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a b s t r a c t

We introduce an alternative method in computational fracture mechanics to evaluate Stress Intensity
Factors (SIFs) directly using the Extended Dual Boundary Element Method (XBEM) for 2D problems. Like
other enrichment approaches, the new approach is able to yield accurate results on coarse discretisa-
tions, and the enrichment increases the problem size by only two degrees of freedom per crack tip. The
BEM equations formed by collocation at nodes are augmented by two additional equations that enforce
continuity of displacement at the crack tip. The enrichment approach provides the values of SIFs KI and
KII directly in the solution vector and without any need for postprocessing such as the J-integral.
Numerical examples are used to compare the accuracy of these directly computed SIFs to J-integral
processing of both conventional and enriched boundary element approximations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In making fracture assessments, and in particular the predic-
tion of crack propagation, it is of great importance to have an
accurate understanding of the stress field in the vicinity of the
crack tip. In Linear Elastic Fracture Mechanics (LEFM), the Stress
Intensity Factors (SIFs) play a major role in the description of the
singular stress field, and can be seen in the stress and displace-
ment expansions introduced by Williams [1]. SIFs can be deter-
mined from handbooks (e.g. [2]) for some simple cases of
geometry and loading. For complicated shapes or applied bound-
ary conditions, engineers can make use of numerical methods to
resolve the stress fields and thereby give the SIFs KI and KII for
modes I and II, respectively. It is well known that a singularity
appears at the crack tip in LEFM, making numerical methods such
as Finite Element Method (FEM) and Boundary Element Method
(BEM) inefficient without modification. Watwood [3] noted the
need for using a very refined mesh near the crack tip. Much of the
computational fracture mechanics research work since then has
involved developing algorithms that, in one way or another, offer a
more efficient solution. In an early example of enriched FEM
formulations, Benzley [4] successfully determined SIFs using iso-
parametric finite elements enriched locally with functions to
capture point singularities. Henshell and Shaw [5] presented the

use of quarter-point elements, in which the desired
ffiffiffi
r

p
(where r is

the distance from the crack tip) variation in displacements could
be achieved by moving the mid-nodes of elements to quarter-
point positions.

Contributions to computational fracture mechanics continued
with the hybrid crack element introduced by Tong et al. [6] and
extended by Xiao and Karihaloo [7], showing how it can be used
for direct evaluation of singular and higher order coefficients. In
parallel, Leung and Su [8,9] introduced the fractal finite element
method which divides the domain into a regular and a singular
region, where the crack tip is the centre of similarity of the
singular region. The method was applied to modes I, II and III
successfully and has shown an accuracy of (1%) [10]. Recently,
extensions of the method have been added including fractal hybrid
finite elements [11] and fractal-like FEM [12] for bi-material
problems. The Scaled Boundary Finite Element Method (SBFEM)
[13] benefits from its semianalytical formulation to provide highly
accurate approximations for the SIFs. The method suffers from its
restriction to star-shaped domains (i.e. those exhibiting a line-of-
sight to all boundary points from the “scaling centre” which is
placed at the crack tip in fracture problems) or models comprising
a set of star-shaped subdomains. This restriction has been over-
come by coupling the SBFEM to the BEM [14].

The partition of unity method was introduced as a general
technique to allow enrichment of FEM approximations. Melenk
and Babuška [15] showed how the traditional piecewise polyno-
mial approximation basis can be enriched by the use of functions
(or sets of functions) that offer better approximation properties.
This idea has been applied to computational fracture mechanics in
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the form of the Extended Finite Element Method (XFEM) [16]. The
use of XFEM enrichment led to a reduction in the need for mesh
refinement, and also separated the mesh from the crack path so
crack propagation analysis could proceed with the need for
remeshing, and for these reasons it has spawned a considerable
volume of literature.

