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An approach to the derivation of analytical formulae for exact integration in the boundary element

solution of two-dimensional elasticity problems is proposed. The integration over an arbitrary boundary

element reduces to the integration over a specific element, and this simplifies the derivation of the

formulae. Integrals involving fundamental functions are considered, as well as integrals containing

derivatives of the fundamental functions, the latter integrals being necessary for stress evaluation. Exact

formulae have been obtained to calculate regular and singular integrals. Constant and discontinuous

linear elements are considered. The accuracy of the solution obtained with the use of the formulae

derived is verified against two test problems.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Integral evaluation in the boundary element method is an
important part of calculations; it influences the solution accuracy
and computation speed. Originally [1,2], in boundary element
solutions integrals were calculated numerically, generally by
Gaussian quadrature formulae. Analytical integration was applied
only to singular integrals. Lately, however, it has become possible
to derive analytical formulae for the exact calculation of all the
necessary integrals. The substitution of exact integration for
numerical one offers higher computation accuracy and reduces
calculation time significantly. Analytical integration formulae for
two-dimensional potential problems were given in Refs. [3,4]. In
Ref. [5] exact integration formulae for two-dimensional elasto-
statics were derived, but they were too lengthy. A new form of the
fundamental functions fij

* proposed in Ref. [6] allows one to
simplify integration and to derive more compact formulae. These
functions were used in Refs. [7,8] to derive exact integration
formulae for two-dimensional elastostatics. In Ref. [9] exact
integration formulae were given for integrals involving funda-
mental function derivatives necessary to calculate stresses in the
elastic region. In Refs. [10,11] the authors of the present paper
derived compact exact integration formulae for constant elements
using the original form of the fundamental functions given in Refs.
[1,2]. The present paper proposes a new approach enabling one to
derive exact integration formulae in a concise form suitable for
programming. Coordinate transformation reduces integration
ll rights reserved.
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over an arbitrary element to integration over a specific element,
the same every time, which is a simpler problem. As a result, exact
formulae for calculating regular and singular integrals involving
the fundamental functions or their derivatives have been derived.
Especially important is that formulae for integrals involving the
fundamental function derivatives are as concise as those involving
the fundamental functions. Constant and discontinuous linear
elements are considered. The accuracy of computations made by
the formulae is verified against two test problems.
2. The boundary element method as applied to two-
dimensional elasticity problems

Consider a plane elastic region of an arbitrary geometry, with
some loads or displacements specified on its boundary. It can be
written for the displacement vector at any interior point that

uiðxÞ ¼
Z

S
un

ijðx; xÞf jðxÞ dSðxÞ �

Z
S

f nijðx; xÞujðxÞ dSðxÞ. (1)

Here xAS is the boundary point of the region, x is the interior
point of the region, uj(x) are the displacements and fj(x) are the
boundary stresses. The fundamental functions un

ijðx; xÞ and f nijðx; xÞ
for the two-dimensional problem have the form [1,2]

un

ijðx; xÞ ¼ c1½c2 lnðrÞdij � DirDjr�,

f nijðx; xÞ ¼ �
c3

r
½c4dij þ 2DirDjr�

qr

qn
� c4ðDirnj � DjrniÞ

� �
, (2)

where, for plane strain, c1 ¼ �1/8pm(1�n), c2 ¼ 3�4n, c3 ¼ �1/
4p(1�n), c4 ¼ 1�2n, n is the Poisson ratio, m is the shear modulus,
derivation of exact integration formulae in the boundary element
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r ¼ r(x,x) is the distance between points x and x, Dir ¼ qr/qxi, dij is
the Kronecker delta, n is unit outward normal.

