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ABSTRACT: Heat conduction in fins and slab bodies, a traditional undergraduate topic, is

treated with the Green’s function (GF) method. A variety of boundary conditions and heating

conditions are included. Computer programs are described which are designed to improve

student learning of the GF method. The programs are available from the author. � 2004 Wiley

Periodicals, Inc. Comput Appl Eng Educ 12: 189�197, 2004; Published online in Wiley InterScience

(www.interscience.wiley.com); DOI 10.1002/cae.20010

Keywords: heat conduction; convection heat transfer; Green’s functions; open-source

software; analytical solution

INTRODUCTION

This study is focused on heat transfer in fins and slab

bodies by the method of Green’s functions (GF). The

method is powerful because a small set of GF can be

used to find temperatures caused by many different

boundary conditions and internal heating conditions.

The method is systematic because if the GF is known,

an expression for the temperature can be written

immediately according to a straightforward algorithm.

Unfortunately, the power of the GF method has proved

to be something of a barrier to its widespread use.

Discussions of the GF method generally involve a high

level of abstraction, covering several differential equa-

tions, multiple coordinate systems, three-dimensional

geometries, and so on. In this study, the discussion is

limited to fins and slab bodies to make the GF method

more accessible to undergraduate students.

Another barrier to wider use of the GF method

has been the daunting task of finding the GF itself.

This study emphasizes use of an existing collection of

GF to solve engineering problems. This approach

exposes students to a broader landscape of analytic
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solutions than is typically present in heat transfer

textbooks, with a minimum time investment, at a

mathematical level consistent with current under-

graduate courses. The task of finding the GF for new

applications may be deferred to an advanced course.

Next, a review of pertinent literature will be given

in the areas of GF, fins, and computer programs for

student learning in heat transfer. In the area of GF, the

method was first applied to heat conduction early in

the twentieth century by Carslaw [1]. Later Carslaw

teamed with Jaeger to produce an enduring reference

on analytical heat conduction and the GF method. The

1959 edition of their book has never gone out of print

[2]. Perhaps subsequent researchers turned away from

analytical methods as digital computers took center

stage. However, in the last few years the GF method

has been undergoing something of a revival, with

several books entirely devoted to GF [3�6].

In the area of fins, the mathematical theory for

heat conduction in fins was pioneered by Harper and

Brown in 1922 [7] and refined by Garder in 1945 [8].

Jakob included a discussion of fins in his influential

1949 book [9], and since then fin analysis has been

included in essentially every heat transfer text. There

is an enormous literature of numerical solutions to

heat transfer in fins which cannot be discussed here.

However there is one paper that deserves mention for

a discussion of fins with a variety of boundary

conditions [10] solved by the GF method. The GF are

computed numerically with a Galerkin-based integral

method. In contrast, in the present paper the GF for

fins are given as analytical expressions.

Next, the literature will be discussed in the area of

computer programs designed for student learning in

heat transfer. Some programs contain compilations of

ready-to-use formulas drawn chapter-by-chapter from

a specific textbook (for example [11]). Other pro-

grams are intended to stand alone or to supplement a

course on heat transfer. One such program for one-

dimensional transient conduction in solids was

created by Haji-Sheikh [12] for the DOS operating

system. The program has a graphical user interface,

and the numerical results are computed from Galer-

kin-based GF [13]. Another stand-alone program for

one-dimensional conduction, written for the Windows

operating system by Ribando and O’Leary [14], uses a

finite-difference method for the numerical results.

Recently, programs to enhance student learning of

heat transfer have begun appearing on the world wide

web. A web-based program described by Somerton

[15] contains Nusselt number correlations for predict-

ing convection heat transfer. The correlations are

classified by the type of convection present (forced,

free, or mixed), the type of fluid flow present (external

or internal), and the surface geometry. The correlations

are drawn from established heat transfer textbooks, and

full citations are given. Use of this system can enhance

the ability of students to make good choices for

predicting the behavior of physical systems.