In parallel with the development of finite element methods, the
Boundary Element Method (BEM) also gained popularity because of its
boundary-only meshing (offering a reduction in dimensionality of the
problem) and because of its ability to capture discontinuous functions.
It also offered good accuracy of solutions on the domain boundary
whereas finite element methods offered their greatest accuracy at
integration points within the element. However, using the classical
BEM to collocate on coincident points on opposing crack surfaces gives
rise to degenerate linear systems [17]. Many methods have been
proposed offering various treatments including special Green's func-
tions [18] and the subregion technique [19]. Hong and Chen [20,21]
introduced the idea of Dual Boundary Integral Equations, in which a
combination of the standard Boundary Integral Equation and its
derivative can be used to provide independent equations in order to
overcome the problem of degeneracy. They showed how the Dis-
placement Boundary Integral Equation (DBIE) can be differentiated
and Hookes law applied to derive the Traction Boundary Integral
Equation (TBIE). Chen and Hong [22] for the first time solved a system
formed from a combination of the two integral equations in the
context of a Darcy problem, but Portela et al. [23] were the rst to
implement the combined use of the DBIE and TBIE in a single system
to solve crack problems. They named this the Dual Boundary Element
Method. Hong and Chen [24] reviewed the Dual BEM development up
to the end of the 1990s. Portela et al [23] also described how the use of
the TBIE imposes certain conditions on the selection of elements used
for the discretisation of crack surfaces. These conditions arise because
of the continuity requirements of the field variables for the existence
of Cauchy and Hadamard principal value integrals. It is routine to
overcome the problemwhile still using collocation by using discontin-
uous elements, in which the nodes are located within the body of the
element, and not at its ends. Collocation at these nodes satisfies the
Holder continuity requirements of the hypersingular integral equation
since the shape functions are continuously differentiable at these
points. There is considerable literature describing the application of
discontinuous element for this purpose e.g. [23,25–27]. These ele-
ments also permit the analysis of wide variety of crack geometries
including kinked cracks.

The use of theWilliams expansions in the BEM has been presented
by Portela et al. [28] to subtract the singularity by dividing the domain
into singular and regular fields. The technique was able to solve for KI
and KII directly. Recently, the partition of unity approach was used by
Simpson and Trevelyan [29], who presented a boundary element
method enriched in a similar fashion to XFEM (giving a technique that
could be called XBEM, as we continue to call it henceforth). This work
extended the benefits of XFEM to provide high accuracy of SIFs
from coarse boundary-only discretisations. Their method was soon
extended to curved cracks [30]. Both implementations relied on the
use of the J-integral [31] to calculate the SIFs. In the current paper, we
extend this XBEM approach by using a modified form of enrichment
in combination with crack tip displacement constraint equations to
provide values of SIFs directly. The aim is to enable the solution of
large problems, particularly when the enrichment is extended to 3D,
by making a considerable reduction in the number of degrees of
freedom required to achieve results of a prescribed accuracy. We note
that other approaches to acceleration of BEM simulations have been
developed, e.g. the Fast Multipole Method (FMM), which has been
applied successfully to speed up the evaluation for thousands of cracks
[32]. The authors believe the enriched XBEM approach described in
this paper could be further accelerated with the FMM to provide a
powerful solution. Unlike [32] the proposed method is able to evaluate

SIFs directly at a cost of two additional degrees of freedom per crack
tip. This is an interesting subject for further research.

A similar square root enrichment was earlier introduced into
the shape functions for special crack tip elements by Li et al. [33],
and applied to the relative crack face displacements in a sym-
metric Galerkin BEM based on weak form integral equations. Like
[29,30] this technique was shown to give good accuracy from
coarse meshes. The approach of [29,30] is adopted in the current
work as it offers similar accuracy benefits but can be more easily
implemented by making a relatively simple modification to a pre-
existing DBEM code.

In general determination of SIFs can be categorized into direct
and post-processing methods. Direct methods offer speed and
flexibility to evaluate higher order terms [7]. On the other hand,
the J-integral, taken over a closed independent integral path and
based on energy approach, is the most used post-processing
technique and is available to general purpose FEM and BEM codes
that do not have any special formulations injected to deal directly
with the stress singularity.