For an arbitrary boundary point x0, the boundary integral
equation has the form

cijðx0Þujðx0Þ ¼

Z
S

un

ijðx0; xÞf jðxÞ dSðxÞ �

Z
S

f nijðx0; xÞujðxÞ dSðxÞ, (3)

where cij(x0) ¼ dij/2 for the smooth boundary. This equation is
used for the determination of unknown boundary displacements
uj(x) and boundary stresses fj(x). Strains at any interior point are
determined by the formulae

�ijðxÞ ¼
Z

S
wn

ijkðx; xÞf kðxÞ dSðxÞ �

Z
S

gn

ijkðx; xÞukðxÞ dSðxÞ, (4)

where

wn

ijkðx; xÞ ¼
1

2

qun

ik

qxj
þ

qun

jk

qxi

 !
,

gn

ijkðx; xÞ ¼
1

2

qf nik
qxj
þ
qf njk
qxi

 !
. (5)

Stresses are determined by Hook’s law.
By discretizing the region boundary into elements (this paper

deals with straight elements), we arrive at a numerical procedure
based on a boundary element and an arbitrary point affected by
the stresses and displacements acting on this element. Thus, to
obtain an accurate solution, we need to derive exact formulae for
calculating the following integrals over an arbitrary line segment
AB for an arbitrary point x on a plane:

Ikðu
n

ijÞ ¼

Z
AB

un

ijðx; xÞNkðxÞ dSðxÞ,

Ikðf
n

ijÞ ¼

Z
AB

f nijðx; xÞNkðxÞ dSðxÞ,

Ikðu
n

ij;mÞ ¼

Z
AB

qun

ijðx; xÞ

qxm
NkðxÞ dSðxÞ,

Ikðf
n

ij;mÞ ¼

Z
AB

qf nijðx; xÞ

qxm
NkðxÞ dSðxÞ. (6)

Here, k ¼ 0 corresponds to the constant element, N0 ¼ 1; k ¼ 1,
2 correspond to the linear element, where ui ¼ S2

k¼1uk
i NkðxÞ,

f i ¼ S2
k¼1f k

i NkðxÞ, N1(x) and N2(x) are the shape functions, ui
k and

fi
k are the nodal values of displacements and boundary stresses.
3. Analytical integration

In order to simplify the evaluation of the necessary integrals,
we put the specific element and the corresponding source point in
correspondence with an arbitrary boundary element and an
arbitrary source point so that the integrals for the two instances
are interrelated.

Consider a line segment AB on a plane, where A(A1,A2) and
B(B1,B2) are arbitrary points, and an arbitrary source point x(x1,x2),
see Fig. 1. We suppose that the outward normal n is oriented as
shown in Fig. 1. The displacements u ¼ (u1,u2) and the
stresses f ¼ (f1,f2) acting on the segment AB are responsible
for some displacement u(x) ¼ (u1(x),u2(x)) at point x. Make
coordinate transformation maintaining the distances and
mapping point A into the origin O(0,0) and point B into
point C(L,0), where L is the length of the segment AB. This
transformation is parallel translation and rotation through the
angle j combined, see Fig. 1. The arbitrary point x(x1,x2) on
the plane is mapped into the point x̄ðx̄1; x̄2Þ related to it through
the relations

x ¼ Qx̄þ A; x̄ ¼ Q�1
ðx� AÞ, (7)
Please cite this article as: Fedotov VP, Spevak LF. One approach to the
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where x ¼
x1

x2

 !
, x̄ ¼

x̄1

x̄2

 !
, A ¼

A1

A2

 !
, Q is a rotation matrix:

Q ¼
q11 q12

q21 q22

 !
¼

cos j � sin j

sin j cos j

 !
. (8)

It is obvious that this transformation is a rigid displacement of
the system of objects under study as a unit and that it retains the
essence of elastic interaction. This means that, if the displace-
ments %u ¼ Q�1u and the stresses f̄ ¼ Q�1f act on the segment OC,
they are responsible for the displacements uðxÞ ¼ Q�1uðxÞ at point
x ¼ Q�1

ðx� AÞ. Using these relationships, we derive the relation
between the integrals over the segment AB for the source point x
and the corresponding integrals over the segment OC for the
source point x as

