-
grams in closed-form solutions
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gularity and divergent series, respectively. Sections 6 and 7
discuss the applications of hypersingularity and divergent se-

ries in the boundary element method, respectively.

2 REPRESENTATIONS AND REGULARIZATIONS
FOR DISCONTINUOUS FUNCTIONS

Discontinuous functions are often encountered in mathemati-
cal formulations of continuous physical fields. For illustra-
tion purposes, let us consider a simple beam subjected to a
concentrated force or a concentrated couple (moment) at s =
0.5 as shown in Fig 2. The closed-form solutions are easily

derived as follows (see also Fig 2):

0.5x, 0.0<x <05,

Uls,x)= {0.5(1 ~x)  05<x<10, M
T(s,x) = {-—x, 00<x<05, @

x4, 05<x<10,
Ls.1)m {0.5, 0.0<x<05, 5

' 7-05, 05<x<10,

-1, 0.0<x<05,
M(s.x) = {-1, 05<x<10, @

where U(s, x) and T(s, x) denote the moments at x of the
beam subjected to a concentrated force and a concentrated
moment at s = 0.5, respectively, while L(s, x) and M(s, x) are
the corresponding shear forces at x. However, we may ex-
press the moment due to a concentrated force or moment at s
= 0.5, in the form of series representations given as follows:
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U(s,x) = ZN:—Z(-l)"M

@n-1°n*

sin( 2m'cx/l)

)

T(s,x) = Z( 0" (6)
n=1
Without rigorous consxderanon, term by term differentiation

of Egs (5) and (6) yields the following series representations
for shear forces:

L(s,x)= Z—Z

» €08((2n—1)mx/I)

@n-Drn @

N
M(s,x) =Y 2(~1)" cos(2nmx/l).
n=1
The series representations of Egs (5), (6), (7), and (8) are
shown in Fig 3a. Their corresponding Cesaro sum (or the
Fejékernel) and Stokes’ transformation (or the so-called al-
ternative series) treatments are shown in Figs 3b and 3c, re-
spectively, for comparison with the closed-form solution
shown in Fig 2. The Gibbs phenomena of Egs (6) and (7) in
Fig 3a are suppressed by use of the Cesaro sum as shown in
Fig 3b while the convergent value is recovered from the di-
vergent (oscillating) result of Eq (8) in Fig 3a by using the
Cesaro sum in Fig 3b or by using the Stokes transformation
in Fig 3c.
These figures reveal that Stokes’ transformation is a better
way to approximate the closed-form solution compared with
the Cesaro sum treatment. This example vividly warns us that

®
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Fig 3b. Series representations by the Cesaro (Fejér) sum treatment
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term by term differentiation of series may not be permissible.
If term by term differentiation has already been done, the
posterior Cesaro sum treatment can be employed to recover
the convergent value as the finite part or to depress the os-
cillation by using the concept of reproducing kernel. This is
the scenario how the regularization method is used to restore
correct results even though term by term differentiation may
be illegal. Tahan et al [206] applied the Cesaro sum tech-
nique to recover the correct value of stress in a rectangular
plate subjected to colinear compression. It must be noted that
the point near the singular loading requires much more terms
to ensure convergence as shown in Fig 3b at x = 0.5. To ob-
tain a smoother result, the Cesaro (Fejér) sum of a higher or-
der must be considered. As shown in Fig 3b, the Cesaro op-
erators of orders C(10, 2) and C(10, 1) are applied to Egs (7)
and (8), respectively. It appears that the order of the Cesaro
(Fejér) sum was not discussed in Tahan’s paper. From the
viewpoint of Stokes’ transformation, the series differentiation
contains two parts: the term from the termwise differentiation
and the boundary term. If the boundary term is lost, the
Gibbs phenomenon and a divergent (oscillating) series are
present. It is the boundary term which can accelerate conver-
gence against the Gibbs phenomenon in the primary field and
can extract the finite part of the divergent (oscillating) series
for the secondary field. Various regularization techniques
will be discussed in detail in this review article.
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3 RELATIONS OF DUAL INTEGRAL EQUATIONS
AND DUAL SERIES REPRESENTATIONS

Dual boundary integral equations were developed in 1985-
1986 [29] and published in 1988 [109, 110] for crack prob-
lems by Hong and Chen. Based on the concept of modal dy-
namics (eigenfunction expansion), the idea of dual integral
equations were extended to dual series representations for
structural dynamics [111], random vibration [49], and heat
conduction [39]. For simplicity, we will consider a dynamic
problem as an illustrative example to describe the relation-
ships between dual integral equations and dual series repre-
sentations.