In this paper, we introduce a direct, highly accurate evaluation
of SIFs by enriching crack surface elements. Moreover, it has
potential for extension to 3D, where the use of the J-integral type
approaches become more cumbersome than in 2D.

2. Extended (Dual) Boundary Element Method

Applying the classical direct collocation BEM to problems con-
taining cracks leads to rank deficiency since duplicate equations are
formed when collocating at coincident nodes on opposing crack
surfaces. The Dual Boundary Element Method (DBEM) [23] over-
comes this difficulty and is an efficient technique for modelling
crack problems in BEM. The method consists of two independent
boundary integral equations; where the Displacement Boundary
Integral Equation (DBIE) is used when collocating on one crack
surface, and the Traction Boundary Integral Equation (TBIE) is used
on the another surface. Moreover, discontinuous elements are used
for the geometry discretisations to meet continuity requirement as
shown in Fig. 1. The DBIE used on the upper surface is given by

Cijðx\5pt‵ Þujðx\5pt‵ÞþCijðx̂Þujðx̂Þþ
Z
Γ
Tijðx\5pt‵; xÞujðxÞdΓ ¼

Z
Γ
Uijðx\5pt‵; xÞtjðxÞ d

ð1Þ
where Tij and Uij are the traction and displacement fundamental
solutions, and Cijuj represents a jump term that emerges as a result
of the strongly singular integral of the traction kernel. x and x\5pt‵
denote the usual field point and source point in boundary element
methods, and x̂ is the point coincident with the source x\5pt‵ but
lying on the opposing crack surface as shown in Fig. 1.

The TBIE can be obtained by differentiating the DBIE in the k
direction with respect to the normal direction at source point
x\5pt‵, and can be written for a smooth boundary as follows,

1
2
tjðx\5pt‵Þ�

1
2
tjðx̂Þþniðx\5pt‵Þ

Z
Γ
Skijðx\5pt‵; xÞukðxÞdΓ ¼ niðx\5pt‵Þ

Z
Γ
Dkijðx\5pt‵; x

ð2Þ
where Skij and Dkij are derivative kernels obtained by differentiating

Fig. 1. Crack characteristics with DBEM.

I.A. Alatawi, J. Trevelyan / Engineering Analysis with Boundary Elements 52 (2015) 56–63 57



the fundamental solution. In this paper we consider traction-free
cracks, so that tjðx\5pt‵Þ and tjðx̂Þ in (2) vanish, and will be dropped
in the description of the enriched form of the TBIE.

2.1. Extended boundary integral equation formulation

The stress singularity at the crack tip cannot be captured by
standard quadratic interpolation of displacements in the BEM
unless highly refined meshes are used. As an alternative, the
extended boundary element method introduced by Simpson and
Trevelyan [29] shows an improvement of accuracy using coarse
meshes, made possible by the use of the asymptotic, analytical
expression for displacements around the crack tip within the BIE.
The well-known Williams expansion for displacements near the
crack tip can be written as

uj ¼ KIψ Ijðr;θÞþKIIψ IIjðr;θÞ ð3Þ

where KI and KII are the mode I and mode II stress intensity factors,
and the terms ψ Ijðr;θÞ and ψ IIjðr;θÞ are given by the following
functions:

