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Abstract

A dual integral formulation with 4 hypersingular integral is derived 1o solve the boundary value problem with singularity
arising from a degenerate boundary. A seepage flow under a dam with sheet piles is analyzed to check the validity of the
muthematical model. The closed-form integral formulac containing the four kernel functions in the dual integral cquations
are presented and clearly reveal the propertics of the single- and double-layer potentials and their derivatives. The field and
boundary quantities of the potential heads and normal fluxes can thus be expressed in terms of both boundary potentials
and boundary normal tluxes through the dual boundary integral equations. To facilitate the compulation of the seepage
flow along and near the boundary, an ¢xpression for the flux tangential to the boundary is also derived. The numerical
implementations are compared with analytical selutions and the results of a general purpese commercial finite element
program, Finally, four design cascs of sheet piles are examined. and the best choice among them is suggested.

1. Introduction

Sheet piles or cutolt walls often occur in problems of flow through porous media as shown in Fig.
1. Several actual civil engineering problems involving a wall have been noted, for cxample, a wall to
retain a building excavation, a wall around a marine (crminal, an anchored bulkhead tor the ship dock,
etc. [1]. The dam and the sheet pile run for a considerable length in a direction perpendicular to the
page and thus the flow underneath the sheet piles is two dimensional.

In studying potential scalar or vector problems, the analyst may encounter problems with singularity;
nevertheless, the singular behavior is often ignored in numerical methods with the expectation that the
crror will be limited to the vicinity of the singularity. However, it is essential and inevitable for the
employed formulation to be capable of describing the singular behavior when the singularity arises from
a degenerate boundary, for example, in sheet pile design in seepage problems where the singularily
dominates the force cxerted on the sheet piles, and in the determination of the stress intensity factor
of fracture mechanics for crack problems, where the strength of the singularity is the very value to be

" Corresponding author,
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Fig. 1. Classical problem of scepage llow with sheet piles under a dam.

sought. The degenerate boundary refers to a boundary. two portions of which approach cach other such
that the cxicrior region between the two portions becomes infinitely thin. In finite elements, to tackle
degeneratc boundary problems, special trcatments such as the quarter-point rule have been used, or
special singular or hybrid clements have been developed; e.g., MSC/NASTRAN Version 66 provides
the capabilities of singular CRAC3D and CRAC2D elements for crack problems, but for potential flow
problems wilh singularity, no counterparts have been developed in the said commercial program (o the

authors’ knowlcdge,
In recent decades, the boundary clement method has heen evolving to be a widely accepted tool for

the solution of enginecring problems. The casy data preparation due o onc dimension reduction makes it
altractive for practical use. However, for problems with singularity arising from a degenerate boundary,
it is well known that the coincidence of the boundarics gives rise to an ill-conditioned problem. The
subdomain technique with artificial boundarics has been introduced to ensurc a unique solution, The main
drawback of the technique is that the deployment of artificial boundaries is arbitrary and, thus, cannot be
implemented easily into an automatic procedure. In addition, modcl creation is more troublesome than
in the singlc domain approach. To tackle such degeneratc boundary problems, dual infegral formulations
have been proposed in. e.g., Refs. |2-6] for potential/seepage/Darcy flows around cutoff walls/sheet
piles, Refs. [3,7,8,9,10] for crack problems, Ref. [11] for thin airfoils in aerodynamics. Using the dual
integral formulations, all the aforementioned boundary valuc problems can be made well-posed and
solved effectively in the original single domain,

In this paper, the boundary c¢lement method based on the formulation of the dual integral equa-
tions proposed in [2-6] is employed, and the general purpose program boundary clement potential 2-D
(BEPO2D) is developed to analyze the seepage flow under a dam with sheet piles. To facilitate com-
putation of the sccpage flow along and near the boundary, an expression for the flux tangential to the
boundary is also derived and implemented in BEPO2D. Sevcral cxamples are furnished and the bound-
ary element solutions using BEPO2D are compared with analytical solutions if available and with the
finite element solutions using MSC/NASTRAN, The boundary effect and the design phase of the exam-
ples are also discussed in this paper.