Consider a homogeneous, isotropic, linear, elastic body
with finite domain D bounded by boundary B = B, + B,. The
governing equation for the displacement u(x, f) at a domain
point x at time f can be written as

pii + (2ap + B L){a} + L{u}+f(x,r) = 0,x € D, 1 €(0,), (9)

where a, 3 are the damping coefficients, p is the mass den-
sity, f(x, t) is the body force excitation, and the operator /£
means

~(A+G)VV-u-GV2u, elastic body,
J o*u )
L{u} =4-G4 poen elastic shear beam ,(10)
x
o*u .
El—, elastic flexural beam,
Ox
0.4
02
0
-0 2 b
-0.4
0 0.2 0.4 0.6 0.8 1
moment diagram(T kernel)
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2 .

0
-2
—4

0 02 0.4 0.6 0.8 1

shear diagram(M kernel)

Fig 3c. Series representations by Stokes’ transformation treatment
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where A and G are Lameé constants, E is Young’s modulus, 4
is the area of the cross section of the shear beam, and / is the
moment of inertia of the cross section of the flexural beam.
The time-dependent boundary conditions are

T{u(x,t)} = t(x,1) =t,(x,t), X € B,, (11

12)

where u, is the prescribed displacement on B, t is the trac-
tion on B, t, is the prescribed traction on B, and T is the
traction operator defined as

(

u(x,?)=u,(x,?), X € B,

[M(V-u)+ GVu+GI-(uV)]-n, elastic body,

—GA @. ,
Ox
3
-EI 6_134 ,
L Ox
The initial conditions are

u(x,0) = up(x),

T{u} =+

elastic shear beam, (13)

elastic flexural beam.

(14)

(x,0) = vo(x). 15)
For comparison purposes, both dual integral equations for di-
rect and modal elastodynamics are formulated as follows:
On extending the dual integral representation to transient
elastodynamics, the displacement u(x, ) and traction t(X, f)
for a domain point x at time ¢ can be written as

u(x,) = J:JB U(s,x;t,¢)- t(s,t)dB(s)dr
- J:L T(s,x;7,¢)- u(s,t)dB(s)dx
+ -[:J.DU(S’ x;1,¢)- (s, t)dD(s)dx
+ J'DU(s, x:0,)- pv, (s)dD(s) + jDU(s, X:0,1)- pu (s)dD(s),

(16)
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t(x,1) = ‘[; J'B L(s, x;7,7)- t(s, 7)dB(s)dx

- I;_IB M(s, x; 7,2) - u(s, t)dB(s)dt

+ j; jDL(s,x;t,t)-f(s,t)dD(s)dt

+ [ Ls:x:0,0)-pvo(8)aD(s)+ [ L5 x:0.0)- pug(5)dD(s),

a7

where U(s, X; 1, ), T(s, X; 1, 9), L(s, X; 7, £), and M(s, X; 1, £)
are four closed-form kernel functions.

If the closed-form kernel functions in the dual integral
equations are changed to the degenerate series forms as

U(s,x;t,t) —> closed - form Green's function

© 1 _ . .
N e &y (1-1) Sln(ﬁ)i(t—‘t))“m(x)®“"'(s)’

m=1""mPm

T(s, x;1,t) = closed - form Green's function

N = ]md o~ Em@n(1=7) sin(m‘,f, (t- -:))um (x)®t,(s),

m=|

L(s,x;7,7) = closed - form Green's function

o 1 g
- N_(_o—d_e Encon (=) sm((oz, (t- t))t,,, (x)®u,,(s),
m=l Nm@m

M(s, x;1,¢) = closed - form Green's function

- N—L)d-e'é""’”("‘) sin(m‘,f, (t- t))t,,,(x) ®t,(s),
m=1 m=m

where N,, denotes the m-th normalized mass, w}, denotes the
damped natural frequency, u,, (x) and t, (x) are the m-th mo-
dal displacements and modal tractions and & indicates the
dyadic operation, then the dual integral equations are trans-
formed into dual series representations, which, indeed, has
the usual meaning of modal elastodynamics.