ψ Ix ¼
1
2μ

ffiffiffiffiffiffi
r
2π

r
cos

θ
2
κ�1þ2 sin 2θ

2

� �
ð4aÞ

ψ IIx ¼
1
2μ

ffiffiffiffiffiffi
r
2π

r
sin

θ
2
κþ1þ2 cos 2θ

2

� �
ð4bÞ

ψ Iy ¼
1
2μ

ffiffiffiffiffiffi
r
2π

r
sin

θ
2
κþ1�2 cos 2θ

2

� �
ð4cÞ

ψ IIy ¼
�1
2μ

ffiffiffiffiffiffi
r
2π

r
cos

θ
2
κ�1�2 sin 2θ

2

� �
ð4dÞ

where r and θare polar coordinates centered at the crack tip, μ is
the shear modulus and κ is a parameter defined as κ ¼ 3�4υ and
κ ¼ ð3�υÞ=ð1þυÞ for plane strain and plane stress, respectively, υ
being the Poisson's ratio. Eq. (3) can be used to enrich an
otherwise classical piecewise polynomial shape function approx-
imation of displacement near the crack tip, in a fashion similar to
the early work of Benzley [4], as follows,

uj ¼ ~K Iψ Ijþ ~K IIψ IIjþ ∑
M

a ¼ 1
Naua

j ð5Þ

where uj
a is no longer the nodal displacement (as in the conven-

tional BEM), but is instead to be viewed simply as a coefficient
scaling the Lagrangian shape function Na for node a, and M is the
total number of element nodes. Eq. (3) is able to approximate well
the displacement near the crack tip. It is noted that (3) predicts the
displacement components to vanish at the crack tip, i.e. at r¼0.
Therefore an important role of the last term in (5) is to capture a
non-zero displacement of the crack tip. The coefficients ~K I and ~K II

are the unknown amplitudes of the enrichment functions ψ Ij;ψ IIj
and are found as terms in the XBEM solution vector. When this
enriched form of the displacement is used, the DBIE (1) can be
written in a discretised form,

Cijðx\5pt‵Þujðx\5pt‵ÞþCijðx̂Þujðx̂Þþ ∑
Ne

n ¼ 1
∑
M

a ¼ 1
Pna
ij u

na
j þ ∑

Ne

a ¼ 1

~P
n
ijI
~K I

þ ∑
Ne

a ¼ 1

~P
n
ijII

~K II ¼ ∑
Ne

n ¼ 1
∑
M

a ¼ 1
Qna

ij t
na
j ð6Þ

where

Pna
ij ¼

Z 1

�1
NaðξÞTijðx\5pt‵; xðξÞÞJnðξÞ dξ ð7aÞ

Qna
ij ¼

Z 1

�1
NaðξÞUijðx\5pt‵; xðξÞÞJnðξÞ dξ ð7bÞ

~P
n
ijI ¼

Z 1

�1
Tijðx\5pt‵; xðξÞÞψ IjðξÞJnðξÞ dξ ð7cÞ

~P
n
ijII ¼

Z 1

�1
Tijðx\5pt‵; xðξÞÞψ IIjðξÞJnðξÞ dξ ð7dÞ

Ne and M are the total number of elements and the number of
nodes per element, respectively, ξAð�1;1Þ is the local parametric
coordinate used to describe the element, and JnðξÞ is the Jacobian
of coordinate transformation.

We enrich only elements on the crack surfaces and in the
vicinity of the crack tips, so that for most elements the displace-
ment is expressed in the usual shape function form. If element n is
unenriched then ~P

n
ijI ¼ 0 and ~P

n
ijII ¼ 0. In addition, as θ¼ 7π at the

crack surfaces for a flat crack, ψ Ij and ψ IIj are functions only of ξ.
The jump terms in the enriched DBIE remain the same as the jump
terms arising from the strongly singular enriched integrals will
cancel during implementation. The discretised TBIE is

niðx‵Þ ∑
Ne

n ¼ 1
∑
M

a ¼ 1
Enakiju

na
k ¼ niðx‵Þ ∑

Ne

n ¼ 1
∑
M

a ¼ 1
Fnakijt

na
k ð8Þ

where

Enakij ¼
Z 1

�1
NaðξÞSkijðx\5pt‵; xðξÞÞJnðξÞdξ ð9aÞ

Fnakij ¼
Z 1

�1
NaðξÞDkijðx\5pt‵; xðξÞÞJnðξÞdξ ð9bÞ

Substituting the enriched form of displacement (5) into the
integral equation (8) we arrive at