The author maintains an internet site devoted to

GF called the GF Library [16,17]. The purpose of the

GF Library is to catalog known GF and to promote the

GF method. The GF Library also serves as a supple-

ment to a senior course in heat transfer and a graduate

course in heat conduction. The GF are organized by

equation type, coordinate system, body shape, and type

of boundary conditions. Specific GF may be found

through the table of contents or from a search of the

site. The site also includes a brief introduction to the

GF method, some examples, and supporting material.

This article makes two contributions. First, the

method of GF is applied to heat conduction in fins and

a comprehensive listing of the associated GF is given.

Although fins were briefly discussed in our 1992 book

on GF [5], to the author’s knowledge there has been no

treatment of fins that includes a complete listing of the

GF for fins. Second, computer programs are described

that provide expressions for analytical solutions for

heat conduction in fins and slab bodies, topics tradi-

tionally included in an undergraduate course in heat

transfer. Since the solutions are based on the GF

method, a wide variety of heating conditions are

treated. These programs are intended to improve

student learning.

The remainder of the study is divided into

sections, including: heat conduction in fins; the GF

method; new computer programs for heat conduction;

open-source software; computer display of math

content; and, the conclusions.

HEAT CONDUCTION IN FINS

Consider the steady temperature in a fin of uniform

cross section, which satisfies the following second

order, linear, differential equation:

d2T

dx2
� m2 T � T1ð Þ þ 1

k
gðxÞ ¼ 0; x in domainR

ð1Þ

Here m2 ¼ hP= kAð Þ describes heat loss by convection
from the side of the fin where h is the heat transfer

coefficient (W/m2/K), P is the fin perimeter (m), A is

the cross section area of the fin (m2), and k is the

thermal conductivity (W/m2/K) Term g(x) represents

volume energy generation within the fin (such as by

electric heating or chemical reaction); this term is

included to demonstrate the versatility of the GF
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method. Domain R may include 1;1ð Þ for the

infinite fin, 0;1ð Þ for the semi-infinite fin, or ð0; LÞ
for the finite fin. The boundary conditions at the ends

of the fin may be of several types, all of which are

described by the following condition:

ki
dT

dni

����xi þ hi T xið Þ � T1ð Þ ¼ fi; i ¼ 1; 2 ð2Þ

Here xi is located on the ith boundary and direction ni
is the outward normal on the ith boundary. The

general boundary condition (Eq. 2) represents one of

several boundary types, as follows: for type 1, set

ki¼ 0 and hi¼ 1 to give T(xi)¼ fi (specified tempera-

ture); for type 2, set ki¼ k and hi¼ 0 to give kdT/

dni¼ fi (specified heat flux); and, for type 3, set ki¼ k

and hi¼ h for specified convection. The boundary

condition of type 0 describes the condition where

there is no physical boundary, for example at x!1
in a semi-infinite fin, where both dT/dx! 0 and

T � T1Þ ! 0ð .

GREEN’S FUNCTION METHOD

In this section, the temperature in the fin will be given

with the GF method. Like many analytical solution

techniques, the GF method requires that the differ-

ential equation be linear, the boundary conditions be

linear, and that the boundary conditions be applied at

regular boundaries, all of which apply to the fin pro-

blem given above. The GF itself represents the

response of the fin to a point source of heat which

may, with superposition, be used to construct the

desired temperature solution. Other names for the GF

include impulse response, fundamental solution, and

influence function, among others.

The Dirac delta function, sometimes called the

unit impulse function, is central to the GF method.

The properties of the Dirac delta function that are

needed for the GF method are given in Table 1.

The GF for the fin satisfies the following equations:

d2G

dx2
� m2G ¼ �d x� x0ð Þ; x in domainR ð3Þ

ki
dG

dni

����xi þ hiG xij ¼ 0; i ¼ 1; 2 ð4Þ

Note that the above equations are similar to the tem-

perature problem, except the energy generation term

is replaced by a Dirac delta function and the boundary

conditions are homogeneous. Most importantly, the

boundary conditions must be of the same type as the

specific temperature problem of interest. The GF

G xjx0ð Þ represents the heat transfer response at

observation point x to an infinitesimal heat source

located at point x0. An important property of the GF is

that the GF is symmetric with respect to position:

G xjx0ð Þ ¼ G x0jxð Þ: This is called the reciprocity

relation.

