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Abstract In this work, an efficient, flexible, accurate and
stable algorithm to numerically model interacting acoustic–
elastodynamic sub-domains is described. Stabilized time-
domain boundary element techniques are considered to
discretize each sub-domain of the model and proper nume-
rical expressions on acoustic–elastodynamic interfaces are
presented. Moreover, stabilized iterative coupling procedures
are adopted and different time and space sub-domain discreti-
zations are allowed, improving the robustness and
versatility of the methodology. At the end of the paper, nume-
rical results are presented, illustrating the potentialities of the
proposed formulation.

Keywords Time-domain BEM · Iterative BEM–BEM
coupling · Acoustics · Elastodynamics · Stabilized
formulations · Fluid–solid interaction

1 Introduction

Time-domain numerical modelling of wave propagation
in highly heterogeneous media requires robust simulation
algorithms in order to preserve accuracy, efficiency and
stability.

In a Finite Difference Method (FDM) context, Lombard
and Piraux [1] list the following main reasons for low confi-
dence results in a situation where there is discontinuity of
physical properties: spurious diffractions occur due to the
stair-step representation of arbitrarily shaped interfaces [2];
reduction of the convergence order due to the non-smoothness
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of the solution across the interfaces, leading to numerical
instabilities even for low contrast physical parameters [3]; the
jump conditions and the boundary conditions are not incor-
porated in the schemes, so that the conversion, refraction and
diffraction wave phenomena are not correctly described [4],
etc.

In addition to the aforementioned difficulties introduced
by interfaces, efficiency is another issue that must be dealt
with properly. Accuracy and stability may restrict the time-
step size to small values, adequate to sub-domains with high
wave propagation velocities; in this case, efficiency will be
quite poor. This difficulty can be overcome in the case of hete-
rogeneous media by subcycling techniques [5–8], etc., which
allow adopting different time-steps for pre-established sub-
domains; one such technique is discussed here. In a Boundary
Element Method (BEM) context, this situation is even more
critical [9]: if small time-step sizes are selected, instabilities
may probably occur, and for large time-step sizes, numerical
damping is introduced, damaging the accuracy of the ana-
lyses.

Stability and accuracy of time-domain BEM algorithms
for wave propagation analysis have been the topic of some
published papers and refined approaches are now available
[10–23]. In the approach developed by Frangi [12], space
and time shape functions are not independent as in standard
time-domain BEM approaches. Rather, a modified space–
time approximation, which represents more accurately the
causality of the phenomenon, is employed. Yu et al. [15,
19] achieved more stable time-domain BEM algorithms by
introducing, respectively, extra time and space (Galerkin
approach) weighting integrals. Three other quite simple and
effective schemes presently available are the linear θ method
[16–18], the ε scheme and the half-step scheme [10,21].
Many other stabilization schemes can be found in the lite-
rature; some are more complex than those mentioned above
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(see [20,22], etc.) or are dedicated to minimize one specific
source of instability [13,14]. Recently, an efficient and easy
to implement stabilized BE formulation was presented by
Soares Jr and Mansur [23]. This formulation modifies the
BEM time-convolution process, improving the stability and
artificial energy dissipation of the method. This procedure is
employed here, collaborating to the development of a robust
final acoustic–elastodynamic coupling algorithm.

As is well known, stability and accuracy are essential
characteristics of any numerical method which is not to be
restricted to research topics only. In addition, if a numeri-
cal method is to be used by engineers involved in design
work, computational efficiency is another required charac-
teristic. Computational efficiency of time-domain BEM for
wave propagation analysis has been the subject of research
work for the last decades. Truncation strategies were stu-
died in the 1980s, first by Demirel and Wang [24], and later
by Mansur and de Lima Silva [25], Soares Jr and Mansur
[26] and Carrer and Mansur [27]. Other developments to
improve efficiency have been presented by Tröndle and Antes
[28], reporting improvements concerning 3D applications,
and Tham and Chu [29], describing a parallel algorithm
applied to time-domain analyses. In the present work, nume-
rical techniques to truncate the BEM time-convolution pro-
cess are employed [23,26], improving the efficiency of the
coupled approach.

The idea of direct coupling BEM sub-domains by enfor-
cing equilibrium and compatibility of common interface
unknowns is reported in the very first BEM texts [30]. The
direct coupling idea was soon extended to couple the BEM
with other numerical methods, especially the Finite Element
Method (FEM), as reported by Zienkiewicz et al. [31] and
Brebbia and Georgiou [32], for static problems. Less than a
decade afterwards, direct coupling procedures started being
employed for many problems, including time-domain wave
propagation modelling.

Many algorithms have already been reported concerning
BEM–FEM direct coupling for time-domain wave propaga-
tion (acoustic, elastic, etc.) analysis [33–39]. In those
algorithms, boundary elements either played the rule of a
transmitting boundary or (less usual) modelled parts of the
domain most suitable to BEM modelling. A good transmit-
ting boundary is in fact a critical requirement in wave propa-
gation analyses of infinite domain problems, because when
waves are not properly transmitted to infinity, artificial reflec-
tions on the transmitting boundaries may very soon invalidate
results.

Most papers dealing with time-domain fluid–solid inter-
actions employ direct coupling to fulfil equilibrium and
compatibility conditions on BEM–BEM or BEM–FEM inter-
faces. Initial papers dealing with BEM–FEM/BEM–BEM
coupling for fluid–solid (acoustic–elastodynamic may be a
more adequate designation) interaction were concerned with

the establishment of a suitable direct coupling approach [35],
which could be extended to more complex cases, e.g.,
non-linear models [39]. More recently, publications concer-
ning stability started appearing, enabling the classical direct
coupling algorithms to be applied to more severe situations
[40,41]. Direct coupling for solid–solid interaction has also
been exhaustively studied, following guidelines similar to
those concerning fluid–solid interaction [33,34,38].