niðx‵Þ ∑
Ne

n ¼ 1
∑
M

a ¼ 1
Enakiju

na
k þniðx\5pt‵Þ ∑

Ne

a ¼ 1

~E
n
kijI

~K I ð10Þ

þniðx‵Þ ∑
Ne

a ¼ 1

~E
n
kijII

~K II ¼ niðx\5pt‵Þ ∑
Ne

n ¼ 1
∑
M

a ¼ 1
Fnakijt

na
k ð11Þ

where, if the element n is enriched,

~E
n
kijI ¼

Z 1

�1
Skijðx\5pt‵; xðξÞÞψ IkðξÞJnðξÞ dξ ð11aÞ

~E
n
kijII ¼

Z 1

�1
Skijðx\5pt‵; xðξÞÞψ IIkðξÞJnðξÞ dξ ð11bÞ

or otherwise ~E
n
kijII ¼ 0 and ~E

n
kijII ¼ 0. Implementation of the TBIE

and DBIE needs much care in evaluating the hyper-singular and
strongly singular integrals that arise (we note that the use of
enrichment functions does not change the order of the singular-
ity). However, useful techniques have been applied successfully to
XBEM by Simpson [30], where the hyper-singular and strongly
singular integrals have been evaluated using the Guiggiani method
[34], and the Telles [35] adaptive method used for the weakly
singular cases.

It is clear after introducing enrichment equations (6) and (10) that
new degrees of freedom appear. The main advantage of formulating
the enrichment as stated above is that the number of extra degrees of
freedom is limited to two per crack tip. Thus, increasing the number of
enriched elements has no effect on the size of the system. In order to
achieve a square system of equations, an additional collocation point
can be used, and this allows us to solve for ~K I and ~K II as part of the
solution vector. Simpson and Trevelyan [30] suggest an alternative,
generating additional equations in which the fundamental solution is
replaced by pure mode I and mode II stress states. However, both
methods were unable to evaluate accurate SIFs directly, and the
J-integral was needed to find SIFs to the required accuracy.

I.A. Alatawi, J. Trevelyan / Engineering Analysis with Boundary Elements 52 (2015) 56–6358



3. Crack tip tying constraint

In this section we introduce a new tying constraint that
(i) provides a very simple form for the additional equations
required to accommodate the extra enrichment degrees of free-
dom, (ii) allows the enrichment amplitudes ~K I and ~K II to approx-
imate closely the stress intensity factors KI and KII, and thereby
(iii) removes the need for J-integral computations. This is achieved
by the simple method of constraining against a displacement
discontinuity at the crack tip.

We define as element A, parameterised by local variable ξA, the
element on the upper crack surface and touching the crack tip at
ξA ¼ 1. We further define as element B, parameterised by local
variable ξB, the element on the lower crack surface and touching
the crack tip at ξB ¼ �1. Applying the expression (5) to give the
displacement at the crack tip which we denote point y, and
equating the values from the elements A and B, we have

~K Iψ IjðyÞþ ~K IIψ IIjðyÞþ ∑
M

a ¼ 1
Na

Að1Þua
Aj ¼ ~K Iψ IjðyÞþ ~K IIψ IIjðyÞþ ∑

M

b ¼ 1
Nb

Bð�1Þub
Bj

ð12Þ

Here Na
AðξAÞ and Nb

BðξBÞ denote the shape functions for nodes a and
b of elements A and B respectively. Terms ua

Aj;u
b
Bj denote the

coefficients multiplying the respective shape functions for these
nodes (we are careful not to say they are nodal displacements,
which they would be in conventional BEM, but are no longer
because of the injection of the enrichment functions). Cancellation
of the enrichment terms, which in any case vanish at the crack tip,
the constraint becomes

∑
M

a ¼ 1
Na

Að1Þua
Aj ¼ ∑

M

b ¼ 1
Nb

Bð�1Þub
Bj ð13Þ

Using the constraint (13) for both x and y displacements provides
two additional equations for each crack tip. These equations are
appended to the BEM system formed by collocation at the nodes,
creating a square system. Solution of the system allows ~KI and ~KII

to be revealed in the solution column with remarkable accuracy.