Ikðu
n

11Þ Ikðu
n

12Þ

Ikðu
n

12Þ Ikðu
n

22Þ

 !
¼

q11 q12

q21 q22

 !
Ikðu

n

11Þ Ikðu
n

12Þ

Ikðu
n

12Þ Ikðu
n

22Þ

0
@

1
A q11 q21

q12 q22

 !
,

Ikðf
n

11Þ Ikðf
n

12Þ

Ikðf
n

21Þ Ikðf
n

22Þ

0
@

1
A ¼ q11 q12

q21 q22

 !
Ikðf

n

11Þ Ikðf
n

12Þ

Ikðf
n

21Þ Ikðf
n

22Þ

0
@

1
A q11 q21

q12 q22

 !
,

Ikðu
n

11;mÞ Ikðu
n

12;mÞ

Ikðu
n

12;mÞ Ikðu
n

22;mÞ

0
@

1
A ¼ q11 q12

q21 q22

 !
q1m

Ikðu
n

11;1Þ Ikðu
n

12;1Þ

Ikðu
n

12;1Þ Ikðu
n

22;1Þ

0
@

1
A

2
4

þq2m

Ikðu
n

11;2Þ Ikðu
n

12;2Þ

Ikðu
n

12;2Þ Ikðu
n

22;2Þ

0
@

1
A
3
5 q11 q21

q12 q22

 !
,

Ikðf
n

11;mÞ Ikðf
n

12;mÞ

Ikðf
n

21;mÞ Ikðf
n

22;mÞ

0
@

1
A ¼ q11 q12

q21 q22

 !
q1m

Ikðf
n

11;1Þ Ikðf
n

12;1Þ

Ikðf
n

21;1Þ Ikðf
n

22;1Þ

0
@

1
A

2
4

þq2m

Ikðf
n

11;2Þ Ikðf
n

12;2Þ

Ikðf
n

21;2Þ Ikðf
n

22;2Þ

0
@

1
A
3
5 q11 q21

q12 q22

 !
,

(9)

where

Ikðu
n

ijÞ ¼

Z
OC

un

ijðx; xÞNkðxÞ dSðxÞ,

Ikðf
n

ijÞ ¼

Z
OC

f nijðx; xÞNkðxÞ dSðxÞ,

Ikðu
n

ij;mÞ ¼

Z
OC

qun

ijðx; xÞ

qxm

NkðxÞ dSðxÞ,

Ikðf
n

ij;mÞ ¼

Z
OC

qf nijðx; xÞ

qxm

NkðxÞ dSðxÞ, (10)

N̄kðxÞ are the shape functions for the segment OC, which
correspond to Nk(x) for the segment AB.

Thus, we conclude that, to calculate the integrals over the
arbitrary segment AB for the source point x, it would suffice to
construct the matrix Q (8), to determine point x in terms of Eq. (7)
derivation of exact integration formulae in the boundary element
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Fig. 3. A square plate with a circular hole: (a) quarter model; (b) half model.
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and to compute the integrals over the segment OC, and this is a
simpler problem.

For the constant element, integrals I0 are expressed by Eqs. (9)
in terms of the integrals Ī0 over the segment OC, N̄0 ¼ 1. Exact
integration formulae for regular and singular integrals Ī0 are given
in Appendix A1 and A2.

For the linear discontinuous element (Fig. 2), the shape
functions for the segment OC have the following form:
N̄k ¼ ðxÞ ¼ ak þ bkx1, where

a1 ¼
l� L

2l� L
; b1 ¼

1

2l� L
; a2 ¼

l

2l� L
; b2 ¼ �

1

2l� L
. (11)

The function N̄kðxÞ corresponds to the node Pk, see Fig. 2.
Therefore, the integrals Ī1 and Ī2 can be presented as

Ikðu
n

ijÞ ¼ akI0ðu
n

ijÞ þ bkI
xð Þ
ðun

ijÞ,

Ikðu
n

ij;mÞ ¼ akI0ðu
n

ij;mÞ þ bkI
xð Þ
ðun

ij;mÞ,

Ikðf
n

ijÞ ¼ akI0ðf
n

ijÞ þ bkI
xð Þ
ðf nijÞ,

Ikðf
n

ij;mÞ ¼ akI0ðf
n

ij;mÞ þ bkI
xð Þ
ðf nij;mÞ. (12)