In recent years, iterative coupling algorithms have been
reported as a promising technique [42]: they may become
more accurate, stable, flexible and cheaper than direct cou-
pling procedures. The good performance reported in the lite-
rature by iterative coupling for time-independent problems
[43,44] encouraged researchers to work out procedures for
time-dependent problems. Only a few papers concerning this
subject have been published so far, most of them dedicated
to BEM–FEM coupling [45–48]. Taking into account time-
dependent BEM–BEM iterative coupling, most works are
focused on the coupling of boundary element formulations
based on transient (the so-called time-domain BEM [9]) and
non-transient (the so-called domain BEM [49]) fundamental
solutions [50–52]. This work focuses on the iterative cou-
pling of boundary element formulations, all based on tran-
sient fundamental solutions. As reported by Soares Jr [42],
iterative coupling approaches, besides usually being cheaper
than direct coupling algorithms, are quite robust. Therefore,
they should be preferred, especially where there are media
with quite different physical properties (of the same or dif-
ferent nature).

The present work is mainly concerned with the develop-
ment of robust and versatile boundary element techniques to
numerically model complex wave propagation phenomena,
extending the applicability and competitiveness of time-
domain boundary element methods. It is organized as follows:
in Sect. 2, basic acoustic and elastodynamic governing equa-
tions are presented, as well as interacting interface equations.
In the sequence, boundary element formulations are briefly
described and coupling procedures are discussed (Sects. 3
and 4, respectively). At the end of the paper (Sect. 5), nume-
rical results are presented, illustrating the potentialities of
the proposed formulation and the robustness of the develo-
ped final coupling algorithm.

2 Governing equations

In the present section, acoustic and elastic wave equations are
briefly presented. Each of these wave propagation models
is used to model different sub-domains of the global pro-
blem. At the end of the section, basic equations concerning
the coupling of acoustic and elastodynamic sub-domains are
described.
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2.1 Acoustic sub-domains

The scalar wave equation is given by

p, i i − p̈/c2 + s = 0 (1)

where p(X, t) stands for hydrodynamic pressure distribu-
tion, s(X, t) stands for body source terms and c is the wave
propagation velocity. Inferior commas (indicial notation is
adopted) and over dots indicate partial space (p, i = ∂p/∂xi )

and time ( ṗ = ∂p/∂t) derivatives, respectively. The boun-
dary and initial conditions for the problem are given by

(i) Boundary conditions (t ≥ 0, X ∈ � where � = �1 ∪
�2):

p(X, t) = p̄(X, t) for X ∈ �1 (2a)

q(X, t) = p, j (X, t) n j (X) = q̄(X, t) for X ∈ �2 (2b)

(ii) Initial conditions (t = 0, X ∈ �):

p(X, 0) = p̄0(X) (3a)

ṗ(X, 0) = ˙̄p0(X) (3b)

where the prescribed values are indicated by over bars and
q represents the flux along the boundary whose unit out-
ward normal vector components are represented by n j . The
boundary of the model is denoted by �(�1 ∪ �2 = � and
�1 ∩ �2 = 0) and the domain by �.

2.2 Elastic sub-domains

The elastic wave equation is given by
(

c2
d − c2

s

)
u j, j i + c2

s ui, j j − üi + si = 0 (4)

where ui (X, t) and si (X, t) stand for the displacement and
the body force distribution components, respectively. The
notation for time and space derivatives employed in Eq. (1)
is once again adopted. In Eq. (4), cd is the dilatational wave
velocity and cs is the shear wave velocity, they are given
by: c2

d = (γ + 2µ)/ρ and c2
s = µ/ρ, where ρ is the mass

density of the model and γ and µ are the Lamé’s constants.
The boundary and initial conditions for the elastodynamic
problem are given by

(i) Boundary conditions (t ≥ 0, X ∈ � where � = �1 ∪
�2):

ui (X, t) = ūi (X, t) for X ∈ �1 (5a)

τi (X, t) = σi j (X, t) n j (X) = τ̄i (X, t) for X ∈ �2 (5b)

(ii) Initial conditions (t = 0, X ∈ �):

ui (X, 0) = ūi0(X) (6a)

u̇i (X, 0) = ˙̄ui0(X) (6b)

where the prescribed values are indicated by over bars and
τi denotes the traction vector along the boundary (n j , as

indicated previously, stands for the components of the unit
outward normal vector and σi j stands for the components of
the stress tensor).

2.3 Acoustic–elastic interacting interfaces

On the acoustic–elastic interface boundaries, the elastic sub-
domain normal (normal to the interface) accelerations (üN )

are related to the acoustic sub-domain fluxes (q), and the
acoustic sub-domain hydrodynamic pressures (p) are rela-
ted to the elastic sub-domain normal tractions (τN ). These
relations are expressed by the following equations:

üN − (1/ρ) q = 0 (7a)

τN + p = 0 (7b)

where in Eqs. (7a, b) the sign of the different sub-domain
outward normal directions is taken into account (outward
normal vectors on the same interface point are opposite for
each sub-domain). In Eq. (7a), ρ is the mass density of the
interacting acoustic sub-domain medium.

3 Boundary element formulations

Once the basic governing equations are presented, the dis-
cretization of the different sub-domains of the model by
boundary element techniques is considered. The first BE for-
mulation focused here is for acoustics and, in Sect. 3.1, the
basic BE equations for the solution of acoustic fluids are
shown. In the sequence (Sect. 3.2), the BE formulation to
model elastodynamic solids is described. Finally, an efficient
BE stabilization procedure, applied to both acoustic and elas-
todynamic models, is presented in Sect. 3.3.