4. Numerical examples

4.1. Mode I

Two pure Mode I cases are selected to show the effect of crack
tip displacement. The first case (Case 1) is a centre crack in an
infinite homogeneous elastic flat plate as shown in Fig. 2. This has
a well-known exact solution in which the crack tip displacement is
zero. The XBEM model is formed from the actual crack surfaces
along with a contour, Γext, truncating the infinite domain. This
contour is formed so that the entire XBEM domain lies close to the
crack tip and so pure mode I applies. Traction-free crack surfaces
are prescribed, and on Γext displacements calculated by Williams
expansions have been used as boundary conditions. The second
case (Case 2) considers an edge crack in a flat plate under uniaxial
traction (pull-pull) as shown in Fig. 3. The reference solution [36]
represented by a ratio of KI=K0 has been used as there is no exact
solution available. The considered dimensions are a¼ h¼ 0:5W .
Both cases are treated as plane stress.

Case 1. Fig. 4 shows the displaced shape considering (a) the
component of the displacement for the crack surface enriched
elements associated with the first and the second term of Eq. (5);
(b) the component of the displacement represented by the shape
function expansion in the last term of Eq. (5), and (c) the total
displacement considering all three terms of (5). In this special case
the enrichment functions ψ Ij;ψ IIj are capable of capturing the
displacement field over the crack surfaces. As a result there is no
contribution from the shape functions. In Fig. 6(a) we display the
percentage errors in the SIF KI using (i) conventional, unenriched
DBEM with the J-integral, (ii) enriched XBEM with the J-integral,
(iii) direct ~K I from enriched XBEM using extra collocation points to
provide the additional integral equations required, and (iv) direct
~K I from enriched XBEM using Eq. (13) to enforce displacement

Fig. 4. Displacement components for case 1.

Fig. 3. Square flat plate under axial tension (case 2).

Fig. 2. Infinite flat plate (case 1).
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continuity at the crack tip. It is seen that all the enriched methods
produce highly accurate SIF results in comparison with the
conventional (piecewise polynomial) BEM J-integral solutions.
Because the enrichment is ideal, these results can be achieved
with very small numbers of degrees of freedom. In order to make a
comparison of the accuracy of the different methods, we focus on
the set of results at 312 and 314 degrees of freedom from Fig. 6(a).
Table 1 shows the error compared to exact KI, which can be
calculated as 17:7245 MPa

ffiffiffiffiffi
m

p
.

Case 2. The displaced shape for the second case is presented in
Fig. 5, which shows the displacement component represented by
the first and the second term of Eq. (5), Fig. 5b the displacement
contribution by shape function terms in (5), and Fig. 5c which
shows the total displacement considering all three terms of (5). It
is evident that the enrichment functions no longer provide a
complete basis for the crack displacement, and the shape functions
are required to compensate, so that the total displacement is
approximated accurately. Fig. 6(b) shows the convergence of the
various methods we test (note that the reference solution is
approximate). In Table 2 we present the numerical values of

KI=Ko, for the models having 372 and 374 degrees of freedom. It
can be seen that the XBEM with J-integral and the direct method
using the tying constraint are both capable of delivering results
very close to the reference solution.

Comparing the directly computed ~K I from enriched XBEM
using extra collocation points in Case 1 and 2 shows the effect of
the displacement discontinuity at the crack tip. It is immediately
evident that the use of the XBEM enrichment (5) without the use
of the constraint (13) causes a significant deterioration in the
ability of ~K I to approximate KI directly, and that in this case a
J-integral is necessary. The injection of the tying constraint, forcing
displacement continuity at the crack tip, allows the directly
calculated ~K I to approximate KI well. Remarkable results have
been achieved which show better accuracy compared to conven-
tional J-integral BEM approaches.