The temperature solution is constructed from a

suitable distribution of the GF within the body so as to

reproduce the heating conditions. The temperature in

the fin is given by:

TðxÞ � T1 ¼ 1

k

Z
gðx0ÞGðxjx0Þdx0

ðfor energy generationÞ

þ
X2
i¼1

fi

ki
Gðxjx0iÞ

ðfor boundary of type 2 or 3Þ

�
X2
i¼1

fj
dG

dn0j

�����
x0¼xj

ðfor boundary of type 1 onlyÞ ð5Þ

This is the GF solution equation for steady heat

conduction in the fin, for a derivation refer to the

Appendix. The summation over i is used to represent

the contribution from boundaries of type 2 or 3, and

the summation over j is used to represent the

contribution from boundaries of type 1. There are,

of course, a total of two boundaries for fins of finite

extent (0< x< L). The above notation also applies to

semi-infinite or infinite bodies, if one or zero

boundary terms are included, respectively. The above

expression represents the solution to a wide variety of

fin problems, with different heating and cooling

conditions, including internal heat generation. In the

next section, a number system is introduced that is

useful for keeping track of the many different possible

fin solutions that can be treated by the GF method.

Number System

A number system is essential to identify various GF for

storage and retrieval on a computer. The GF number

has the form ‘‘X� �’’ where the X represents the

coordinate system and the ‘‘� �’’ represent two digits,

one each for the type of boundary conditions. For

example, designation X12 represents a GF with a type

Table 1 Properties of the Dirac Delta Function,

� x� x0ð Þ
1.

R
R
� x� x0ð Þ dx0 ¼ 1

2. � x� x0ð Þ ¼ 1 as x ! x0

0 otherwise

�

3.
R
R
F x0ð Þ� x� x0ð Þdx0 ¼ F xð Þ; the sifting property
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1 boundary at x¼ 0 and a type 2 boundary at x¼ L. As

another example, designation X10 represents a GF with

a type 1 boundary at x¼ 0 and the other boundary is

nonphysical, that is, the fin is semi-infinite.

The number system also extends to precise

descriptions of temperature distributions with the

addition of descriptors for boundaries, generation, and

initial conditions. Boundary information is identified

by prefix ‘‘B,’’ generation by prefix ‘‘G,’’ and initial

condition by prefix ‘‘T.’’ Numbers following the letter

prefixes indicate the value specified. Number ‘‘0’’

denotes zero effect; number ‘‘1’’ denotes a constant

effect; and a dash ‘‘�’’ denotes a nonconstant effect.

For example, descriptor ‘‘B11’’ denotes a constant

heating condition at each of two boundaries; and,

‘‘G�’’ denotes a nonconstant energy-generation effect

in the body. An example is given later of the number

system applied to a fin.

The number system also applies to transient heat

conduction, to other coordinate systems, and to multi-

dimensional problems. Further details of the number

system may be found elsewhere [5].

GF for Fins

The GF needed for all the fin problems discussed

above are designated XIJ where I, J¼ 0, 1, 2, 3. The

GF for these geometries is given by

G x; x0ð Þ ¼
S�2 S�1 e

�m 2L� x�x0j jð Þ þ Sþ1 e
�m 2L�x�x0ð Þ� �

2m Sþ1 S
þ
2 � S�1 S

�
2 e

�2mL
� �

þ
Sþ2 Sþ1 e

�m x�x0j jð Þ þ S�1 e
�m xþx0ð Þ� �

2m Sþ1 S
þ
2 � S�1 S

�
2 e

�2mL
� �

ð6Þ

where the coefficients depend on the type of boundary

conditions at boundaries i¼ 1,2 and are given by:

Sþi ¼
1 side i is type 0; 1; or 2
mLþ Bi side i is type 3

�

S�i ¼

0 side i is type 0

�1 side i is type 1

1 side i is type 2

mL� Bi side i is type 3

8>><
>>:

ð7Þ

Here Bi ¼ hiL=k is the Biot number at boundary i. For

a derivation of the above GF for the slab-body cases

0 < x < Lð Þ see Ref. [18].