3.1 Acoustic formulation

The integral equation related to acoustic models is given by:

c(ξ)p(ξ, t) =
∫

�

t+∫

0

p∗(X, t; ξ, τ )q(X, τ ) dτ d�(X)

−
∫

�

t+∫

0

q∗(X, t; ξ, τ )p(X, τ ) dτ d�(X)

+ s(X, t; ξ, τ ) (8)

where c(ξ) depends on geometric aspects and the terms
p∗(X, t; ξ, τ ) and q∗(X, t; ξ, τ ) represent the fundamen-
tal potential (hydrodynamic pressure) and flux, respectively
(X is the field point and ξ is the source point; the distance
between X and ξ is given by r ). s(X, t; ξ, τ ) stands for pos-
sible domain integral contributions (initial conditions or/and
body forces).
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Taking into account the fundamental solutions of the pro-
blem, Eq. (8) can be re-written as follows:

c p =
∫

�

⎛
⎝

t+∫

0

L Hqdτ

⎞
⎠ d�

−
∫

�

(∂r/∂n)

⎛
⎝

t+∫
−
0

r L3 H p dτ

⎞
⎠ d� + s′ (9)

where H (scaled Heaviside function) and L are given by

H = c/(2π) H(c(t − τ) − r) (10a)

L = (c2(t − τ)2 − r2)−1/2 (10b)

and the symbol
∫− on the second term on the right-hand side

of Eq. (9) stands for the finite part of an integral. Following
Hadamard [53], this operation can be written as

t+∫
−
0

r L3 H p dτ

= c/(2π) lim
τ→t−r/c

⎛
⎝

t+∫

0

r L3 p dτ − (1/c)Lp

⎞
⎠ (11)

Adopting the following space–time approximations for
the variables of the model (η and φ are space and time inter-
polation functions, respectively, related to a boundary node
j and a discrete time m):

p(X, t) =
J∑

j=1

M∑
m=1

φm
p (t) η

j
p(X) pm

j (12a)

q(X, t) =
J∑

j=1

M∑
m=1

φm
q (t) η

j
q(X) qm

j (12b)

the following system of equations can be obtained, by sub-
stituting Eqs. (12a, b) into Eq. (9) and considering proper
numerical treatment:

CPn = G1Qn − H1Pn + Rn + Sn (13a)

Rn =
n−1∑
l=1

(
Gn−l+1Ql − Hn−l+1Pl

)
(13b)

where C, G and H are influence matrices; Rn is a vector stan-
ding for the time convolution process; Sn is a vector related
to domain integrals and Pn and Qn are pressure and flux vec-
tors, respectively, at the discrete time n. After introducing the
boundary conditions of the model, the system of Eqs. (13a,
b) can be solved for pressures and fluxes, at each time tn .
For more details concerning the acoustic BE formulation,
the reader is referred to [9,54,55].

In the present work, linear spatial interpolation functions
are considered (ηp and ηq ), as well as linear temporal inter-
polation functions for hydrodynamic pressures (φp) and

piecewise constant temporal interpolation functions for
hydrodynamic fluxes (φq).

3.2 Elastodynamic formulation

The integral equation related to elastodynamic models is
given by

cik(ξ)uik(ξ, t) =
∫

�

t+∫

0

u∗
ik(X, t; ξ, τ )τk(X, τ )dτd�(X)

−
∫

�

t+∫

0

τ ∗
ik(X, t; ξ, τ )uk(X, τ )dτ d�(X)

+ si (X, t; ξ, τ ) (14)

where the terms u∗
ik(X, t; ξ, τ ) and τ ∗

ik(X, t; ξ, τ ) represent
the dynamic fundamental displacement and traction, respec-
tively (the remainder terms of Eq. (14) are analogous to the
ones depicted in Eq. (8)).

Taking into account the fundamental solutions of the pro-
blem, Eq. (14) can be re-written as follows:

cik uk = −
∫

�

Fik

⎛
⎝

t+∫

0

L−1
d Hdτk dτ

⎞
⎠ d�

−
∫

�

Eik

⎛
⎝

t+∫

0

Ld Nd Hdτk dτ

⎞
⎠ d�

+
∫

�

Dik

⎛
⎝

t+∫
−
0

r L3
d Hduk dτ

⎞
⎠ d�

+
∫

�

Bik

⎛
⎝

t+∫

0

Ld Nd Hduk dτ

⎞
⎠ d�

+
∫

�

Fik

⎛
⎝

t+∫

0

L−1
s Hsτk dτ

⎞
⎠ d�

+
∫

�

Eik

⎛
⎝

t+∫

0

Ls Ns Hsτk dτ

⎞
⎠ d�

−
∫

�

Dik

⎛
⎝

t+∫
−
0

r L3
s Hsuk dτ

⎞
⎠ d�

−
∫

�

Bik

⎛
⎝

t+∫

0

Ls Ns Hsuk dτ

⎞
⎠ d�
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+
∫

�

δik

⎛
⎝

t+∫

0

Ls Hsτk dτ

⎞
⎠ d�

−
∫

�

Aik

⎛
⎝

t+∫
−
0

r L3
s Hsuk dτ

⎞
⎠ d� + s′

i (15)

where Hw (scaled Heaviside function), Lw and Nw are given
by (the subscript w can be conveniently substituted by s or
by d in order to represent the contribution of the secondary
or the primary wave, respectively):

Hw = 1/(2πρ cw) H(cw(t − τ) − r) (16a)

Lw =
(

c2
w(t − τ)2 − r2

)−1/2
(16b)

Nw = 2c2
w(t − τ)2 − r2 (16c)

and the tensors Aik, Bik, Dik, Eik and Fik are defined as (δik

is the Kronecker delta):

Aik = γ nkr,i + δikµ (∂r/∂n) + µ nir,k (17a)

Bik = −2µ r−3 (
δik(∂r/∂n) + nir,k

+ nkr,i − 4(∂r/∂n)r,i r,k
)