4.1.1. Number of enriched elements
A useful feature of the new enrichment presented in this paper

is that the enrichment functions are not associated with nodal
degrees of freedom as in the Partition of Unity Method. Instead,
since the new degrees of freedom ~K I ; ~K II are associated with the
crack tip, this enrichment technique gives us the freedom to
increase the number of enriched elements without increasing
the DOFs. The enrichment degrees of freedom are limited to two
per crack tip. By the term “enriched element” we describe an
element (on a crack surface) over which the displacement is
approximated by Eq. (5). The number of enriched elements has a
significant effect on the results, both when the J-integral is used to
determine the SIFs and when the directly calculated ~K I ; ~K II

are used. For example, Fig. 7 shows the reduction in error for
Case 1 when all crack surface elements are enriched. For this

Fig. 6. Results of KI for Mode I using various methods. (a) Percentage error of KI for Case 1. (b) Comparison of KI for Case 2.

Fig. 5. Displacement components for case 2.

Table 1
Errors comparison for Case 1.

Method ndof KI % Error

Unenriched DBEM J-integral 312 17,626,523.75 �0.55299
XBEM J-integral 314 17,724,524.44 �0.00008

XBEM Direct ~KI (colloc.) 314 17,724,790.96 0.00142

XBEM Direct ~KI (Tying) 314 17,724,564.26 0.000145

I.A. Alatawi, J. Trevelyan / Engineering Analysis with Boundary Elements 52 (2015) 56–6360



reason, all results in this paper are presented for models in which
all elements on crack surfaces are enriched.

4.1.2. Order of extrapolation for tying constraint
The tying constraint enforces continuity of displacement at the

crack tip, expressed through the equality of the displacements at this
point as found by extrapolation of displacements over the upper and
lower crack surfaces. The constraint is presented in Eq. (13) by
basing the extrapolation on the M nodes of each element touching
the crack tip. We use three-noded, quadratic discontinuous elements
(i.e. M¼3). However, it is possible to use a higher order Lagrangian
extrapolation by considering the nodes on more elements.

This technique has been found to give improved accuracy. Fig. 8
shows a comparisonmade (for the problem Case 2) of the convergence
of SIF results obtained through different orders of extrapolation. We

compare results using 3 nodes to extrapolate displacement to those
when 9 nodes are used. These are the nearest nine nodes to the crack
tip on each crack surface. An improvement can be seen as a result of
increasing the order used for extrapolation of displacement results to
the crack tip. It is tempting to suggest using even higher order
Lagrangian polynomials; however, this can increase error due to
Rung's phenomenon.

4.2. Pure mode II

We consider a square domain surrounding the tip of a crack in
pure mode II. The problem is shown in Fig. 9; dimensions used in
the analysis are h¼ a¼ 0:5W . We prescribe boundary conditions
as follows: the elements on the two crack faces are traction-free,
and to the elements on all other parts of the square boundary of
the domain we apply a displacement boundary condition equal to
the pure mode II case. We use the algorithm described in the
paper to determine KII, the exact solution for which is KII ¼ σ

ffiffiffiffiffiffi
πa

p
,

and compare the errors in the term ~K II against those from both a
conventional BEM solution and an enriched XBEM solution, both
using the J-integral. This comparison is shown in Fig. 10 and shows
both enriched methods to provide highly accurate solutions in
comparison to the more slowly converging results of the classical
DBEM. As for the Case 1 considered in the mode I experiments, the
enrichment is ideal here leading to very small errors. To clarify
further, the exact behaviour is included in the approximation
space through (in the mode II case) the second term on the right
hand side of Eq. (5). The role of the last term in (5) can be viewed
as the use of piecewise polynomials to capture the difference

Fig. 10. Results for pure Mode II.

Fig. 9. A square section sheet subject to shear.