PROGRAM TFIN

In this section, a computer program is described that

provides a formal solution for temperature in a fin by

the method of GF. These formal solutions have not

been stored in advance, but they are assembled, on

demand, according to Equation (5).

Program TFIN is a tool for teaching and

demonstrating the GF method. The program exposes

students to several aspects of the GF method, in-

cluding: that several types of boundary conditions that

can be treated analytically; that superposition can be

used to find the response to multiple simultaneous

heating conditions; and, that diverse heating effects

may be categorized by a numbering system. The

temperature result from program TFIN is an analytical

expression, and additional analysis is needed (differ-

entiation and/or integration) in order to find numerical

values for the temperature, the heat flux from the fin,

and the fin efficiency.

Program TFIN, when run, displays a window that

offers several choices to the student as shown in

Figure 1. The student enters information through

buttons or pull-down menus concerning fin geometry

(infinite, semi-infinite, or finite), boundary conditions,

and any internal heating. As information is entered, it

is encoded in a Heat Transfer Number which is

displayed at the bottom of the window. Alternately,

the student may directly enter the Heat Transfer

Number. Once the student has set all the desired

conditions, the student must click on ‘Show Tem-

perature’ to direct the program to do the following:

parse the displayed Heat Transfer Number for its

content; assemble the requested temperature expres-

sion as a LaTeX file using an algorithm based on

Equation (5); process the LaTeX file; and, display the

results on screen.

Figure 1 Main window for program TFIN provides

for user input of fin size, end conditions, and internal

heating condition. This information is encoded in a

heat transfer number.
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Program TFIN automatically configures itself to

the computer operating system, and it has been tested

on computers running Linux, Win2000, and WinXP.

However, program TFIN should run on any computer

running Perl, Tk, and LaTeX in a sufficiently current

version. All this software is generally part of the

standard distributions of Linux and Unix. Windows

users will have to install Perl, Tk, and LaTeX which

are available at no cost if downloaded from the

internet. Information on downloading and installing

required software is available in the file ‘readme.txt’

distributed with the program.

Next an example of the use of program TFIN will

be given. Consider a long fin with base temperature of

T1. The sides of the fin lose heat by convection to a

fluid at T1. There is no internal heating. When this

information is entered into program TFIN the com-

puter display takes on the form shown in Figure 1. The

GF number for this case is X10, and the heat transfer

number is X10B1G0. Figure 2 shows the computer

display after the button ‘Show Temperature’ is

clicked. The output display includes: the differential

equation for temperature; the boundary conditions; a

formal expression for the temperature involving the

GF designated by symbol GX10; and, a formula for the

particular GF needed for this case.

The temperature expression given by TFIN is not

calculator-ready, so the student must do additional

work to find an expression which can be evaluated

numerically. For case X10B1G0, the student must

differentiate the GF with respect to x0 and evaluate at

x0 ¼ 0 to find:

T xð Þ � T1 ¼ T1 � T1ð Þe�mx ð8Þ

This result is given in many heat transfer texts.

This concludes the discussion of steady heat

transfer in fins. In the next section, transient heat

conduction in slab bodies, with no fin effect, is treated

by the GF method.

HEAT CONDUCTION IN SLAB BODIES

In this section, unsteady heat conduction in one-

dimensional planar bodies is discussed (such as walls,

slabs, plane layers etc.). Side heat losses (fin losses)

are not included. Consider the following boundary

value problem:

@2T

@x2
þ 1

k
g x; tð Þ ¼ 1

a
@T

@t
; x in domainR ð9Þ

ki
@T

@ni

����xi þ hi T xi � T1jð Þ ¼ fi tð Þ; i ¼ 1; 2 ð10Þ

T t¼0j ¼ F xð Þ ð11Þ

The boundary conditions represent several different

specific conditions at boundary i, as in the earlier

discussion of fins. Additional issues, not present in the

earlier discussion of fins, include: an initial condition;

boundary conditions that may be a function of time;

and, internal heating that may be a function of both

position and time.