Comparison of the above two formulations shows that the
series-type kernels in modal elastodynamics come from

l Regularization methods for hypersingularity

spectral decomposition of the closed-
] form kernel functions in direct elas-

\ Y Y

todynamics. Based on eigenfunction

Y expansions, the series-type kernel

use of simpl kernel density trace to surrounding| functions are series expansions of
-__solutions function function boundary integral Green’s functions instead of the U, T,
L, and M. The fundamental solution in
the dual integral equations should be
y s ]
1. constant 1. static kernel 1. regularized « 1. limiting procesy | 1. CPV concept first Cha'nged to'Green‘ § ﬁxncthn 'for an
potential subtraction _ 2.jump function | |2.HPV concept appropriate, finite region containing D.
2. rigid body 2. quasi-static ) uls) = ulx) 3.'Hospital rule | | 3. free term Therefore. direct integration by time
motion part decom- 2. regularized . 4. Cesaro sum 4. Introducing ere .O e" lrec. Iniegration A y. m
3. co:ﬂ:glementary position w(s) > uls)~u(x) boundary terms| marching is feasible, and matrix inver-
solution 3. integration - —1(x)r, a). Stok : : : :
(a). nondegenerate :,yepim (s, =H(x)em @ theorem sion can be omitted since the series-
boundary reduction one ) > 1s)=4(x) (b). integration type kemel functions satisfy homoge_
(b). degenerate order singular- 3. integration by parts o
boundary: ity for kernel by parts (c). Stokes neous boundary conditions. The rela-
enclosing w(s) = () transformation] tions between the dual integral equa-
technique (d). summation . . .
by parts tions and the dual series representation
(e)- Leibnitzrule | are symmarized in Fig 1.
5. quadrature rule

Fig 4. Regularization methods for hypersingular integrals
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4 REGULARIZATIONS FOR HYPERSINGULARITY

An increasing number of researchers have focused on hy-
persingularity, thus proposing quite a few analytical and nu-
merical techniques to handle it. These are summarized in Fig
4 and are discussed below.

4.1 Trace to boundary

Analytical integrations of singular and hypersingular kernels
for constant elements have been developed by Hong and Chen
[38], Cruse [74], and Gray et al [94] in crack problems by
bringing the collocated point into a boundary point. The ana-
lytical formula reveals the jump behavior of the double layer
potential by a jump function, for example, the arctangent func-
tion. The normal derivative of the double layer potential for
hypersingularity can be analytically derived using 1’Hospital’s
rule and the relations of the inverse trigonometric function. An
example has been given in [31, 38] for the Laplace equation.
Gray [94] used an analytical method to integrate the hypersin-
gular kernel by means of the polar coordinate transformation,
and all the components in the M kemel for a crack problem
were derived. For the cases of general interpolation functions
or curved boundary elements, analytical formulae do not exist
and other methods are needed.

4.2 Use of simple solutions

The simple solution is defined as a complementary solution
for a homogeneous partial differential equation. For example,
a rigid body motion in elasticity or a constant potential in the
Laplace equation is the simplest. This method can be used to
check the correctness of the [7] matrix and has been imple-
mented in the BEM program as a check procedure when al-
ternative methods are employed to calculate the diagonal co-
efficients. For a nondegenerate boundary, the [M] matrix can
also be tested by using a rigid body motion. However, the
rigid body motion test has its limitations when it is applied to
determine the diagonal coefficients of the [7] and [M] matri-
ces of a degenerate boundary since the sum of two hypersin-
gular integrals in the same row is automatically zero. Trivial
information for the diagonal elements of the [7] and [M] ma-
trices will be obtained. In order to check the diagonal terms
of the [T] and [M] matrices, an artificial boundary enclosing
the degenerate boundary has been proposed by Chen and
Hong [38], Lutz et al [155], Chen and Chen [60], and Chen
[31]. Another simple solution for a degenerate boundary,
which is the complementary solution, has been applied to test
the [M] matrix by Chen and Hong [38] free from introducing
the enclosing boundaries.

4.3 Surrounding technique

Since singularity is present on the boundary, a contour inte-
gration around the singularity is considered to obtain the free
terms and the principal values, eg, the Cauchy principal value
and Hadamard principal value. The finite part can be ex-
tracted by introducing the boundary term using Stokes’ theo-
rem (integration by parts) in dual integral equations, which is
similar to Stokes’ transformation (summation by parts) in a
dual series representation as will be elaborated on in the next
section. The final free terms will be the same as those in the
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limiting process although the intermediate results from the L
and M kemnels are different. The derivations can be found in
[31, 38, 44]. As another point of view, the commutativity
diagram in Fig 1 shows the boundary term comes from the
Leibnitz rule since differentiation with respect to the Cauchy
principal value is used. Singular integrations for the principal
values of the Riemann (logarithm) type, the Cauchy type and
the Hadamard type have also been developed by Pina and
Fernandes [179] and Kutt [141] using the quadrature rule.