2. Integral formulation of BEM

For the scepage problem of Fig. 1, the relevant equations may be formulated as follows:
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Governing equation:
Vi(x) =0, xinD, (1)

where V? denoles the Laplacian operator, ¢ is the potential hcad and D is the comsidered domain,
bounded by the boundary B = B, U B..
Boundary conditions:

$lx) = f(x). xonB, (2)

P¢(x)
where f(x) and g(x) denote known boundary data, and #, is the unit outer normal at the point x on the
boundary.

Using Green’s identity, the first equation of the dual boundary integral formulation for the domain
point x can be expressed as follows:

= g(x), xon B, (3)

(s

Ind(x) = [B T(s.x)(s) dB(s) — ,/s Us.x) ‘b )dB() (4)

for the two-dimensional case, while 2m has to be rcplaced by 4n for the three-dimensional case. The
following derivations will be devoted only to the two-dimensional case for simplicity. After taking the
normal derivative of Eq. (4), the second equation of the dual boundary integral equations for the domain
point x can be derived:

“W) /M(s X)(s) dB(s) — /l( ‘b“) dB(s). (5)
In Eys. (4) and (5),

U(s,.x) = In(r), (6)
T(s,x) = {—{i(’:\) (7)
L(s,x):= FL:.,(I:T) (8)

~2 _
Ms.x) = “ LX), 9

CH.Ch,

where » = |s  x;, 5 and x being position vectors of the poinis s and x, respectively, and n, is the unit
outer normal at point 5 on the boundary. Eqs. (4) and (5) together are termed the dual boundury intcgral
formulation for thc domain point. The explicit forms of the kernel functions arc shown in Table 1. By
tracing th¢ domain point x to the boundary, the dual boundary integral equations for the boundary point
X can he derived:

ad(x) = CPV ]B T(s. x)$(s) dB(s) — RPV /B Us.x

XD by ([ wse)pt6) aBo) - PV "‘-“""”?L)' e o
Jn A |

iy

c¢(s)

dB(s), (10)
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Tablec 1

The cxplicit form of four kemel fiunctions in dual integral equations

Kernel function {7{s.x) F{a.x) L{s, ) Mis.x)

Ocder of singularity Weak Strong Strong vacrsmgular
Two-dimensional casc In(r} — van At 2y v r — il i"
Three-dimensional case —lir —vimi#” B Ivivgndiys A
Remark L A 1 = nds) H: = m(x} v — s

where RPV is the conventional Riemann or Lebesque integral, CPV is the Cauchy principal value, HPY
is the Hadamard or Mangler principal value [12,13], and x = = in the case of a smooth boundary.
For a nonsmooth boundary, special care should be taken [20}. Eqs. (10) and (11) are called the dual
boundary integral formulation for the boundary point. It must be noted that Eq. (11) can be derived
Just by applying the operator of normal derivative to Eq. (10). The commutativity property of the
trace operator (a limiting process) and the normal derivative operator provides us with two altcrnative
ways to calculale the Hadamard principal value analytically [7]. First, L’Hospital's rule is employed
in the limiting process. Second, the normal derivative of the Cauchy principal value should be taken
carcfully by using Leibnit2’ rule, and then the finite part can be obtained. The finite part has been
termed the Hadamard principal value in fracture mechanics [7,9.10] or Mangler’s principal value in
acrodynamics [11].

Consider a boundary B containing two parts, the nondegencrate boundary § and the degencrate
boundary ¢~ + C'~ as shown in Fig. 2(a); i.e.

