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Abstract In this paper, a nonlinear inverse boundary value
problem associated to the biharmonic equation is investi-
gated. This problem consists of determining an unknown
boundary portion of a solution domain by using additional
data on the remaining known part of the boundary. The
method of fundamental solutions (MFS), in combination with
the Tikhonov zeroth order regularization technique, are
employed. It is shown that the MFS regularization numerical
technique produces a stable and accurate numerical solution
for an optimal choice of the regularization parameter.
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1 Introduction

The problem of determining an unknown sub-boundary y C
9 of a two-dimensional domain Q C R? is important in
many engineering applications, such as a nondestructive eval-
uation of the material loss caused by corrosion. An example
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of such an application is the problem of detection of corrosion
of complex metallic assemblies in aircraft structures. Clearly,
this detection of corrosion has both economic and safe impli-
cations, as an early detection of corrosion extends the life of
the aircraft structure considerably.

In this paper, we develop a numerical method to determine
material loss on an inaccessible, or partially inaccessible,
portion y of the boundary 92 of a material that occupies
an open bounded domain € C R? in which the biharmonic
equation V*y = 0 holds. The underlying idea is that we
measure the solution ¥ and its the normal derivative /’,
and the Laplacian of the solution V2 = w and its normal
derivative (Vzw), = o on the remaining accessible part of
the boundary I' = Q2 — y, where the prime ’ denotes the
outward normal derivative. Then we would like to recover
the unknown boundary y, if it exists. On this inaccessible
boundary portion y, the solution v is also known. The local
existence and uniqueness of such a boundary stems from
the existence and uniqueness of the solution of the Cauchy
problem for elliptic equations. If one knows the Cauchy data
for an elliptic equation then the solution of the equation is
uniquely determined [23]. However, the problem is still ill-
posed since its solution, if it exists, is not stable under small
input data perturbations.

Prior to this study, Lesnic et al. [16] and Marin [17],
respectively, proposed a numerical technique to solve inverse
Laplace and Helmholtz boundary determination problems in
potential corrosion damage. They discretised the problem
using the boundary element method (BEM) and solved the
resulting nonlinear algebraic equations by minimizing the
Tikhonov regularized function. Here, we use the method of
fundamental solutions (MFS) to discretise the biharmonic
boundary detection problem and generate an equivalent sys-
tem of nonlinear algebraic equations, by generalizing the
approach of [20] for potential (harmonic) corrosion damage.
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The problem of solving these equations is then reformulated
as an unconstrained minimization problem. Since the original
problem is ill-posed, the un-regularized minimization proce-
dure produces an unstable and inaccurate numerical solution
for the unknown part of the boundary. Therefore, we use the
Tikhonov regularization technique to produce an accurate
and stable numerical solution.

Both the BEM and the MFS are based on the fundamental
solutions of the governing equations being explicitly avail-
able and their solution methodologies do not depend upon
the interior discretization of computational regions. How-
ever, unlike the presence of singular integrals in the BEM, the
basic idea of MFS is to decompose the solution of the govern-
ing equations by superposition of fundamental solutions with
proper intensities. Therefore, the original problem reduces
to finding the unknown constant coefficients that multiply
the fundamental solutions and the coordinates of the source
points such that the approximations satisfy as well as possible
the given boundary conditions. Moreover, the MFS locates
the source points outside the computational domain. Then,
no special treatment of the singularities in the fundamental
solutions is required. Hence, the MFS is considered to be a
meshless technique that encompasses all the advantages of
the boundary methods such as the BEM. One controversial
issue regarding the MFS is the location of the source points.
However, this problem can be overcome by employing a non-
linear least-squares minimization procedure. Alternatively,
the source points can be prescribed a priori and the post-
processing analysis of the errors can indicate their optimal
location [2,9,18].

The MFS was first proposed by Kurpradze and Aleksidze
[15] and its numerical formulation first given by Mathon and
Johnston [19]. Since then, the MFS has been successfully
used in numerical solutions of the Poisson equation [3,8],
diffusion equation [4,27], Helmholtz equation [11,28], bihar-
monic equation [12-14,22], and Stokes equations [29-31].
The MFS has also been effectively used for solving inverse
problems in which some of the ingredients necessary to solve
a direct problem are missing, see, e.g. [5,18]. For further
details on the MFS the reader is referred to [6,7] and the
references therein.