4.4 Partial integration

In order to reduce the order of singularity, Cruse [73], Bui
[22], Weaver [222], and Sladek and Sladek [198] integrated
the kernels by parts. The key step shifts one order of singu-
larity from the kernel to the density function. Therefore, the
hypersingular kernel is reduced to the Cauchy type.

4.5 Adding and subtracting technique

For time-dependent boundary-value problems, Mindlin and
Goodman [168] proposed a quasi-static decomposition
method to calculate the dynamic response of a structure and
to make finite the traction response in the series solution.
Using a similar concept, the subtraction and addition tech-
nique has been applied to calculate the finite part of hypers-
ingularity. There are two ways to apply this technique; one
uses the density function, and the other uses the kernel func-
tion. Rizzo et al [187] subtracted the static kernel from the 7
kernel and calculated the remaining integral using the Gaus-
sian quadrature while the additional static kernel can be inte-
grated analytically. Recently, the subtraction technique has
been applied to the density function by means of Taylor’s
expansion. For example, Shiau [195], Cruse et al [75], Mat-
sumoto and Tanaka [164] and Sladek et al/ [199] have ap-
plied this technique to regularize hypersingularity into a non-
singular integration. Another advantage of the technique is
that the boundary effect can be avoided since the jump value
across the boundary vanishes after regularization. Three
regularized versions of dual integral equations have been de-
rived, and an example has been given to illustrate the sup-
pression of the boundary effect in [31, 44].

S REGULARIZATIONS FOR
OSCILLATING AND DIVERGENT SERIES

There are various methods available for regularizing diver-
gent series, for example, the Shanks transformation, Cesaro
sum (Fejér sum), Holder sum, Abel sum, Euler sum, Borel
sum, and Stokes’ transformation. Here, we shall focus on the
Cesaro sum and Stokes’ transformation since they have
similar behavior in comparison with the regularization tech-
niques for hypersingularity of dual integral equations, as
shown in Fig 1b. Regularization methods for oscillating and
divergent series are shown in Fig 5.

5.1 Quasi-static decomposition method

The quasi-static decomposition method for continuous sys-
tems was first presented by Mindlin and Goodman [168].
Clough and Penzien [65] extended it to discrete systems.
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Based on the dual representations, it can be deemed as one of
the regularization methods for divergent series. In [31, 111],
a detailed discussion was given.

5.2 Cesaro mean
The general Cesaro mean is defined as [86, 105]

S = C(k,r){i a"} =

n=0

k+r-1 k+r-2
Cr sy + CR 25 44 Cly5, + Colsy
C'lf+r >

(18)

where C(k, r) is the operator of the Cesaro mean of the r-th
order, r is an integer, Cf =k!/ (r!(k-r)!) and the partial
sum is

k

s = Zan(x,t)-

n=0

19
The C(k, 1) mean reduces to the conventional Cesaro mean:

k
S, = C(k,]){Za,,}E So + Syt tSg ) + 85 . (20)

o k+1

For efficiency of computation, the s; terms may be changed to
the a; terms; thus, Eq (18) is expressed as

k
S =C(k,1){2a }E—Z(k n+la, - (21)
n=0 n=0
Similarly, the C(k, 2) mean is
k
S, = C(k,Z){Za,,}
n=0
_C" s +Cis +CF sy 44l +Clsy (22)
Ck+2
(k4 1)sg + ks +2s, ) +35;
0.5(k+1)(k+2) ’
or, in terms of a;,
k
S, = C(k,2){z a,,}
n=0 (23)

mZ(k n+l)(k n+2

For a general integer order » , we have
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S, =C(k, r){i a,,}

n=0

24)

(k)N(k+r—n)!
Z(k PR

For the case of noninteger order the Cesaro mean is defined as

S, = C(k, r){z } Zw a,, (25)
n=1 n=]
in which the weight is represented by
» _ T(k+D)I(k+r-n+1) (26)

" T(k-nT(k+r+1)
The regularization operator was applied to extract the finite
part of a series representation in [31, 59].

5.3 Stokes’ transformation (alternative series)

Stokes’ transformation has been utilized as a tool for deriving
an analytical solution in terms of series solutions [19, 20, 64,
89, 99, 204, 211]. Recently, the double Fourier series using
Stokes' transformation has been employed to solve double-
curved panel problems [26]. If the analytical solution for the
primary field can be expressed in terms of series representa-
tion as

f0) =Y e (O (),
k=1

then the differentiation of f with respect to x yields the sec-
ondary field

F160)=Y bOui(x)+ Y e (i (x),

where the first term on the right-hand side of the equal sign is
the boundary term, and the second term results from term-
wise differentiation. In the initial-boundary-value problem
with time-dependent essential boundary conditions, the
boundary term is always present and can not be neglected.
Instead of using Stokes’ transformation to recover the
boundary terms, a method of alternative series was employed
in [230]. By adding the boundary term, the infinite value can
be cancelled out, and the finite part can be extracted. Also,
this technique has been applied in [31, 49].