Here, k ¼ 1,2, and

I
ðxÞ
ðun

ijÞ ¼

Z
OC

x1un

ijðx; xÞ dSðxÞ,

I
ðxÞ
ðf nijÞ ¼

Z
OC

x1f nijðx; xÞ dSðxÞ,

I
ðxÞ
ðun

ij;mÞ ¼

Z
OC

x1

qun

ijðx; xÞ

qxm

dSðxÞ,

I
ðxÞ
ðf nij;mÞ ¼

Z
OC

x1

qf nijðx; xÞ

qxm

dSðxÞ: (13)

Exact integration formulae for regular and singular integrals Ī
ðxÞ

are given in Appendix A1 and A2.
4. Test problems

4.1. A square plate with a circular hole

To verify the exact integration formulae derived, we apply
them to the problem on a square plate with a circular hole under
uniform tension. The plate is assumed to be under plane stress.
The plate edge length is 20 m and the radius of the hole is 1 m. The
elastic constants are as follows: E ¼ 2�1011 Pa, n ¼ 0.33.

Firstly, we consider a quarter of the plate, see Fig. 3a.
For an infinite plate, the circumferential stress along the x1-axis
Please cite this article as: Fedotov VP, Spevak LF. One approach to the
method. Eng Anal Bound Elem (2008), doi:10.1016/j.enganabound.20
is given in [12] as

sy ¼
f

2
2þ

R2

r2
þ 3

R4

r4

 !
, (14)

where f is uniform pressure, R is the radius of the hole, r is the
distance from the origin of the coordinates. We compare the stress
from Eq. (14) to the boundary stress (�f2) obtained by solving the
set of linear algebraic equations created from Eq. (3) with the use
of exact integration. Calculations are made for 200 constant
elements and for 100 linear discontinuous elements for which
l ¼ L

4, see Fig. 2. The results for f ¼ 1 N/m2 are shown in Fig. 4.
Secondly, we consider a half of the plate, Fig. 3b, and calculate

the stress s22 along x1 using Eq. (4) for interior points and exact
integration for the integrals involving the fundamental function
derivatives. Calculations are made again for 200 constant
elements and for 100 linear discontinuous elements. Fig. 5
compares the calculation results with Eq. (14).
derivation of exact integration formulae in the boundary element
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The graphs in Figs. 4 and 5 show a good agreement between
the boundary element solutions and the analytical one, and they
verify the accurate calculation by the formulae derived. To
demonstrate the difference between the two types of solutions
obtained for the same number of nodes, 200, we compare their
relative deviation from the analytical solution presented in
Eq. (14). The comparison shown in Fig. 6 indicates that the results
obtained for interior points in the half model are closer to the
analytical solution than the quarter model results.
4.2. A rectangular plate with a crack

Another example is a problem on a rectangular plate with a
crack under uniform tension, Fig. 7. Due to symmetry, we consider
Please cite this article as: Fedotov VP, Spevak LF. One approach to the
method. Eng Anal Bound Elem (2008), doi:10.1016/j.enganabound.
again a quarter of the plate, see the grey part of the plate
shown in Fig. 7. The plate is assumed to be under plane
stress; the plate height is 20 m, the plate width 2b ¼ 2 m
and the crack length 2d ¼ 0.2 m. The elastic constants
are the same as in the previous problem. For an infinite plate,
the stress s22 near the crack tip for x14d and x2 ¼ 0 is given
in [13] as

s22 ¼
f
ffiffiffi
d
p
ð1� lþ 0:326l2

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx1 � dÞð1� lÞ

p , (15)

where f is uniform pressure, l ¼ d/b.
The boundary element solutions obtained for 360 constant

elements (100 elements on the crack) and for 180 linear
discontinuous elements (50 elements on the crack), l ¼ L/4, and
the analytical solution for f ¼ 1 N/m2 are shown in Fig. 8. The
boundary element solutions are seen to agree well with the
analytical one near the crack tip.
derivation of exact integration formulae in the boundary element
2008.03.001
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5. Conclusion