(17b)

Dik = −λ nkr,i − 2µ(∂r/∂n)r,i r,k (17c)

Eik = −r−2r,i r,k (17d)

Fik = r−2δik (17e)

In Eq. (15), the finite part integral is to be interpreted as:

t+∫
−
0

r L3
w Hwuk dτ

= 1/(2πρ cw) lim
τ→t−r/cw

⎛
⎝

t+∫

0

r L3
wuk dτ−(1/cw)Lwuk

⎞
⎠

(18)

Analogously as presented in the previous sub-section,
adopting the following space–time approximations for the
variables of the model:

uk(X, t) =
J∑

j=1

M∑
m=1

φm
u (t) η

j
u(X) um

kj (19a)

τk(X, t) =
J∑

j=1

M∑
m=1

φm
τ (t) η j

τ (X) τm
kj (19b)

the following system of equations can be obtained:

CUn = G1Tn − H1Un + Rn + Sn (20a)

Rn =
n−1∑
l=1

(
Gn−l+1Tl − Hn−l+1Ul

)
(20b)

where C, G and H are, once again, influence matrices; Rn

stands for the time convolution process; Sn is related to

domain integrals and Un and Tn are displacement and
traction vectors, respectively, at the discrete time n. After
introducing the boundary conditions of the model, the sys-
tem of Eqs. (20a, b) can be solved for displacements and
tractions, at each time tn . For more details concerning the
present elastodynamic BE formulation, the reader is referred
to [9,54,56].

In the present work, linear spatial interpolation functions
are considered (ηu and ητ), as well as linear temporal inter-
polation functions for displacements (φu) and piecewise
constant temporal interpolation functions for tractions (φτ).

3.3 Stabilized formulation

After introducing the boundary conditions in Eqs. (13a, b) or
(20a, b), the following expressions are obtained:

A Xn = B Yn + Rn + Sn (21a)

Rn =
n−1∑
l=1

(
Gn−l+1Vl

G − Hn−l+1Vl
H

)
(21b)

where, as usual in time-domain BEM, the entries of Xn are
unknown variables at boundary nodes at discrete time tn ,
while the entries of vector Yn are the according known nodal
values. Matrices A and B are obtained from the combination
of matrices C + H1 and G1, taking into account, as well, the
prescribed boundary conditions. Vectors VG and VH stand
for acoustic fluxes or elastodynamic tractions and acoustic
pressures or elastodynamic displacements, respectively. The
time stepping procedure indicated by Eqs. (21a, b) requires
convolutions (l = 1, 2, . . . , n − 1) to be carried out for
n = 1, 2, . . . , N , where the final time is TN = N�t,�t
being the time step.

In order to achieve an efficient stabilized boundary
element formulation, the present work modifies the BEM
convolution vector (Eq. (21b)), introducing a stabilization
parameter into the recent-in-time convolution operations and
a time-truncation procedure to compute the distant-in-time
convolution contributions. No modification is introduced in
the evaluation of the standard BEM matrices Hn and Gn ,
only their manipulation along the time-convolution process is
modified.

Taking into account the above described time-convolution
modification, Eqs. (21a, b) can be re-written as follows:

Ā Xn = B̄ Yn + R̄n + R̂n + Sn (22a)

R̄n =
n−1∑

l=n−L+1

⎧⎨
⎩ Gn−l+1

1−δl,n−1∑
k=−1

[
J (λ, k)Vl+k

G

]

− Hn−l+1
1−δl,n−1∑

k=−1

[
J (λ, k)Vl+k

H

]
⎫⎬
⎭ (22b)
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R̂n =
m∑

k=1

{
Gk

n−L∑
l=1

[
I (n − l + 1, k)Vl

G

]

−Hk

n−L∑
l=1

[
I (n − l + 1, k)Vl

H

] }
(22c)

where J (·) and I (·) are scalar functions; they define
stabilization coefficients and interpolation parameters, res-
pectively. Matrices Ā and B̄ are obtained from the combina-
tion of matrices C + H1 + J (λ, 1)H2 and G1 + J (λ, 1)G2,
taking into account the prescribed boundary conditions of the
problem (0 ≤ λ ≤ 1 is a stabilization parameter; for λ = 0
standard formulation is obtained). R̄n is the vector related to
the recent-in-time convolution process (it represents the time
history from tn−L+1 up to tn−1, where L is a parameter which
defines the truncation point of the BEM convolution process)
and R̂n is a truncated BEM convolution vector. This trun-
cated approach consists of evaluating the matrices Hn−l+1

and Gn−l+1 by interpolation, based on a few m-calculated
matrices Hk and Gk (k = 1, 2, . . . , m), computed at appro-
priate discrete times Tk (TL ≤ Tk ≤ TN , where TL is the time
limit after which the approximations take place). The inte-
ger m is an input parameter to the approximated convolution
analysis and it indicates the number of key time-points (Tk)

to be used in the interpolation procedure (the interpolations
will occur within the interlude of these key time-points).

There are several stabilization and interpolation proce-
dures that might be chosen to specify J (·) and I (·); for a
detailed discussion, the reader is referred to [23,26]. In the
present work, the following expressions are considered:

J (λ, k) = 1
2λ k2 + (1 − k2)(1 − λ) (23a)

I ( j, k) = j�t − Tk−1

Tk − Tk−1

× [
H ( j�t−Tk−1) H (Tk−j�t)

]
(1−δk,1)

+ Tk+1 − j�t

Tk+1 − Tk

× [
H ( j�t − Tk) H (Tk+1 − j�t)

]
(1 − δk,m)

(23b)

which adopt a simple linear combination (based on theλpara-
meter) of three consecutive time-step results for the stabiliza-
tion of the standard boundary element formulation (Eq. (23a))
and consider simple linear interpolation between the m selec-
ted interpolation time-points (multi-linear interpolation algo-
rithm) for the truncation of the time-convolution process
(Eq. (23b)).