The temperature solution, found by the method of

GF, has been discussed several times in the literature

[5,6], so at present the formal solution will simply be

stated without further discussion. If the GF is known,

the temperature solution is given by

Tðx; tÞ ¼ a
k

Z t

t¼0

dt
Z
xi

gðx0ÞGðx; tjx0; tÞdx0

ðenergy generationÞ

þ a
X2
i¼1

Z t

t¼0

dt
fi

ki
Gðx; tjx0i; tÞ

ðboundary of type 2 or 3Þ

� a
X2
i¼1

Z t

t¼0

dt fj
dG

dn0j

�����
x0¼xj

ðboundary of type 1 onlyÞ ð12Þ

Figure 2 Output of program TFIN for the tempera-

ture in a fin, case X10B1G0, showing an expression

for temperature, along with the associated differential

equation, heating conditions, and Green’s function.
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The GF required in Equation (12) satisfies:

@2G

@x2
þ 1

a
d x� x0ð Þd t � tð Þ ¼ 1

a
@G

@t
; x in domainR

ð13Þ

ki
@G

@ni

����xi þ hiG xij ¼ 0; i ¼ 1; 2 ð14Þ

G t¼0j ¼ 0: ð15Þ

Expressions for the specific GF, cases XIJ, are given in

several books (see for example Refs. [4] and [5]) and

are also available on the internet site called the Greens

Function Library [17].

Steady Cases X00, X20, X22

Special treatment is needed for steady heat transfer

in nonfin slab bodies designated X00, X20, and X22. In

these cases, the GF as defined by Equations (13�15)

does not exist. However a modified GF may be defined

by adding term 1/V to the differential equation where V

is the volume of the domain and by relaxing the

condition that the GF must vanish at infinity (see for

example [3]). The modified GFmay then be used in the

temperature solution Equation (12), with additional

constraints, as follows: the input heat to the body must

satisfy an energy balance; and, the resulting tempera-

ture is unique only up to an additive constant.

Physically, these constraints arise because in these

geometries there is no global ‘‘heat sink’’ to which

introduced heat can flow (there are no type 1 or 3

boundaries present). An additive constant is allowed

because at physical boundaries only the derivative of

temperature is specified, not the temperature itself.

These constraints do not apply to fins for which the

side-heat losses provide a heat sink.

Program TSLAB

In this section, a computer program is described for

transient heat conduction in bodies of uniform cross

section. Steady heat transfer is also included along

with the special cases discussed above. Program

TSLAB is similar in operation to that of program

TFIN, with additional choices appropriate for the

possibility of transient heat transfer, including: initial

condition; time-varying boundary conditions; and,

time-varying energy generation. Next an example for

program TSLAB is given.

Consider a slab body, initially at uniform

temperature T0 suddenly heated at x¼ 0 by heat flux

q1 and cooled at x¼ L by convection to a fluid at

temperature T1. The GF number for this case is X23,

and the heat transfer number is X23B11T1. To save

space, the input display for program TSLAB is not

shown, however it is quite similar to that for TFIN

with the additional choice of steady or transient heat

transfer. The output display of program TSLAB for

heat transfer number X23B11T1 is shown in Figure 3.

The boundary value problem for temperature is given,

followed by an integral expression for the temperature

and a series expression for GX23.

OPEN-SOURCE SOFTWARE

Programs TFIN and TSLAB produce output in LaTeX

format. LaTeX is the typesetting standard for the

AmericanMathematical Society, and it is available for

free for a variety of computer operating systems.

LaTeX was also used because the GF were already

available in this format in the GF Library [17].

Programs TFIN and TSLAB were written in Perl with

graphics library Tk. Perl was chosen both for its

strength with string manipulation and because it is an

open-source language.