B—S+C"+C. (12)
Forx € 5, Egs. (10) and (11} can be rewritten as
4)(-5)

ap(x) = cpv/r(s X)(s) dB(s)—RPV/U( dB(s)
+ [ 1608663 886) - [ visont gt 4B(s), (13)
C c én,
“’S(x)-aHPVfM(s X)) dB(s) — (_,PV/L(? 1‘*"( ! dB(s)
+ [ M(s,x)A(s) dB(s) — f L(s, )% T?(“)dB(s). (14)
Joo « Chy
For x € C™, the equations can be ¢xpressed as
ad p(x) —CPVY / T(5,x)A¢(s) dB(s) —RPV/ U(s,x)z:(d)u) dB(s)
«
+ [T(s.x)gb(.v)dB(s)—/U( )M dB(s), (15)
Sy &5

Afo)

on,

_npvf M(s,x)A(s) dB(s) c*ij Ls.x)Y ‘b-( )dB( )
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+L M (s,3)b(s) dB(s) — fs 1.(\5-.,:;)5—2(1;1) dB(s),
where
Yop(s) = dls7)+ @ls ),
AP(s) = @(s™) — P(s7),
Z%%(S) = if(f) + i_—f(-" ).
%, + geometrical node

O physical node

T ) - X
- degenerate boundj/ 1

P
-
- nondegenerate boundary

€-0.5L.8) — .  (0.5L.0)
§)

(b)

Fig. 2. (a) Boundary clement discretivation and (b) coordinate transformation.

(16)

(17
(18)

(19)
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Al i b £ .

"(5) 1= Ao(s') = ots ), (20)
F (&) in

R
Egs. (17)—(20) reveal that the number of unknowns on the degenerate boundary doubles, and therefore
the additional hypersingular integral cquation (16) is, accordingly, necessary. The dual boundary integral
equations for the boundary points provide complete constraints for the boundary data, rendering a well-
poscd boundary valuc problem. It must be noted that the compatible relations of the boundary data for
x on C* and those for x on C~ arc dependent; i.e., Eq. (15) for x on ¢ and Eq. (15) for x on C~
arc cxactly the same cquations, but Eq. {16) for x on €~ and Eq. (16) for x on '~ are equations with
dillerent signs which are linearly dependent on each other. Nevertheless, we use Eq. (15) to modcl one
side of the degenerate boundary and Eq. (16) to modcl the other side. Accordingly, Eq. {15) for x on
C' and Eq. (16) for x on €~ are linearly independent for the degenerate boundary unknowns. flence,
Eq. (16) plays an important role in the problem with a degenerate boundary. For the nondegenerate
boundary point, ¢ither Eq. (13) or (14) can be used.

3. Boundary element discretization and the closed-form integral formulae
After deriving the above compatible relationships of the boundary data as in Eqs. (13)-(16), the

boundary integral equations can be discretized by using constant elements as shown in Fig. 2(a}), and
the resulting algebraic system can be symbolized as

mater = {52, 1)
M;1{6} = [Ly] {%} (22)

where [ ] denotes a square matrix, { } a column vector, and the elements of the square matrices arc,
respectively,

U, = RPV / U(s,.x) dB(s, ). (23)
T, = md,  CPV / T(s;.x)dB(s,), (24)
L, =mnd,+CPV /IL(S‘,-,x,-) dB(s ;). (25)
M, = HPV / M(s,.x) dB(s, ). (26)

All the above formulae can be integrated analytically. The closed forms of Eqs. (23)+26) are summa-
rized as follows:

First, we define the components of the unit outer normal vectors #(x ) and n(s) as
m{s)Y=sin0, niy(s)= rcos0, (27)

mix)=sin¢g, m(x)= —cosdo, (28)
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which is shown in Fig. 2(a). The inner and cross products of the vectors are given by

n(x) n(s) — cos{p — #) — cos pcosl —singsind - nxix -+ nny, (29)

n(s) x n(x)-e; =sin(¢p — P) =sinpcos ) —cos gsinfl — —nnn | Aany. (30)

We use the following transformation:
x| _ T cosOsind] [x -5
{y,.}_L—sinl)cosﬂ]{x;,—sz ) G
which is illostrated in Fig. 2(b). For the regular clement, the integral formulae are

Uy = vlny/e? + v — v+ ptan™' (o) U080 (32)