4 Coupling procedures

In the current section, the coupling of the BE formulations
previously presented is considered. This work employs

iterative coupling procedures to take into account the
interaction of the different BE formulations presented (each
BE formulation models a specific sub-domain of the fluid–
solid coupled problem). As has been shown [42], iterative
coupling is a very versatile procedure. It allows independent
analyses of each sub-domain of the global model: interac-
tion effects are carried out by boundary values, which are
iteratively updated along the common interfaces.

In the iterative coupling of the acoustic and the elastodyna-
mic BE formulations, natural boundary conditions are pres-
cribed on the common interfaces, for each sub-domain. The
displacements evaluated at the sub-domains modelled by the
elastodynamic formulation are used to obtain the fluxes (pres-
cribed interface boundary condition) for the sub-domains
modelled by the acoustic formulation; the pressures evalua-
ted at the sub-domains modelled by the acoustic formulation
are used to obtain the tractions (prescribed interface boundary
condition) for the sub-domains modelled by the elastody-
namic formulation. Concisely, each sub-domain is analysed
separately (U and P are evaluated at each iterative step) and
the interface relations U → Q and P → T are iteratively
considered until convergence is achieved.

In this section, first some special procedures, which are
used in conjunction with the adopted iterative coupling, are
discussed (Sects. 4.1, 4.2 and 4.3) and, next, the final coupling
algorithm is presented (Sect. 4.4).

4.1 Stabilized iterative coupling

In the present iterative coupling procedure, a relaxation para-
meter α is considered, which relates the recent BEM results
((k+α)V) with the results of the previous iterative step ((k)V)

and the final results ((k+1)V) at the current iterative step.
Considering a generic variable V, the adoption of a relaxa-
tion parameter α can be described as follows:

(k+1)V = (α)(k+α)V + (1 − α)(k)V (24)

As has been reported [42–48], the introduction of a relaxa-
tion parameter α is extremely important in order to ensure
or/and speed up the convergence of the iterative coupling
process.

4.2 Different sub-domain discretizations

In order to consider different time-steps in each sub-domain,
interpolation/extrapolation procedures along time are here
considered. In the present work, the temporal interpolation/
extrapolation procedures are based on the BEM time inter-
polation functions (piecewise constant φq(t) and φτ (t) and
linear φp(t) and φu(t)), as depicted in Figure 1 (Fig. 1 des-
cribes the calculus of some time-interpolated/extrapolated
variables which are important in the context of the final cou-
pling algorithm presented in Sect. 4.4).

123



Comput Mech

Fig. 1 Time
interpolation/extrapolation
procedures: a fluid-domain
interpolation:
Pot = P f t (�t̂/ f �t) +
P f t− f �t (1 − �t̂/ f �t),
b fluid-domain extrapolation:
Ü f t = Üot , c solid-domain
interpolation:
Uot = Us t (�t̂/s�t) +
Us t−s�t (1 − �t̂/s�t),
d solid-domain extrapolation:
Ts t = Tot

t
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vi 

v = I(vk,dk)

Fig. 2 Space interpolation procedures: interpolation scheme of vk
values in order to obtain v (linear interpolation: v = (vidj + vjdi)/

(dj + di))

Spatial interpolation procedures may also be adopted in
order to consider independent BEM meshes. In Fig. 2, for
instance, a simple scheme is shown to evaluate a sub-domain
nodal value by means of the nodal values of the adjacent
sub-domain, when there is not a direct connection among the
nodes (one should observe that linear spatial interpolation
functions are considered here).

Using space/time interpolation/extrapolation procedures,
optimal BE modelling in each sub-domain may be achie-
ved, which is very important regarding flexibility, efficiency,
accuracy and stability.

4.3 Interface treatment

Equations (7a,b) are employed in order to couple acoustic
fluid and elastodynamic solid sub-domains; however, since

the elastodynamic BE formulation usually does not evaluate
accelerations, Eq. (7a) must be adapted.

In order to relate the fluxes ( f Q, where subscript f stands
for fluid sub-domain) of the acoustic BE formulation with
the displacements (sU, where subscript s stands for solid
sub-domain) of the elastodynamic BE formulation (adapta-
tion of relation (7a)), the characteristics of the time interpo-
lation function φq(t) is once again taken into account. Since
the present work adopts φq(t) as being piecewise constant, an
equivalent displacement f Ut can be obtained from
the equivalent acceleration f Üt by time integration, as
follows:

f Ut = f Uti + f U̇ti (t − ti )

+ f Üt (t − ti )
2/2, ∀t ∈ (

ti; ti + f �t
]

(25)

where f �t is the time-step of the acoustic BE formulation.
According to Eq. (25), along each time-step f �t , the equiva-
lent displacements, velocities and accelerations (acoustic BE
formulation) have parabolic, linear and piecewise constant
behavior, respectively (see Fig. 1b). It is important to note
that Eq. (25) is equivalent to the Newmark method [57],
adopting the parameters: N1 = 1.00 and N2 = 0.50 (the
classical Newmark’s trapezoidal rule is given by: N1 = 0.50
and N2 = 0.25).

Finally, a relation between sUt and f Qt can be numeri-
cally established as follows (analogously to Eq. (7a)): f Ut

N
can be related to sUt

N and, in the sequence, f Qt can be rela-
ted to f Ut

N by taking into account Eq. (25) (calculus of f Üt
N )

and relation f Üt
N = (1/ f ρ) f Qt (more details are given in

Sect. 4.4).
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4.4 Final coupling algorithm

The basic steps of the developed acoustic–elastodynamic
coupling algorithm are presented below. In the algorithm that
follows, a reference time-step (o�t) is introduced, which is
the algorithm time-marching step: o�t must be smaller (or
equal) than all the sub-domain time-steps considered in the
model, hence all sub-domain time-marching schemes can
be properly considered (o�t is usually selected equal to the
smallest time-step in the analysis). As one will observe, all
aspects previously discussed in the present section are inte-
grated in this final coupling algorithm.