An open-source language was specifically chosen

for this project because it will run on a variety of

computer operating systems and supporting software

needed by the user is available at low (or zero) cost.

Figure 3 Output from program TSLAB for tempera-

ture as it appears on a Windows computer for case

X23B11T1G0.
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Cost is particularly important to students and

educators. Open-source software was also chosen, in

part, to avoid putting too much ‘‘stock’’ into a single

software company. The author intends to develop

additional programs in the coming years, perhaps in

the coming decades, and to invest time and effort in

software that depends upon the financial health of a

single software company is risky. Just as a financial

portfolio should be diversified to reduce risk, open-

source software is supported by a diverse community

of users and software developers that are independent

of any single software company.

Open-source code is not for everyone, however.

Programs written in an interpreted language such as

Perl/Tk generally must be distributed as source code,

not as a compiled binary. Since anyone can look at the

source code, the intellectual property is ‘‘given away’’

with the program, and generally such code does not

produce royalties.

Programs TFIN and TSLAB are distributed as

free software. The programs are copyrighted by the

author and distributed under the GNU General Public

License, with the intention that the programs will

remain available for re-distribution and/or modifica-

tion by anyone in the hope that it will be useful, but

without any warranty whatsoever [19].

MATH STANDARDS FOR COMPUTERS

Several educators, upon seeing programs TFIN and

TSLAB, have asked if a version exists in their favorite

symbolic software such as Maple, Mathematica, etc.

The answer is no, as the author has chosen open-

source software as discussed above. However, anyone

is free to alter programs TFIN and TSLAB, under the

General Public License, to add a ‘‘translation

module’’ to port the output into a symbolic program.

This would produce a narrow application tailored to a

single symbolic program. A broader solution would

be possible if there were a standard syntax for math

that all symbolic math programs could use. Although

typsetting standard LaTeX is useful for display of

math, what is needed is a standard syntax for math

content. As the world wide web has become a potent

force for cross-platform software development, the

future of math and computers probably lies with web

browsers.

In February 2001 version 2.0 of MathML, which

stands for mathematics markup language, was

announced as a recommendation by the World Wide

Web Consortium [20]. MathML is likely to evolve

into a widely accepted standard for display of math

and for encoding math content on the world wide web

[21]. The latest version of several web browsers

already support some aspects of MathML, but more

development is needed. For example, MathML is too

verbose for people to write directly (except for the

simplest expressions), so that authoring tools will also

be needed before MathML can be widely used.

Several authoring tools are under development or

are in beta testing [22].

The author’s hope is that MathML translation

software will soon be developed to convert LaTeX

into MathML, and that many symbolic manipulation

programs will soon accept MathML as an option for

importing data. How soon will this be possible? Early

versions of LaTeX to MathML translation tools for

math display are already under development by the

open-source community. A few proprietary conver-

sion tools already exist as browser plug-ins that

produce MathML output. Several companies that sell

symbolic manipulation programs are publically com-

mitted to support of MathML in their products, and

some math programs currently support MathML

output for display in a web browser. However, the

‘‘import’’ of MathML into symbolic math programs

may have to wait for additional development of the

MathML standard for math content.

CONCLUSION

Exact solutions will always play a role in engineering

practice for checking purposes and for precisely

quantifying the accuracy of fully numeric codes.

Students need to develop a balanced understanding of

the uses of both analytic and numeric methods. In this

paper, the GF method is discussed for fins and one-

dimensional slab bodies, material usually taught in an

undergraduate heat transfer course. Computer pro-

grams TFIN and TSLAB are intended to expose

students to the breadth of conditions that may be

treated analytically in the hope that they will be better

informed on the use of both analytic and numerical

methods.
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APPENDIX: GF SOLUTION FOR FINS