The aim of this paper is to extend the range of applica-
tions of the MFS to solve inverse biharmonic boundary detec-
tion problems. With this motivation, in Sect. 2 we present
the mathematical formulation of the problem. In Sect. 3 we
discretise the problem by using the MFS and obtain a sys-
tem of nonlinear algebraic equations. In Sect. 4, we present
some numerical experiments and discuss the results which
are stabilized by using a zeroth-order Tikhonov regulariza-
tion method. Finally, concluding remarks are presented in
Sect. 5.
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2 Mathematical formulation

The inverse problem we consider consists of the biharmonic
equation and the boundary specification of the solution yr and
its normal derivative 1#/, and the Laplacian of the solution
V%Y = w and its normal derivative (V21ﬂ)/ = . We can
mathematically state this as follows:

VA (x) =0, XeQ, )
Y(X) = o(x), ¥ X =xx), xeT, 2)
wX) =E(X), o (X =¢(x), xel. A3)

where I' = 92 — y. Then we would like to find the unknown
boundary y C 92 from the given Cauchy data (2) and (3)
and

Y (x) =10(x),

where ¥ is a given function on y . In this mathematical model,
the functions v and w may represent the streamfunction and
vorticity in two-dimensional Stokes flows or the deflection
and bending moment of a plate in elasticity. Usually, ¢ = 0
in (4), and in this case one needs to determine a perfectly
conductive boundary crack y. Also, instead of prescribing
on y as in (4), we could prescribe the normal derivative w/
on y with no major modifications of the analysis.

In general, a solution to the problem (1)—(4) will not exist
if the data ¢, x, &, ¢ and @ are prescribed arbitrarily. Certain
compatibility conditions need to be satisfied by these data in
order to ensure that a solution exists [24]. Further, as men-
tioned in Sect. 1, the uniqueness of the boundary y follows
from the uniqueness of the solution to the Cauchy problem for
elliptic equations [23]. However, due to the mathematically
ill-posed nature of the inverse problem given by Egs. (1)—(4),
the stability of the numerical solution for the unknown bound-
ary y becomes an important issue that is to be addressed in
the following sections.

X€Ey, 4)

3 The method of fundamental solutions

The fundamental solutions G (x, y) and W (X, y) of the two-
dimensional biharmonic and Laplace’s equations are given
by [12],

W, y) =Inrx,y), ()

respectively, where r(x,y) =|x —y| denotes the distance
between the points x and y. The MFS approximates the solu-
tion ¥ (x) of the biharmonic equation (1) by a linear com-
bination of the fundamental solutions G(x,y) and W(x,y)
with respect to the source points y/ € R2—Q, j =1, M, i.e.,

G(x,y) = r*(x,y) Inr(x,y),
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M

Y0 = (e, d Y0 =3 [¢;Gxy) +d;Wx ¥ ],
=1

xeQ, (6)

where ¢ = [c1,¢2, ..., cpy]l, d =[di, da, ..., dy] are vec-

tors of constant coefficients and Y is a vector with 2M com-
ponents consisting of the two-dimensional coordinates of the
M source points y/ . Accordingly, the boundary values of w,,
wand @ can be approximated as follows:

P = [v¥ed Y0

I
Ms g«

[c,G x.y) +djW (x, y’)] x €3, (7)

~.
I
-

wx) = ViyM(ce, d, Y, x)
M
Doy, xe€dQ, ()

j=1

wM(c, d Y, x) =

9 Moo,
—[o"@d Y.0] =X 0y,

o (X) =
3 P

X € 92, ©))

where Gl, W/, 0O and Q/ are given by

/ il
Gy =12+ Irxy) o P,

xe€dQ, yeR?-Q, (10
, 11 3 [,
W x,y) = Em a—n{” (Xv)’)},

xe€dQ, yeR>-Q, (11)

Ox,y) =4{1 +Inr(x,y)},
Xxe€dQ, yeR>-Q, (12)

0'(x )—[ . ] " ).
R P '
xe€dQ, yeR?—Q. (13)

We choose N = N1+ N3 collocation points x,i=1,N,
on the boundary 9€2 such that N; points belong to the known
boundary I" on which the over-specified boundary conditions
(2) and (3) are prescribed, and N; points are on the unknown
boundary y.