27

(28)

6 APPLICATIONS OF HYPERSINGULARITY IN
DUAL BOUNDARY INTEGRAL EQUATIONS

In dual integral equations, hypersingularity is present in the
integral with the M kernel. In this section, we discuss why
hypersingularity is important in treating certain problems and
summarize in Fig 6 the roles it plays in the boundary element
methods. One important role of the hypersingular equation is
that it can provide additional constraints to ensure a unique
solution as shown in the first five items in Fig 6. The last
seven items in Fig 6 show other different roles they play in
computational mechanics.

6.1 Higher order element

In order to improve accuracy with fewer elements, Watson
[220, 221] chose the Hermite cubic element. An apparent
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gain is the interelement continuity of the first derivative of
the primary variable. Another gain is that the consistency of
the density function for the primary variable will improve the
condition of existence for the M integral. However, since the
number of unknown data doubles at the same time, taking the
gradient of the displacement integral equation, which intro-
duces hypersingularity, is necessary.

6.2 Degenerate boundary

In a degenerate boundary problem, the spatial coincidence of
the two sides of the degenerate boundary leads to the result
that the singular integral equation on one side is indistin-
guishable from that on the other side even though the dis-
placements on the two sides are different. Although the hy-
persingular integral equations are different between the two
collocation points on the two sides by their corresponding
normal vectors, they are dependent since the two normal
vectors differ only by a minus sign. (Nevertheless, the normal
vectors before and afier the comer are independent; there-
fore, the hypersingular equations can establish effective con-
straints, as shown in Subsection 6.3.)

To obtain enough independent equations, both singular
and hypersingular equations, collocated on the degenerate
boundary, are necessary {29, 35, 36, 37, 109, 110]. They
were first given the name of the dual (boundary) integral
equations for elasticity [29, 108, 109, 110] and were later
implemented into the BEPO2D program for potential flow
[37]. Lutz er al also implemented the concept in their pro-
gram [155]. Cruse [72] formulated this degenerate boundary
problem in terms of the density functions of the displacement
difference and traction summation on the two sides of the de-
generate boundary. Cruse noticed that this formulation intro-
duced double unknowns, and additional equations were re-
quired, he did not go on further to survey the required equa-
tion. Although Watson [220, 221] proposed another type of
additional equation, the kernels he derived were different
from the kemels in the dual boundary integral equations
[109], and the properties of his kernels had not been investi-
gated thoroughly. Chen [29] as well as Hong in 1986 estab-
lished the unified dual formula-
tion, which incorporates the dis-

Chen and Hong: Dual BEMs with emphasis hypersingular integrals

25

seepage flow with sheet piles was considered in [31, 37, 41].
Also, the screen impinging in acoustics can be solved by the
dual representations [51, 52, 55, 56, 152, 209].

6.3 Corner problem

The corner problem with the Dirichlet boundary condition is
another problem in which the number of equations is not suf-
ficient for the conventional BEM. The double node technique
was utilized to tackle this problem [12]. Scholars have tried
to find better, additional constraints. Again, the hypersingular
integral formulation plays a role in providing independent
constraints for the boundary unknowns. For the case that the
displacement (or potential) is specified at the comer, the
traction (or potential flux) unknowns are doubled due to the
different normal vectors. Unfortunately, the singular equa-
tions alone can not distinguish the normal vectors of the col-
location points at the corner. The second equation of the dual
integral representation can be collocated to the points before
the corner and after the corner with two different independent
normal vectors, causing the equations to be independent, as
shown below for the two-dimensional Laplace equation [44]:

ar™(x) +sin(a)r* (x) = HPV j M~ (s,x)u(s)dB(s)
# (29)
- CPVL L™ (s, x)t(s)dB(s),

at*(x)+sin(a)~(x) = HPVJ M™ (s, x)u(s)dB(s)
’ (30)
- CPVL L* (s, %)t(s)dB(s),

where HPV denotes the Hadamard principal value, ¢ and ¢
are the normal fluxes before and after the corner, a is the in-
terior angle, and M~ and M " denote the kernels with the dif-
ferent normal vectors collocated before and after the corner.
The detailed derivations can be found in [31, 44]. Therefore,
a unique solution can be achieved by balancing the number
of equations and unknowns after choosing any two of the
three independent equations (the singular equation and Eqs
(18) and (19)). The three methods can all match the exact

placement and traction boundary l
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solution well. However, it has been reported [195] that using
two hypersingular equations for the two points before and
after the corner results in lower accuracy than does using one
singular and one hypersingular equation.