The exact integration formulae for all integrals in 2D elasto-
static problems are derived using the specific element and the
coordinate transformation. All the formulae have concise form,
including ones for integrals involving the fundamental function
derivatives. Test problem solutions made with the use of the
formulae derived have a high accuracy, and this shows the
effectiveness of the formulae.
6. Appendix A1. Regular integrals

x2a0, i.e., the source point x does not lie on the straight line
containing the element AB over which we integrate:

I0ðu
n

11Þ ¼ c1 ðc2 þ 1Þðx2Q3 � LÞ þ
c2

2
ðLQ1 þ x1Q2Þ

� �
, (A.1)

I0ðu
n

12Þ ¼ �
1

2
c1x2Q2, (A.2)

I0ðu
n

22Þ ¼ c1 ðc2 � 1Þx2Q3 þ c2
1

2
ðLQ1 þ x1Q2Þ � L

� �� �
, (A.3)

I0ðf
n

11Þ ¼ c3ððc4 þ 1ÞQ3 þ x2d1Þ, (A.4)

I0ðf
n

12Þ ¼ c3 �
1

2
c4Q2 � x2d2

� �
, (A.5)

I0ðf
n

21Þ ¼ c3
1

2
c4Q2 � x2d2

� �
, (A.6)

I0ðf
n

22Þ ¼ c3ððc4 þ 1ÞQ3 � x2d1Þ, (A.7)

I
ðxÞ
ðun

11Þ ¼ c1 c2
L2

4
ðQ1 � 1Þ þ

x
2
1 � x

2
2

4
Q2 þ x1x2Q3

  

�
x1L

2

�
�

x
2
2

2
Q2 þ x1x2Q3 �

L2

2

!
, (A.8)

I
ðxÞ
ðun

12Þ ¼ c1 �
x1x2

2
Q2 � x

2
2Q3 þ x2L

� �
, (A.9)

I
ðxÞ
ðun

22Þ ¼ c1 c2
L2

4
ðQ1 � 1Þ þ

x
2
1 � x

2
2

4
Q2

  

þx1x2Q3 �
x1L

2

�
þ
x

2
2

2
Q2 � x1x2Q3

!
, (A.10)

I
ðxÞ
ðf n11Þ ¼ c3 c4 �

x2

2
Q2 þ x1Q3

� �
� x2Q2 þ x1Q3 þ d6

� �
, (A.11)

I
ðxÞ
ðf n12Þ ¼ c3 �c4

x1

2
Q2 þ x2Q3 � L

� �
� x2Q3 þ d7

� �
, (A.12)

I
ðxÞ
ðf n21Þ ¼ c3 c4

x1

2
Q2 þ x2Q3 � L

� �
� x2Q3 þ d7

� �
, (A.13)

I
ðxÞ
ðf n22Þ ¼ c3 c4 �

x2

2
Q2 þ x1Q3

� �
þ x1Q3 � d6

� �
, (A.14)

I0ðu
n

11;1Þ ¼ c1
1

2
c2Q2 þ x2d2

� �
, (A.15)

I0ðu
n

11;2Þ ¼ c1ððc2 þ 1ÞQ3 þ x2d1Þ, (A.16)
Please cite this article as: Fedotov VP, Spevak LF. One approach to the
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I0ðu
n

12;1Þ ¼ c1x2d1, (A.17)

I0ðu
n

12;2Þ ¼ c1 �
1

2
Q2 � x2d2

� �
, (A.18)

I0ðu
n

22;1Þ ¼ c1
1

2
c2Q2 � x2d2

� �
, (A.19)

I0ðu
n

22;2Þ ¼ c1ððc2 � 1ÞQ3 � x2d1Þ, (A.20)

I0ðf
n

11;1Þ ¼ c3ðc4d2 þ d3Þ, (A.21)