The problem defined by (1)—(4) now reduces to solving
a system of 4N| + N, algebraic equations in 2M + 2N,

unknowns

G/(xi., yf') W/(Xi; yf:)
Gx,y)W,y) cj
oxi,y/) 0 d;
o'y 0

AX) =

=: b, (14)

l
£x'), i=1,N;
c(xh), i =

where j = 1, M and the repeated index j in the left hand side
of Eq. (14) is assumed to be summed over. In the right-hand
side of (14), ¥ (x') = ¢(x') fori = 1, N, and ¢ (x') =
9 (x}) fori = (N + 1), N.

Since N, points x' fori = (N + 1), N lie on the unknown
boundary y, the coefficient matrix A has entries which are
dependent upon the unknown coordinates of the points on
the boundary portion y. Thus the expression (14) represents
a system of nonlinear algebraic equations, whose solution
vector X is defined by the components of vectors ¢ and d
and the coordinates of points on the boundary portion y, see
also Eq. (15). We point out that due to the ill-posed nature
of the inverse problem given by Egs. (1)—(4), the application
of any un-regularized method for the solution of this system
of algebraic equations would produce an unstable numerical
solution.

4 Numerical results and discussion

We consider the case when the unknown boundary y is the
graph of an unknown Lipschitz function y : [-r,r] — R,
with the x-axis passing through the end points (—r, 0) and
(r, 0) of y and fixing the origin at x = 0. In this case, the x-
coordinates x{vlﬂ, val +2, e x{v of the collocation points
xMiH xNi+2 - xN on y are known. Then the solution
vector X of the system of Eq. (14) depends only upon the
vectors ¢, d and the y-coordinates of the collocation points
on the unknown boundary y, i.e.,

Ni+1
cm,di,da, .. dy, Xy e

Lx, (15)

where x} = y(x}), i = (N; + 1), N.

In order to stabilize the problem, we solve the system
of Eq. (14) as an unconstrained optimization problem that
consists of minimizing the zeroth-order Tikhonov function

X =|cy,c2,...,

Ni+2
x5

FX) = [AX) —b|* + 4 1X)12, (16)

where A > 0 is a regularization parameter to be prescribed
and b® = b + & represents the vector b contaminated by
random noise §. The minimization of (16) imposes 4N+ N»
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equations with 2M + N, unknowns, and for a unique solution
we require 2N > M.

When & = 0, Eq. (16) becomes the classical nonlinear
least-squares function whose minimized solution is unstable
since the inverse problem under investigation is ill-posed.
The choice of the regularization parameter A in the func-
tional (16) is crucial for the stability and accuracy of the
solution procedure. Various methods have been proposed in
the literatures for the choice of this parameter. Among these
methods are the discrepancy principle [21] and the L-curve
criterion [10]. The L-curve method has been popular for the
selection of the regularization parameter, and this works well
in many cases. However, in our nonlinear inverse problem we
could not obtain an L-curve for the graph of |A(X) — b?||
versus || X|| for various values of A, and this is in agreement
with the theoretical results of [26]. Furthermore, the theoret-
ical remarks of [1] show that any heuristic approach which
does not assume any a priori knowledge about the amount
of noise ||§]|, such as the L-curve method, is not generally
convergent. Therefore, we use the discrepancy principle for a
rigorous choice of the regularization parameter A. This prin-
ciple consists of plotting the residual norm || A(X) —b®|, as a
function of the regularization parameter A. Then the regular-
ization parameter is chosen as the one for which the residual
curve intersects the horizontal line y = ||§||. Note that the
amount of noise ||8]| is required to be known in advance. In
order to further justify this choice, we define the accuracy
error E as follows:

N , 1/2
E — z I:(xé')(exact) _ (xé)()\):l (17)

i=Nj+1

and solve the problem for a wide range of positive values of
A In (17), (x5)©2Y and (x})™* are the exact and numerical
values, respectively, of the y-coordinates of the boundary y
represented by the graph of the function y. We can then plot
the objective function F, given by (16) and the accuracy error
E, given by (17), as functions of the regularization parameter
A. Then we expect that the optimal choice of A returns the
smallest values of both F and E. Of course, in the absence of
an analytical solution for y available, the error E cannot be
calculated, but it is included herein in order to further justify
the optimal choice of the regularization parameter A given
by the discrepancy principle, as it will be illustrated later on
in Figs. 6, 7 and 8.