6.4 Fictitious eigenfrequencies

It is worth noting that the dual integral equations in acoustic
applications received much attention earlier than did the
Laplace problem since the exterior problem using the singu-
lar integral equation with the U and T kernels introduced fic-
titious eigenfrequencies. Although Schenck [190] found a
unique solution by using the CHIEF method, which is gener-
ally preferred by the engineering community, this method has
limitations; for example, it can not be used to solve the exte-
rior problem with a degenerate boundary (such as a noise
barrier) since an interior point is not available. Burton and
Miller [23] were first to propose the combined use of dual
integral representation for the acoustic problem with all wave
numbers. Terai [209] applied dual integral equations to the
acoustic problem with the degenerate boundary of a screen.
Wu and Wan [226] also applied dual integral equations to the
acoustic radiation and scattering problems for thin bodies.
Several researchers [83, 169, 170, 171, 172, 223, 224, 246]
have dealt with hypersingularity in this formulation. The
available methods have been summarized in [31, 33] from
the viewpoint of the dual integral representation. From this
viewpoint, the fictitious eigenvalues depend on the kernel of
the integral representation of the solution and on the region
where the singularity is distributed. In another words, the
boundary condition can not change the position of fictitious
eigenvalues once the integral representation is chosen. To
demonstrate that these statements are true, Chen [31, 33] has
given three examples for one-, two- and three-dimensional
problems by using the generalized indirect method and the
direct method. In the three examples, the degenerate kernels
in the frequency domain have been employed to represent the
potentials in the interior and exterior domains in [31, 33].
The analytical results can be obtained and the mechanism of
fictitious eigenvalues can be easily understood upon consid-
ering the difference of the stiffness matrix between the exte-
rior and interior problems. Therefore, some misleading
comments by Shaw [192] and Rizzo [186, 187] have been
corrected in [31, 33].

6.5 Adaptive boundary element methods

An essential ingredient for all adaptive boundary element
methods is a reliable estimate of the local error. The hypers-
ingular integral equation is a complementary equation avail-
able for error estimation. Using this concept [147], the error
indicator can successfully track the form of the exact error
curve. Papers on error estimation and adaptive BEMs can be
found in [223, 224].

6.6 Calculation of the tangent flux
or the hoop stress on and near the boundary

The hypersingular integral equation can be used to directly
calculate the boundary stress instead of using the numerical
derivative of the obtained displacement field through
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Hooke’s law. The tangent derivative along the boundary has
been formulated in terms of both the boundary potential and
the boundary normal flux in [41]. For elasticity problems,
Huber et al [122] have shown that the accuracy of the nu-
merical derivative is lower than that of the direct calculation
of the boundary stress using the hypersingular formulation.
Since the integral representation of the solution exhibits the
jump behavior across the boundary, the stress or flux near the
boundary often displays the Gibbs phenomenon. By using the
regularized version of dual integral equations, accuracy near
the boundary can be ensured. Numerical examples have been
provided in [31, 48].

6.7 Symmetric formulation

In the coupled use of FEM and BEM, the symmetry require-
ment of the stiffness matrix is especially useful. The four kernel
functions in the dual integral equations display the elegant
structure of potential theory. The symmetry and transpose
symmetry properties for the four kernel functions have been
found by Hong and Chen [29, 38, 109]. The dual integral rep-
resentations can be used to assemble the four kernel functions
of the dual internal equations into a global symmetric matrix
using the symmetry and transpose symmetry properties of the
kernel functions [7, 8, 126]. In order to establish the symmetry
for the interpolation function, the quadratic energy form of
double integration was needed in the Symmetric-Galerkin for-
mulation by Shiau [194] as well as Hong, Bonnet [17], Kane
[126], Parreira [177], and Sirtori [196]. The numerical imple-
mentation has been tested successfully by Shiau [194]. How-
ever, all the symmetric formulations in the literature need dou-
ble boundary integrations and, thus, are time-consuming. For
reduction to a single boundary integration, degenerate kernels
can be employed. Construction of symmetric matrices has been
investigated in [7, 8, 31].