In this appendix, the temperature solution in fins is

derived with the GF method. The derivation begins
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with the reciprocity relation applied to the differential

equation for the GF:

d2G

dx02
� m2G� d x0 � xð Þ ¼ 0; ð16Þ

The next step is to rewrite the temperature

equation with a simple change of variables x! x0

and let y ¼ Tðx0Þ � T1 to give:

d2y
dx02

� m2yþ 1

k
g x0ð Þ ¼ 0; ð17Þ

Multiply Equation (16) by y and multiply

Equation (17) by G and subtract, the result is:

G
d2y
dx02

� y
d2G

dx02
� Gm2yþ ym2G

þ 1

k
g x0ð ÞG� yd x0 � xð Þ ¼ 0; ð18Þ

Note that the term involving m2 cancels. Now

integrate with respect to x0 over domain R and use

Table 1, property 3 of the Dirac delta function

(sometimes called the sifting property) to find:

T xð Þ � T1 ¼
Z
R

G
d2y
dx02

� y
d2G

dx02

� �
dx0

þ 1

k

Z
R

g x0ð ÞG x0 xjð Þdx0; ð19Þ

The second term is the contribution to the tem-

perature from the energy generation in the form of a

superposition integral over the domain. The first inte-

gral term in the above equation will now be simplified.

Consider just the first integral term from Equation (19)

and perform integration by parts (in two- or three-

dimensional bodies Green’s theorem is needed):

Z x2

x0¼x1

G
d2y
dx02

� y
d2G

dx02

� �
dx0

¼ G
dy
dx0

� y
dG

dx0

� �x2
x0¼x1

�
Z x2

x0¼x1

dy
dx0

dG

dx0
� dG

dx0
dy
dx0

� �
dx0

ð20Þ

For the moment, domain R has been replaced by

domain (x1, x2) so that two boundaries can be

discussed. Later, notation to include semi-infinite and

infinite domains will be re-introduced. In the equation

above, the term in brackets is evaluated at the

boundaries and the remaining integral term is zero.

The boundary terms in the above expression can

now be simplified with the boundary conditions for G

and y, however, the type of boundary condition

influences the form of the solution. For boundary

conditions of type 2 or 3, the boundary conditions

given by Equations (2) and (4) may be written:

dy
dni

����xi ¼ � hi

ki
y xið Þ þ fi

ki
; i ¼ 1; 2 ð21Þ

dG

dni

����xi ¼ � hi

ki
G; i ¼ 1; 2 ð22Þ

Now the notation for the outward-normal direc-

tion in the boundary conditions finds its use. Replace

the above boundary conditions into Equation (20), and

remember that there is a sign change at x0 ¼ x1 where

d=dn01 ¼ �d=dx0:

G
dy
dx0

� y
dG

dx0

� �x2
x0¼x1

¼ G � h2

k2
yþ f2

k2

� �
� y � h2

k2
G

� �

� G
h1

k1
y� f1

k1

� �
� y

h1

k1
G

� �� �

¼
X2
i¼1

hi

ki
G ð23Þ

Note that all terms containing y have canceled, and

that the two remaining boundary terms have been

combined together into a single sum representing the

effect on temperature of boundaries of type 2 or 3.

For boundary conditions of type 1 the boundaries

must be treated differently. G0 back to Equation (20)

and use the fact that on type 1 boundaries G¼ 0 and

y¼ fj, j¼ 1, 2, so that

G
dy
dx0

� y
dG

dx0

� �x2
x0¼x1

¼ �
X2
j¼1

fi
@G

@n0j
ð24Þ

Here the outward normal, nj, is used to determine the

sign of the boundary terms.

Now the temperature expression can be

assembled into a general form by combining Eqs.

(19), (23), and (24) to give:

TðxÞ � T1 ¼ 1

k

Z
gðx0ÞGðxjx0Þdx0

ðfor energy generationÞ

þ
X2
i¼1

fi

ki
Gðxjx0iÞ

ðfor boundary of type 2 or 3Þ

�
X2
i¼1

fj
dG

dn0j

�����
x0¼xj

ðfor boundary of type 1 onlyÞ ð25Þ

This is the GF solution for fins stated earlier in Eq. (5).
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