The minimization of the objective functional (16) is per-
formed by using the NAG Fortran library routine EO4FCF.
This is a comprehensive algorithm for finding an uncon-
strained minimum of a sum of squares which does not require
any derivatives of the objective function to be supplied by
the user, these being calculated internally by the routine
during the minimization process. The routine uses a com-
bined Gauss-Newton and modified Newton algorithm for this
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purpose. Further, the routine requires an initial guess to be
prescribed, which in this investigation is taken to be 1.0 for
the components of the vectors ¢ and d, and 0.0 for the y-
coordinates (xé)i:m of the collocation points on the
unknown boundary y .

In order to illustrate the proposed numerical technique, we
assume that, initially, an undamaged material inserted into
an engineering environment occupies a circular domain of
radius 1 centered at the origin, namely 29 = {(x1, x2)| x% +
x% < 1}. This material subsequently becomes corroded and
degenerates into the damaged material occupying a domain
2. We further assume that the upper semicircular part remains
undamaged and it represents the region whose boundary is
given by I' = {(x1, x2)| x12 + x% = 1, xp > 0}. The part of
the boundary that becomes corroded is givenby y = Q2 —T.
This part of the boundary is unknown, but it remains within
the initial configuration of ¢. Thus the end points of the
corroded and unknown boundary y are given by (—1, 0) and
1,0),ie.,r =1.

The analytical solution which satisfies the biharmonic
equation (1) is taken as ¥ (x1, x2) = x13 + x% and the input
boundary data (2)—(4) are generated from this solution.

We choose the same numbers of boundary points on the
boundary portions I and y, i.e., Ny = N> = N/2. It was
found, through extensive experimentation, that the choice
M = 40 source points and N = 62 (for Example 1) and
N = 72 (for Example 2) collocation points gave satisfac-
torily accurate results. Therefore, this choice was fixed for
performing numerical calculations in the inverse boundary
detection problem. Further, the M = 40 source points were
distributed uniformly on a circle around the fixed unit circle
domain 29 at a constant distance 1 away fromit, i.e., on a cir-
cle of radius 2. Of course, itis well-known that the accuracy of
the MFS depends on the choice of the pseudo-boundary 9’
enclosing the solution domain 2 on which the sources are
distributed. However, treating the distance between 92" and
0€2 as an additional parameter to be optimized [25], would
complicate even further the difficult inverse and ill-posed
problem under investigation and therefore, this analysis is
deferred to a future work.

Example 1 First we consider the following simple choice of
the exact target for the unknown boundary portion y:

y ={(x, x| x>+ x% =1, x2 <0}. (18)

In Fig. 1 we plot the minimum values of the objective
function (16), minimized by the NAG routine EO4FCF, as
a function of the regularization parameter A, when no noise
is introduced in the input boundary data (2) and the exact
solution for the unknown boundary y is given by Eq. (18).
From this figure it can be observed that the objective function
reaches the smallest value for A = 107, Therefore, we select
this as an optimal choice for the regularization parameter,
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Fig. 1 The minimum values of the objective function F, for various
values of the regularization parameter A, when no noise is introduced
in the input boundary data

10° -

Fig. 2 The accuracy error E, for various values of the regularization
parameter A, when no noise is introduced in the input boundary data

ie., Aopt ~ 107°. In order to analyze the accuracy of the
numerical results for this choice of A we present, in Fig. 2,
the accuracy error E, given by (17), as a function of the
regularization parameter A. From this figure we observe that
the smallest value of E also occurs for A ~ 1076,

In order to illustrate the speed of convergence of the
optimization procedure we present in Fig. 3 the monotonic
decrease of the objective function (16), as a function of the
number of iterations for A = 10~°. From this figure it can
be observed that the objective function decreases quickly in
the first ten iterations after which a minimum value of order
10~ is reached.