6.8 Improvement of condition numbers

In the dual integral representation, the potentials resulted
from integrating the U and M kernels are continuous when
the field point moves across the boundary, while those from
integrating the 7 and L kernels show the jump behavior. The
jump terms will make the [7] and [L] matrices diagonally
dominant and preferably lower their condition numbers. For
the case of the Dirichlet problem, an inversion of the [U]
matrix is needed when the first equation of the dual integral
representation is considered. If we adopt the second equa-
tion, an inversion of the [L] matrix is preferred since it is
more well-conditioned. From the viewpoint of the orders of
the pseudo-differential operators, the 7 and L kernels are of
zero order, which are numerically stabler than the U kernel of
order one and the M kernel of order minus one [28]. This
agrees with the above statement that the inversion of a matrix
with diagonal dominance is numerically stabler. The example
shown in Fig 7 demonstrates this.

6.9 Detection of spurious roots
in the dual multiple reciprocity method (MRM)

The conventional MRM has the problem of spurious eigen-
values. About this, the dual MRM provides an ideal frame-
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work to solve the eigenproblems in real domain. To distin-
guish whether the eigenvalue is true or not, Chen and Wong
[50] applied a hypersingular MRM formulation to obtain suf-
ficient constraints for the eigenequations. The dual formula-
tion for the MRM has also been successfully extended to
solve the acoustic modes for a two-dimensional cavity with
an incomplete partition [S1]. The singular value decomposi-
tion (SVD) technique can also be used to filter out spurious
eigenvalues for an overdeterminate system in the dual MRM.
Another advantage using the SVD for the overdeterminate
system in the dual MRM was its ability to determine the
multiplities of the eigenvalues.

Moreover, a series-type complex-valued dual BEM calied
the complete MRM was derived in [239]. Four methods, the
complete MRM [239], the complex-valued dual BEM [56],
the real part of the complex-valued dual BEM [152], and the
conventional dual MRM [50, 51], were summarized in [32].

6.10 The Tikhonov formulation for inverse
problems with overspecified boundary conditions

In solving an ill-posed inverse problem with overspecified
boundary conditions by the Tikhonov formulation, double
boundary integrals occur naturally. The inner integrals in the
double integrals are hypersingular. To avoid hypersingularity,
Yeih, Koya, and Mura [139, 237, 238] applied a fictitious
BEM to deal with the inverse problem. Yeih’s technique is not
absolutely necessary since the hypersingular integral can be
evaluated by one of the regularization techniques.

6.11 Construction of the image system

In the half-space [167], quarter-plane [102] or quarter space
[103] problems, special Green’s functions subjected to cer-
tain boundary conditions are often used as auxiliary systems
to establish integral equations which -can eliminate integra-
tions on the rectilinear or plane boundaries such as the
ground surface. Conventionally, we have only the strength of
the source to adjust for satisfaction of the boundary condi-
tions. Based on the physical meaning of the dual integral
equations of potential theory, an additional degree of free-
dom is availabie, which is the normal vector of the dipole or
dislocation source. Illustrative examples have been given in
the book by Chen and Hong [38].

6.12 Free-surface problems

The free-surface problem can be treated as a moving bound-
ary problem with overspecified boundary conditions. An it-
erative scheme for the free-surface seepage was proposed by
Niwa et al [175] using the conventional BEM. By employing
the hypersingular integral equation, the rate of convergence
can be accelerated.

7 APPLICATIONS OF DIVERGENT SERIES
IN DUAL SERIES REPRESENTATIONS

The growing importance of divergent series in both pure and
applied mathematics has been justified through investigation
of the theory of summability. Since the Fejér reproducing
kernel [86] and the Cesaro sum [105] have been shown to be
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effective methods for summing divergent series, some appli-
cations in applied mechanics have been developed, eg, ran-
dom vibration [234], dynamic responses of a string [47], a
shear beam [40, 111] and a flexural beam [45], heat conduc-
tion [39], and stress analysis of a plate [206]. More applica-
tions can be found in [31, 111].

In mathematical terminology, the Cesaro operator for the
series is similar to the reproducing kernel for the function
representation. The Fejér kernel is one of the reproducing
kemnels. By the aid of the Cesaro operator or the Fejér kemel,
the series representation of a solution can be approximated
closer to the analytical solution in the L, sense. By employing
the same concept, the wavelet technique [27] using the re-
producing kernel to represent a function by means of two pa-
rameters, time and frequency, is now a promising technique
in signal analysis.