Final coupling algorithm:

(1) Initial calculations
(1.1) Time marching initialisation

(1.1.1) Time-steps for each sub-domain are
selected ( f �t and s�t)

(1.1.2) A reference time-step is selected (o�t ,
where o�t ≤ f �t and o�t ≤s �t)

(1.1.3) Initial time attributions are considered:

f t = f �t; s t = s�t and ot = 0
(1.2) BEM standard initial calculations are conside-

red, (e.g., matrices f/sĀ, f/s B̄ etc.)
(1.3) Initial prescribed values are chosen at common

interface surfaces (e.g., (0)
sT = 0)

(2) Time-step loop
(2.1) Beginning of evaluations at each time step

(2.1.1) Update ot = ot + o�t
(2.1.2) If ot > f t : update f t = f t + f �t and

evaluate vectors f R̄ f t , f R̂ f t and f S f t

(2.1.3) If ot > s t : update s t = s t + s�t and
evaluate vectors sR̄s t ,s R̂s t and sSs t

(2.2) Iterative loop
(2.2.1) Elastodynamic BE analysis: obtain

(k+α)
s Us t (Sects. 3.2 and 3.3)

(2.2.2) Adoption of a relaxation parameter
(Eq. (24)):
(k+1)

s Us t =(α)(k+α)
s Us t +(1 − α)(k)

sUs t

(2.2.3) From (k+1)
s Us t obtain (k+1)

s Uot (time
interpolation—Fig. 1c)

(2.2.4) From (k+1)
s Uot obtain (k+1)

f Uot
N (space

interpolation—Fig. 2)
(2.2.5) From (k+1)

f Uot
N obtain (k+1)

f Üot
N

(Eq. (25)):
(k+1)

f Üot
N = (2 /�t̂2)

(
(k+1)

f Uot
N

− f U f t− f �t
N

)

−(2 /�t̂)
(

f U̇ f t− f �t
N

)

(2.2.6) From (k+1)
f Üot

N obtain (k+1)
f Ü f t

N (time
extrapolation—Fig. 1b)

 f (t)

 y

 x

 35

 50

 10

 10

H 

B

A

∞

Fig. 3 Sketch of the dam and storage-lake coupled system (point A:
x = 30 m, y = 60 m; point B: x = 35 m, y = 10 m)

5

nsds

5

nsds

nf df 

3x10 2x15 2x20 2x25 Nx50 

(b) (c)

(a)

Fig. 4 Sketch of the BEM meshes: a storage-lake (opened-domain),
b dam (closed-domain), and c dam (opened-domain) spatial discretiza-
tions

(2.2.7) From (k+1)
f Ü f t

N obtain (k+1)
f Q f t

(Eq. (7a))
(2.2.8) Acoustic BE analysis: obtain (k+1)

f P f t

(Sects. 3.1 and 3.3)
(2.2.9) From (k+1)

f P f t obtain (k+1)
f Pot (time

interpolation—Fig. 1a)
(2.2.10) From (k+1)

f Pot obtain (k+1)
f Tot

N
(Eq. (7b))

(2.2.11) From (k+1)
f Tot

N obtain (k+1)
s Tot (space

interpolation—Fig. 2)
(2.2.12) From (k+1)

s Tot obtain (k+1)
s Ts t (time

extrapolation—Fig. 1d)
(2.2.13) Check for convergence and go to step

(2.2) or (2.3)
(2.3) Updating (and printing) of BE results

(2.3.1) If ot + o�t > s t : update (and print)
elastodynamic BE results
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(2.3.2) If ot + o�t > f t : update (and print)
acoustic BE results, including:

f U f t
N = f U f t− f �t

N + (
f �t

)
f U̇ f t− f �t

N

+
(

f �t2/2
)

f
Ü f t

N

f U̇ f t
N = f U̇ f t− f �t

N + (
f �t

)
f Ü f t

N
(2.4) Check ot and go to step (2) or (3)

(3) End of calculation

Table 1 Cases of analysis considering different time and space (inter-
face) discretizations for the dam–reservoir system

Case Solid Fluid

d (m) �t (s) d (m) �t (s)

1 5.0 0.0030 5.0 0.0030

2 5.0 0.0030 2.5 0.0015

3 5.0 0.0030 10.0 0.0060

4 5.0 0.0015 5.0 0.0030

5 5.0 0.0015 5.0 0.0060

6 2.5 0.0015 2.5 0.0015

7 2.5 0.0030 2.5 0.0015

8 10.0 0.0060 10.0 0.0060

9 10.0 0.0015 10.0 0.0075
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Fig. 5 Case 1 time history results for H = 35 m and H = 50 m:
a vertical displacements at point A, b hydrodynamic pressures at point B

5 Numerical applications

Two numerical examples are considered in the present
section. The first one deals with a loaded dam retaining
the water of a semi-infinite storage-lake. The second one
is concerned with the analysis of a solid wall adjacent to
a closed-domain fluid. For all examples presented here, the
reference time-step is selected equal to the smallest time-step
in the analysis and a relaxation parameter α = 0.5 is adopted.

It is important to observe that, for several fluid–solid inter-
action analyses, including the present ones, iterative cou-
pling algorithms do not converge when the introduction of
the relaxation parameter is disregarded (for details concer-
ning convergence aspects of time-domain iterative BEM–
BEM coupling algorithms, one is referred to [42,50]). In fact,
usually acoustic–elastodynamic coupled systems are quite
difficult to model, in spite of the coupling procedures adop-
ted, as has been reported by Yu et al. [41], Czygan [58] and
Soares Jr et al. [47].