10 =

o
o
|

o

Objective function
IS
]

o
o
N
|

10 T T | I —
1 2 4 6 8 10

Number of iterations

Fig. 3 The convergence of the objective function F, as a function
of the number of iterations, when no noise is introduced in the input
boundary data and the regularization parameter is fixed at the optimal
choice Aopt = 10~

-0.4 — —&——  Analytical

—e— )\ =10°

-0.6

-0.8

Fig. 4 The boundary y obtained numerically in comparison with the
exact target (18), when no noise is introduced in the input boundary
data

Figure 4 shows the boundary y numerically obtained by
using the regularization parameter A = Aqp = 107%, when
no noise is introduced in the input boundary data, in compar-
ison with its exact target given by Eq. (18). From this figure
it can be observed that the numerical results are stable and
their agreement with the exact solution is excellent.

In order to further analyze the optimal choice of the regu-
larization parameter, we present in Fig. 5 the numerical solu-
tion for the unknown boundary y for various values of the
regularization parameter A € {10_8, 1077,107°,5 x 10_6}
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— Analytical
—————— A=1.0x10%
—---— A=10Xx107

—6— A=1.0X107°

—— A\=5.0Xx10"

Fig. 5 The boundary y obtained numerically, for various values of
the regularization parameter A € {10_8, 1077,107°,5 x 10‘6}, when
no noise is introduced in the input boundary data

selected in close vicinity of the optimal choice Aqpy = 1070,
when no noise is present in the input boundary data. The exact
solution for the unknown boundary y given by Eq. (18) is
also included in the figure. From this figure it can be observed
that the numerical solution for the unknown boundary y is
unstable and largely inaccurate for A = 1078, The solution
becomes stable and reasonably accurate for A = 10~7. More-
over, excellent agreement of the numerical solution with the
exact solution is observed for A = 107°, see also Fig. 4.
The solution retains its stable nature for A = 5 x 107% with
slightly increased inaccuracy. Therefore, we conclude that
the numerical solution for the unknown boundary y is sta-
ble and accurate if the regularization parameter X is chosen
according to the discrepancy principle. Otherwise, if A is
chosen too large the numerical solution becomes inaccurate,
whilstif X is chosen too small the numerical solution becomes
unstable.

Next, in order to simulate the errors inherently present
in any practical measurement, we perturb the data ¢ in (2)
with random noise & such that ¢ = ¢ + 8. We generate
this noise é by using the NAG routine GOSDDF with mean
zero and standard deviation o = ﬁ X maxr || and choose
p € {1, 3, 5} to test stability of the solution when 1, 3 and
5% noises are introduced in the function ¢.

Figure 6 shows the minimum values of the objective func-
tional (16), minimized by the NAG routine EO4FCF, as a
function of the regularization parameter A, when p% = 1, 3
and 5% random noises are introduced in the function ¢. From
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Fig. 6 The minimum values of the objective function F, for various
values of the regularization parameter A, when 1, 3 and 5% noises are
introduced in the input data ¢
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Fig. 7 The norms of the residuals ||A(X) — b® ||, for various values of
the regularization parameter A, when 1, 3 and 5% noises ||8|| (horizontal
lines) are introduced in the input data ¢

this figure, we observe that for p% = 1% the smallest value
of the objective function is obtained for A = 10~°, approxi-
mately. Figure 6 also illustrates that the value of the objective
function is the smallest for A = 103, when 3 and 5% noises
are introduced in the function ¢.