Although the BEMs have been under development for two
decades, it is only recent that the theory of divergent series
has been correlated with hypersingularity from the viewpoint
of the dual representations [31, 111]. In the regularization
methods for hypersingularity [200, 207], we have a limiting
process and Stokes’ theorem, which can be viewed as inte-
gration by parts. Correspondingly, summability of divergent
series has two alternative techniques: one is the Cesaro op-
eration, and the other is Stokes' transformation, which can
also be viewed as summation by parts. The former method
behaves like the limiting process for hypersingularity by in-
creasing the number of terms (modes) when the secondary
field near the boundary is solved, as shown in Fig 1b. The
theory of divergent series in the BEM stems from modal
analysis of dynamic problems with an essential time-
dependent boundary condition. As Mindlin and Goodman
mentioned [168], the quasi-static solution can be decom-
posed from the total solution first, and the divergent series in
the representation for the secondary field can be avoided.
This decomposition method, also known as the subtraction
method, can be regarded as one of the regularization tech-
niques for extracting the finite part in the series solution.
Nevertheless, calculation of the quasi-static solution is a dif-
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ficult task since it requires solving the partial differential
equation [82]. By means of the dual series representation, the
quasi-static solution for displacement is transformed into the
integration of the secondary field derived from Stokes' trans-
formation. It is obvious that integrating a known function is
easier than solving a partial differential equation (PDE) di-
rectly under the same convergence rate of the mode accel-
eration method [42, 70]. For the secondary field, the quasi-
static content is implicitly contained in the boundary terms if
Stokes’ transformation is utilized.

It is noted that the complete spectral information, includ-
ing the modal frequencies (eigenvalues), modal displace-
ments (eigenfunctions) and modal reactions, should be
known a priori, either by means of analysis or experiment,
since it is the base in the dual series representation. The mo-
dal reaction method to calculate the modal participation fac-
tor for support excitations has been proposed in [43]. In the
eigen solver, the modal reaction data are often overlooked by
engineers and scholars. To the authors' knowledge, only the
ABAQUS program among large-scale commercial software
has the output option in the eigen solver. But the data can be
efficiently utilized for multi-support motion problems. When
the kernel function is expanded by eigenfunctions with an as-
sociated homogeneous boundary condition, the direct inte-
gration scheme is feasible free from matrix inversion.

Another important role the theory of divergent series plays
is the function representation in computational mechanics. In
solving a PDE, we often represent the solution in terms of a
series or integral representation, eg, eigenfuction expansion
or the Fourier integral, and then substitute the representation
into the PDE to obtain an easier governing equation using
operational mathematics. Without considering the theory of
divergent series or integrals, this formulation will introduce a
paradox since differentiation of the representation has been
wrongly used as Stakgold mentioned [202]. By employing
the regularization techniques, the paradox can be avoided. In
FFT (Fast Fourier Transform), Kérner [138] also used the
reproducing kernel to represent the Fourier integral more ac-
curately by means of regularized representation, that is,

n=N
up(6)= D wiU(f,)e™™,

n==N

(€2))

which is different from the conventional representation:

n=N
uy(t) = ZU(f,, )e' 2Vt

n=-N

(32)

For either an integer or noninteger order r and the Cesaro or-
der &, the term w,, in Eq (20) is the weight defined as fol-
lows:
r _ Dk+D)C(k+r—n+1)
" T(k-n)C(k+r+1)

(33)

where I' (*) is the Gamma function. From the convolution
point of view, Eq (20) can be transformed into

()= o= | K- v (), (34)
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where the reproducing kernel is

n=N )
Ky(t-1)= Zw;e'z’tf’".
n=-N

(335

For the case of Cesaro order 1, the reproducing kernel is re-
duced to the Fejér kernel as shown below:

1 sin?(N+1)(t-1)/2)

K”(’_T)=(N+1) sin?((t—-1)/2)

(36)

The diagram of the reproducing kernel has been shown in
[31, 138] for increasing values of N. In applications in the
frequency domain, Eq (20) is used instead of Eq (21). By the
reproducing technique, divergence will be filtered out and the
finite part can be extracted. In [31, 59, 114] the Cesaro sum
in conjunction with the L-curve was used to overcome the di-
vergence in the deconvolution for site response analysis.

8 CONCLUDING REMARKS

In this article, the dual boundary element methods (DBEMs)
under the unified framework of dual representations have
been reviewed. The relations between the dual integral equa-
tions and the dual series representations were discussed. The
regularization techniques for hypersingular integrals and di-
vergent series were summarized. The roles the DBEMs with
hypersingularity and divergent series play in computational
mechanics were explored, and applications to various prob-
lems of the general three kinds: the static-boundary-value
problems, initial-boundary-value problems and time-har-
monic boundary-value problems, were cited. There still re-
main some interesting problems in applying the DBEMs with
hypersingularity and divergent series.
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