5.1 Dam–reservoir system

In this first example, a dam–reservoir system, as depicted
in Fig. 3, is analyzed [35]. The structure is subjected to a
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Fig. 6 Case 1 time history results (H = 50 m) considering different
interface relations (sU → f Q) for the coupling of acoustic and elasto-
dynamic BE formulations (Eq. (25)): a vertical displacements at point
A, b hydrodynamic pressures at point B

123



Comput Mech

Fig. 7 Scaled vertical
displacement (solid line) and
hydrodynamic pressure (dot
line) time history results at
points A and B, respectively:
a case 2, b case 3, c case 4,
d case 5, e case 6, f case 7,
g case 8, h case 9
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sinusoidal distributed vertical load on its crest, acting with
an angular frequency w = 18 rad/s. The material properties
of the dam are: Poisson’s ratio ν = 0.25; Young’s modulus
E = 3.437 × 106 kN/m2; mass density ρ = 2,000 kg/m3.
The adjacent fluid is characterized by a mass density ρ =
1,000 kg/m3 and a wave velocity c = 1, 436 m/s.

The spatial discretization adopted for the storage-lake is
depicted in Fig. 4a (for x > 185 m, the mesh is expanded by

equal-sized boundary elements with length 50 m). The dam
spatial discretization is depicted in Fig. 4b. For the fluid–
solid common interface, different spatial discretizations are
considered, as described in Table 1 (it is important to note
that equal-sized elements are always applied along the com-
mon interface, for each sub-domain). The different time-steps
adopted, in each sub-domain, are also presented in Table 1,
according to the case of analysis.
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Fig. 8 Scaled vertical
displacement (solid line) and
hydrodynamic pressure (dot
line) time history results at
points A and B, respectively,
considering BE stabilization
procedures: a case 2
(sλ = 0.00; f λ = 0.25), b case
5 (sλ = 0.25; f λ = 0.00),
c case 6
(sλ = 0.25; f λ = 0.25), d case
6 (sλ = 0.75; f λ = 0.75),
e case 7
(sλ = 0.00; f λ = 0.75), f case
7 (sλ = 0.25; f λ = 0.25)
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Time history results for Case 1 (see Table 1) are depicted
in Fig. 5. The results are plotted considering two different
water levels, namely H = 35 m (seven linear elements with
length 5 m are considered to discretize the fluid common
interface) and H = 50 m (ten linear elements with length
5 m are considered to discretize the fluid common interface).
As one can observe, the solution is in good agreement with
the results previously presented by von Estorff and Antes
[35], considering FEM–BEM coupled analysis.

In Fig. 6, time history results are depicted (H = 50 m)
considering different interface relations for the coupling of
the acoustic and elastodynamic BE formulations. As has been
discussed, the present work adopts Eq. (25) to relate sU and

f Q. Equation (25) is consistent with the BE formulations in
use. Once one takes into account other non-consistent rela-
tions to relate sU and f Q (e.g., Newmark’s trapezoidal rule—
see Fig. 6, the Houbolt method, etc.), instabilities may occur.

In Fig. 7, time history results considering the different
cases of analysis, as described in Table 1, are depicted. As

can be seen, for several cases, unstable results arise. In Fig. 8,
stabilized BE formulations are considered for the cases where
instabilities occur. In Case 6, the adoption of sλ = 0.25 and

f λ = 0.25 is not enough to ensure stability (see Fig. 8c), and
more severe stabilization parameters are selected, namely

sλ = 0.75 and f λ = 0.75, ensuring stable results (see
Fig. 8d). In Case 7, an analogous situation occurs, as depicted
in Figs. 8e,f.

The results presented so far are obtained taking into
account a closed-domain dam (null displacements are pres-
cribed at the base of the dam and null fluxes are prescribed
at the base of the storage-lake). As is well known, boundary
element formulations are an extremely elegant tool to model
infinite media. As a consequence, in the present BEM–BEM
coupling context, analyses considering an opened-domain
dam can be carried out very easily.

In Fig. 4c, the BEM mesh for an opened-domain dam is
depicted (the mesh is extended analogously as described in
Fig. 4a). For the opened-domain dam analysis, the spatial
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Fig. 9 Time history results for the opened-domain dam–reservoir sys-
tem considering standard and stabilized (sλ = 0.75; f λ = 0.75) BE
formulations: a vertical displacements at point A, b hydrodynamic pres-
sures at point B

and temporal discretizations described in Table 1, Case 1,
are selected (i.e., there is a perfect connection between the
sub-domain nodes on the vertical and horizontal common
interfaces).

For the opened-domain dam case, time history results are
depicted in Fig. 9, considering two different water levels:
H = 50 m and H = 0 m (no fluid—uncoupled analysis). As
one can observe, unstable results arise if standard BE formu-
lations are considered (one should observe that, for the same
discretization level, stable results are achieved considering
the closed-domain dam); however, stability is ensured once
stabilized (sλ = 0.75 and f λ = 0.75) BE formulations are
adopted.

In Fig. 10, some time snap-shots are depicted, describing
the displacement evolution of the closed/opened-domain
dam.

5.2 Solid wall-confined fluid system

In the previous example, the (dilatational) wave velocities of
the different media involved were very similar. These kinds
of problems are easier to solve numerically (even so, seve-
ral numerical instabilities could be observed). In the present
example, a more complex (from a numerical standpoint) pro-
blem is analyzed [47].