In order to use the discrepancy principle for the selec-
tion of Aqp¢, we present in Fig. 7 the norms of the residuals
|[AX — b ||, for various values of the regularization parame-
ter A, when 1, 3 and 5% noises ||§| are introduced in the
input data ¢. From Fig. 7, we can identify two values for the
optimal choice of the regularization parameter when ¢ con-
tains 1% random noise. These optimal values are 1 = 107°
and 1073, However, as it can be observed from Fig. 6, the
minimum value of the objective functional is the smallest for
A = 107, Therefore, we choose this as an optimal value of
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Fig. 8 The accuracy error E, for various values of the regularization
parameter A, when 1, 3 and 5% noises are introduced in the input data ¢

Objective function

T T 1 1 T
1 2 4 6 8 10 20

Number of iterations

Fig. 9 The convergence of the objective function F, as a function of
the number iterations, when 1, 3 and 5% noises are introduced in the
input data ¢ and the regularization parameter is fixed at the optimal
choice Aopt

the parameter A when p = 1. Similarly, using Figs. 6 and 7
we choose Aopt = 1073 when the data @ contains 3 and 5%
noises.

As before, in the no noise case, the optimal choice of the
regularization parameter, when the input data ¢ contains 1, 3
and 5% noises, is further justified by presenting in Fig. 8, the
accuracy error E, as a function of A. From this figure it can be
seen that the smallest value of the accuracy error E occurs at
the same value of A = Aqp as that given by the discrepancy
principle shown in Fig. 7.

Figure 9 shows the objective function (16), as a function
of the number of iterations for various p € {1, 3, 5} and the
regularization parameter A fixed at its optimal choice given by

Analytical

Fig. 10 The boundary y numerically obtained in comparison with
the exact target y given by Eq. (18), when 1, 3 and 5% noises are
introduced in the input data ¢ and the regularization parameter is fixed
at the optimal choice Agpt

Figs. 6 and 7. From this figure it can be seen that the objective
functional decreases very quickly and approaches its smallest
value after a small number of iterations; in fact less than
25. This shows high efficiency of the proposed optimization
technique.

Figure 10 shows the boundary y numerically obtained
for A = Aopt in comparison with its exact target given by
Eq. (18), when the input data ¢ is corrupted by 1, 3 and
5% random noise. From this figure we observe that, for all
levels of noise, the numerically retrieved solution is stable
and consistent with the amount of noise introduced in the
input data ¢. Moreover, the numerical solution converges to
the exact solution as the amount of noise decreases to zero.

Example 2 We now consider the retrieval of a complicated
boundary that changes its concavity. This consists of the
union of the three boundary portions y1, y» and y3, i.e.,

3
V=U)/i,

(19)
i=1
where y1, y»2 and y3 are given by
yi={(x1,x2)| (1 = 1/3)* +x3 = 1/9, x2 <0}, (20)
y2 = {(x1. x| xf +x3 = 1/9, x2 > 0}, 1)
y3 = {1, 00)] (1 +1/3) +x3 = 1/9, x2 <0} (22)

Using the scheme detailed in the previous example, we
choose Aqpt = 107°, 10~ and 3 x 10~%, when the data @ is
perturbed by 0, 3 and 5% random noises. Figure 11 shows
the numerical solution for the unknown boundary y for these
optimal values of the regularization parameter. Also included
in this figure is the corresponding exact solution (19)—(22) of
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Analytical

O p=0.0

Fig. 11 The boundary y numerically obtained in comparison with the
exact target y given by Egs. (19)—(22), when 0, 3 and 5% noises are
introduced in the input data ¢

the boundary portion y. From this figure it can be seen that
the numerical solution remains stable and consistent with
the amount of noise included in the input data ¢. Further,
the solution converges to the exact solution as the amount of
noise decreases to zero.

5 Conclusions

A nonlinear inverse problem associated to the biharmonic
equation has been investigated numerically using the method
of fundamental solutions (MFES). This problem requires the
determination of an unknown boundary portion of a solution
domain from additional Cauchy data on the remaining part
of the boundary. The problem of solving the resulting system
of nonlinear equations was reformulated as an optimization
problem that minimizes the norm of the least-squares resid-
ual. It was found that this minimization procedure produces
an inaccurate and unstable numerical solution when regu-
larization is not included. Therefore, the Tikhonov zeroth-
order regularization was included in the proposed numerical
algorithm to overcome this difficulty. The regularized MFS
numerical algorithm, with an optimal choice of the regu-
larization parameter based on the discrepancy principle, pro-
duces an accurate numerical solution for the unknown bound-
ary that is stable under small changes in the input boundary
data.
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