I0ðf
n

11;2Þ ¼ c3ððc4 þ 2Þd1 þ d4Þ, (A.22)

I0ðf
n

12;1Þ ¼ c3ðc4d1 þ d4Þ, (A.23)

I0ðf
n

12;2Þ ¼ c3ð�ðc4 þ 2Þd2 þ d5Þ, (A.24)

I0ðf
n

21;1Þ ¼ c3ð�c4d1 þ d4Þ, (A.25)

I0ðf
n

21;2Þ ¼ c3ððc4 � 2Þd2 þ d5Þ, (A.26)

I0ðf
n

22;1Þ ¼ c3ððc4 þ 2Þd2 � d3Þ, (A.27)

I0ðf
n

22;2Þ ¼ c3ðc4d1 � d4Þ, (A.28)

I
ðxÞ
ðun

11;1Þ ¼ c1 c2
x1

2
Q2 þ x2Q3 � L

� �
þ x2Q3 � d7

� �
, (A.29)

I
ðxÞ
ðun

11;2Þ ¼ c1 c2 �
x2

2
Q2 þ x1Q3

� �
� x2Q2 þ x1Q3 þ d6

� �
, (A.30)

I
ðxÞ
ðun

12;1Þ ¼ c1 �
1

2
x2Q2 þ d6

� �
, (A.31)

I
ðxÞ
ðun

12;2Þ ¼ c1 �
1

2
x1Q2 � 2x2Q3 þ Lþ d7

� �
, (A.32)

I
ðxÞ
ðun

22;1Þ ¼ c1 c2
x1

2
Q2 þ x2Q3 � L

� �
� x2Q3 þ d7

� �
, (A.33)

I
ðxÞ
ðun

22;2Þ ¼ c1 c2 �
x2

2
Q2 þ x1Q3

� �
þ x2Q2 � x1Q3 � d6

� �
, (A.34)

I
ðxÞ
ðf n11;1Þ ¼ c3 c4 Q3 �

d7

x2

� �
þ Q3 � d8

� �
, (A.35)

I
ðxÞ
ðf n11;2Þ ¼ c3 c4 �

Q2

2
þ

d6

x2

� �
� Q2 þ

2d6

x2

þ d9

� �
, (A.36)

I
ðxÞ
ðf n12;1Þ ¼ c3 �c4

Q2

2
�

d6

x2

� �
þ d9

� �
, (A.37)

I
ðxÞ
ðf n12;2Þ ¼ c3 �c4 Q3 �

d7

x2

� �
� Q3 þ d8

� �
, (A.38)

I
ðxÞ
ðf n21;1Þ ¼ c3 c4

Q2

2
�

d6

x2

� �
þ d9

� �
, (A.39)

I
ðxÞ
ðf n21;2Þ ¼ c3 c4 Q3 �

d7

x2

� �
� Q3 þ d8

� �
, (A.40)

I
ðxÞ
ðf n22;1Þ ¼ c3 c4 Q3 �

d7

x2

� �
þ Q3 �

2d7

x2

þ d8

� �
, (A.41)
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I
ðxÞ
ðf n22;2Þ ¼ c3 c4 �

Q2

2
þ

d6

x2

� �
� d9

� �
. (A.42)

In the above equations,

Q1 ¼ ln D1; Q2 ¼ ln D2 � ln D1, (A.43)

Q3 ¼ arctg
x1

x2

� �
� arctg

x1 � L

x2

� �
, (A.44)

d1 ¼
x1 � L

D1
�

x1

D2
; d2 ¼ x2

1

D2
�

1

D1

� �
, (A.45)

d3 ¼ 2x2
x

2
1

D2
2

�
x1 � L
	 
2

D2
1

 !
; d4 ¼ 2x

2
2

x1

D2
2

�
x1 � L

D2
1

 !
, (A.46)

d5 ¼ 2x
3
2

1

D2
2

�
1

D2
1

 !
; d6 ¼

x2L x1 � L
	 

D1

, (A.47)

d7 ¼
x

2
2L

D1
; d8 ¼ d7d2 þ d6d1 þ

d7

x2

, (A.48)

d9 ¼ d6d2 � d7d1, (A.49)