The system under consideration is composed of a rectan-
gular solid wall, coupled to a compressible confined fluid.
The model is shown in Fig. 11. At one boundary of the fluid,
a distributed horizontal load, acting in time as a rectangu-
lar pulse during the first 0.001 s, is prescribed. The material
properties of the solid wall are: Poisson’s ratio ν = 0.29;
Young’s modulus E = 2.068 × 108 kN/m2; mass density
ρ = 7, 820 kg/m3. The fluid properties are: mass density
ρ = 1, 000 kg/m3; wave velocity c = 1, 000 m/s (this wave
velocity is about six times less than the solid dilatational wave
velocity).

As is well known, time-step length plays an important
role in the time-domain BEM analyses. A measure of the
time-step length is computed according to the following

Fig. 10 Scaled displacement
results for the dam (H = 50 m),
along time: a closed-domain
dam, b opened-domain dam

t = 0.075 s  t = 0.150 s  t = 0.225 s  t = 0.300 s  t = 0.375 s  t = 0.450 s  
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Fig. 11 Sketch of the model: a solid wall adjacent to a closed-domain
fluid, b acoustic and elastodynamic BEM meshes

expression [9]:

β = c�t/� (26)

where c is the (dilatational) wave velocity and � is the boun-
dary element length. Practice has shown that for β > 1
numerical damping is introduced, and that for some smal-
ler β values, instabilities may occur.

In Fig. 12, the transient behaviour of the horizontal dis-
placement at point A is depicted, considering different time-
step discretizations (for f �t = 10−3 s, f β = 1.00; for

f �t = 2.5 × 10−4 s, f β = 0.25; for s�t = 10−3 s,

sβ = 5.89; for s�t = 2.5 × 10−4 s, sβ = 1.47). As one
can observe, if standard boundary element formulations are
considered, the adoption of different temporal discretizations
in each sub-domain is essential, otherwise too damped results
may arise (dash line in Fig. 12) or unstable solutions may

occur (dot line in Fig. 12). On the other hand, when stabilized
boundary element formulations are considered, a wider range
of discretization parameters may be adopted, as depicted in
Fig. 13, for instance.

As has been highlighted, Eq. (22b) is very effective, conce-
rning stability aspects. Equation (22c) is also extremely effec-
tive, but concerning efficiency aspects, as is presented next.

In Fig. 14, time history results are depicted considering
the truncation of the BEM time-convolution process. In the
present work, the discrete times Tk (see Eq. (23b)), which are
the key-times to the interpolation approximation, are evalua-
ted by

Tk = TL + (TN − TL) ((k − 1)/(m − 1))m1/2
(27a)

where the time limit TL is calculated by

TL = �t N (1−δ m) + r̄/c̄ (27b)

In Eq. (27b), δ is a precision control parameter; r̄ is the ave-
rage distance between boundary nodes and c̄ is the (average)
wave velocity of the medium. The calculus of the time limit
TL is based on the behaviour of function f (t) = 1/t , which
is a simple function, similar in most aspects to the time rela-
ted kernels of the models being considered (for more details
about expressions (27a,b), the reader is referred to [26]).

Time history results considering different error control
parameters (δ) are depicted in Fig. 14 (m = 10 is always
adopted). As one may observe, accurate results can be obtai-
ned for δ = 4%, δ = 5% and δ = 6% (for δ = 0% complete
time-convolution calculations are considered; for δ ≥ 7%
unacceptable miscalculations occur). The reductions achie-
ved on the total CPU time and on the BEM storage area, by

Fig. 12 Horizontal
displacement time history
results at point A considering
different time-steps for the solid
and fluid sub-domains
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Fig. 13 Horizontal displacement time history results at point A consi-
dering standard (s�t = 0.25 f �t) and stabilized (sλ = 0.00; f λ =
0.75) BE formulations
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Fig. 14 Horizontal displacement time history results at point A consi-
dering a multi-linear interpolation algorithm (sm = f m = 10) to trun-
cate the BEM time-convolution process (sλ = 0.00; f λ = 0.75 and
s�t = f �t = 2.5 × 10−4 s)

Table 2 Cost of the analysis considering truncated time-convolution
procedures

δ (%) Storage area (%) Total CPU time (%)

Solid Fluid

0 100 100 100

4 6.7 15.6 20

5 4.5 12.5 16

6 2.9 10.9 13

7 2.1 10.1 12

the adoption of the truncated time-convolution procedure,
are shown in Table 2. As one can observe, Eq. (22c) drasti-
cally reduces time-domain BEM costs, an advantage which
is amplified when BEM–BEM coupled analyses are consi-
dered.

6 Conclusions

The present work presents an efficient, flexible, accurate
and stable algorithm to model the propagation of interac-
ting acoustic–elastic waves using boundary element coupled
techniques.

The paper describes several consistent, robust and versa-
tile numerical procedures, namely:

(i) adoption of consistent numerical treatment on com-
mon interfaces (improving accuracy and stability);

(ii) adoption of consistent time/space interpolation/
extrapolation procedures (improving accuracy, stabi-
lity, efficiency and flexibility);

(iii) adoption of relaxed iterative coupling procedures
(improving stability and efficiency);

(iv) adoption of stabilization parameters into the recent-
in-time convolution operations (improving stability);

(v) adoption of time-truncation procedures to compute
distant-in-time convolution contributions (improving
efficiency).

Two numerical examples are presented at the end of the
paper, illustrating the potentialities of the new methodology.
In the first example, several combinations of different spatial
and temporal discretizations are considered and the deve-
loped stabilized algorithm provides proper results for all
the cases (one should observe that good results are obtai-
ned even considering sub-domain time-step lengths with a
difference up to five times, as depicted in Fig. 7h). In the
second example, the flexibility, accuracy, stability and effi-
ciency of the proposed algorithm is once again highlighted:
good results are obtained at very low computational costs,
even though a complex numerical problem is being analysed
and standard BE approaches are unable to provide adequate
results.

This work extends the applicability and competitiveness
of time-domain boundary element techniques, considering
the modelling of complex wave propagation phenomena.
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