Fig. 8. Effect of order of displacement extrapolation (Case 2).

Fig. 7. Effect of the number of enriched elements (Case 1).

Table 2
Case 2 results compared to [36].

Method ndof KI
KI
Ko

Unenriched DBEM J-integral 372 53,775,818.85 3.034
XBEM J-integral 374 53,299,223.93 3.007

XBEM Direct ~KI (colloc.) 374 50,677,080.10 2.859

XBEM Direct ~KI (Tying) 374 53,142,056.71 2.998
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between pure mode I and II and the displacements in the case
under analysis. Cases in which the enrichment is not ideal, i.e. we
are not considering pure mode I and II, are considered in the
following sections.

4.3. Bending

A rectangular plate under bending is considered as shown in
Fig. 11. The plate is subjected to a bending moment applied to the
upper and lower surfaces, as shown in the figure, and we consider
the case b¼ 2a. We compare the convergence of the two enriched
formulations and classical unenriched DBEM in terms of the

normalised stress intensity factor KI=Ko (where Ko ¼ 6M
ffiffiffiffiffiffi
πa

p
=b2).

The comparison is presented in Fig. 12, and shows smooth conver-
gence toward the reference value from [36] (we note the reference
solution is presented in [36] with accuracy of 1% which is rather
large in comparison with the errors we are finding).

4.4. Mixed mode

In this section we apply the proposed enrichment to a mixed
mode case of an inclined edge crack in a finite plate under uniaxial
tensile load. For mixed mode cases it is customary to use a
decomposition technique [37] when using the J-integral in order
to solve for both KI and KII. The plate contains an edge inclined
crack at an angle β as shown in Fig. 13. The problem does not have
exact solution; instead, the numerical solution obtained by Xiao
et al. [7] is used. The plate dimensions are W ¼ h¼ 1, a¼0.6 and
the angle of inclination β is 301. We consider Young's modulus and
Poisson's ratio to be 105 and 0.25 respectively. Uniaxial tension
σ ¼ 1 is applied over the top edge of the plate, and zero displace-
ment prescribed in both directions at the lower end.

Results for KI and KII are presented in Figs. 14 and 15; the same
methods as above have been used to evaluate the SIFs at various
model sizes. The reference solution is plotted as a horizontal line for
comparison; the reader is reminded that this is also a numerical
approximation and included for purposes of comparison. In the results
it can be seen that the direct method is smoothly converging toward
the same value as the J-integral methods.

Fig. 15. KII for inclined crack results compared to Xiao et al. [7].

Fig. 14. KI for inclined crack results compared to Xiao et al. [7].

Fig. 13. Rectangular plate subject to shear [16].

Fig. 12. A comparison of normalised results for bending plate.

Fig. 11. Rectangular plate under bending.
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5. Conclusion

A new, extended dual boundary element method has been
presented in which the enrichment functions are based closely on
the stress intensity factors in Linear Elastic Fracture Mechanics theory
for 2D. The enrichment adds only two degrees of freedom per crack
tip. The extra equations that are therefore required are derived from
enforcement of displacement continuity at the crack tip. The method
is able to evaluate SIFs directly without any requirement for post-
processing calculations such as the J-integral. Results are improved by
increasing the number of enriched elements. Since this can be done
without increasing the size of the system, and with negligible extra
computational cost, the optimum is to enrich all crack surface
elements for more accuracy. Further accuracy can be obtained by
using high (8th) order Lagrangian polynomials in applying the crack
tip tying constraint. Strongly singular and hypersingular integrals that
arise, can be evaluated using Guiggiani method [34] as illustrated in
[29,30]. The SIFs found from the direct method converge to the same
values as those from the J-integral, and the method clearly outper-
forms the use of the piecewise polynomial dual BEM. Results are
shown for two mode I problems and a mixed mode problem.

Current work by the authors involves extending these ideas to
3D, where it is expected that the ability to produce accurate SIFs
without recourse to the J-integral will be of significant benefit.
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