D1 ¼ ðx1 � LÞ2 þ x
2
2; D2 ¼ x

2
1 þ x

2
2. (A.50)

7. Appendix A2. Singular integrals

x2 ¼ 0, i.e., the point x lies on the straight line containing the
element AB:

Ī0ðu
n

11Þ ¼ c1ðc2ðLðQ
�

1 � 1Þ þ x1Q�2Þ � LÞ, (A.51)

Ī0ðu
n

22Þ ¼ c1c2ðLðQ
�

1 � 1Þ þ x1Q�2Þ, (A.52)

Ī0ðu
n

12Þ ¼ Ī0ðf
n

11Þ ¼ Ī0ðf
n

22Þ ¼ 0, (A.53)

Ī0ðf
n

12Þ ¼ �Ī0ðf
n

21Þ ¼ �c3c4Q�2, (A.54)

I
ðxÞ
ðun

11Þ ¼
c1

2
c2 L2Q�1 þ x

2
1Q�2 �

L2

2
� Lx1

 !
� L2

 !
, (A.55)

I
ðxÞ
ðun

22Þ ¼
c1c2

2
L2Q�1 þ x

2
1Q�2 �

L2

2
� Lx1

 !
, (A.56)

I
ðxÞ
ðun

12Þ ¼ I
xð Þ
ðf n11Þ ¼ I

ðxÞ
ðf n22Þ ¼ 0, (A.57)

I
ðxÞ
ðf n12Þ ¼ �I

ðxÞ
ðf n21Þ ¼ �c3c4ðx1Q�2 � LÞ, (A.58)

I0ðu
n

11;1Þ ¼ I0ðu
n

22;1Þ ¼ c1c2Q�2, (A.59)

I0ðu
n

12;1Þ ¼ I0ðu
n

11;2Þ ¼ I0ðu
n

22;2Þ ¼ 0, (A.60)

I0ðu
n

12;2Þ ¼ �c1Q�2, (A.61)
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I0ðf
n

11;1Þ ¼ I0ðf
n

22;1Þ ¼ I0ðf
n

12;2Þ ¼ I0ðf
n

21;2Þ ¼ 0, (A.62)

I0ðf
n

12;1Þ ¼ �I0ðf
n

21;1Þ ¼ I0ðf
n

22;2Þ ¼
c3c4L

x1ðx1 � LÞ
, (A.63)

I0ðf
n

11;2Þ ¼
c3ðc4 þ 2ÞL

x1ðx1 � LÞ
, (A.64)

I
ðxÞ
ðun

11;1Þ ¼ I
ðxÞ
ðun

22;1Þ ¼ c1c2ðx1Q�2 � LÞ, (A.65)

I
ðxÞ
ðun

12;1Þ ¼ I
ðxÞ
ðun

11;2Þ ¼ I
ðxÞ
ðun

22;2Þ ¼ 0, (A.66)

I
ðxÞ
ðun

12;2Þ ¼ �c1ðx1Q�2 � LÞ, (A.67)

I
ðxÞ
ðf n11;1Þ ¼ I

ðxÞ
ðf n22;1Þ ¼ I

ðxÞ
ðf n12;2Þ ¼ I

ðxÞ
ðf n21;2Þ ¼ 0, (A.68)

I
ðxÞ
ðf n12;1Þ ¼ �I

ðxÞ
ðf n21;1Þ ¼ I

ðxÞ
ðf n22;2Þ ¼ c3c4

L

x1 � L
� Q�2

� �
, (A.69)

I
ðxÞ
ðf n11;2Þ ¼ c3ðc4 þ 2Þ

L

x1 � L
� Q�2

� �
. (A.70)

In Eqs. (A.51)–(A.70),

Q�1 ¼ ln jL� x1j; Q�2 ¼ ln jx1j � ln jL� x1j. (A.71)
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