Ty, =tan !(‘-'!’f,’y’r) !:Zin'ﬁgfi,}_, (33)
Lij = — cos(¢p — Ntan™'(v/3,) - 0.5 sin(¢  ONn(e” + 37) =055, (34)
M;; = cos(¢ — 0)1-2 ' P sin{¢ — ())P, ! = e (35)

where L is the length of the clement. The integral formulae for the singular element are simply the
limiting valucs of Eqs. (32)}(35); utilizing L’Hospital’s rule and the inverse triangular rclations

tan '(x);|— tan '(lix) = %TI. (36)

I‘I_IT(\) wan ‘(x) - 37)
we have

Uy—=1In(0.5L) - L, (38)

T, - 0, (39)

Ly =0. (40)

M, = 4jL (41)

upon substiluting x, = 0. », = 0, and ¢ — f). These closed-form formulae for constant elements indeed
ofler a clear ¢xplanation, which mainly comes from the joint behavior of sin (¢ — 00} and cos{¢ — @) in
Eqs. (34) and (35), of the general propertics of the derivative of ihe single- and double-layer potentials
as shown in Table 2.

4. Complementary solution tests and solution of domain and boundary data

In order to test the above formulac, thc complementary solution ¢ —= constant over the nondegen-
crate boundary as shown in Fig. 3(a) is tested for thc matrices of [7,,] and [;;]; thus, the singular
diagonal term can be calculated from the minus sum of the off-diagonal terms in onc row. However, for
a degenerate boundary, this test for the diagonal terms fails, since the potential difference A« vanishes
on the degencrate boundary. To deal with this, two alternative techniques are available. In one, by
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Table 2
l'he properties of single- and double-layver potentialy

Kernel function  U(y,x) Tis.x) L{s,x) Mis,x) L's.x) M'(5,x)

K{s.x)

Density function —r¢ghicn i) — /i & —Cicn ¢

sy

Potential type Single layer  Double layer  Normal deriva-  Normal deriva- Tangent deriva-  Tangent deriva-

] K(s, x)pu(s)ds tive of single-  tive of double- tive of single- tive of double-
layer potential — laver potential layer potential — layer potential

Continunty aeross Continuous  Discontinuous  Discontinuous  Pseudo-continueus  Continugus Erscontinuous

boundary

Jump value No jump 2n¢ —2nép/fn No jump No jump —2niicn

introducing an artificial nondegenerate boundary which must be connected to the degenerate boundary
under consideration to make a closed boundary enclosing a finite domain, and the problem is converted
Lo calculating the regular lerms on the introduced nondegenerate boundary [3). In the other, we simply
apply the complementary solution ¢ — /7y sin{{J; + t/;/2) over the degenerate boundary as shown
in Fig. 3(h), and the singular diagonal term can he calculated trom the minus sum of the off-diagonal
terms in one row.

Substituting the prescribed boundary conditions of Egs. {2) and {3), we can reorder Eqs. {21) and
(22), giving

] {x} = {0} (42)

where { v} is calculated by the known boundary data of the potential and normal flux. Then, solving
Eq. (42) yields the unknown boundary data {x}. After all the boundary unknowns are obtained, the
{iclds of interior potential and {lux can be calculated according to the boundary integral equations for
the domain point as follows.

Forx & D, the fields of ¢(x) and {¢p(x)/iin, can be written as

1
\ / s \
, i/ Ty - 7'1"
dg _ - -
( 5% =1 /// '\3: : 91
d=1 ; i A
/ _ 8 +d
Ve N ¢= 1,/7'17'23"1(‘123)
. o N /

(a) (b)

Fig. 3. A complementary soluton test for a {a} normal and (b) degencrate boundary.
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°nr¢><x)—/ T(s,x)A¢(s) dB(s) / Us. )T‘f;” dB(s)
-I—/T(s yp(s)ydB(s) — /L( ( (43)
zn“:f?i‘?”: / M{s.x)AG(s) dB(s) — ] L{s.x)Y" ‘P( Y dgis)
A SO o B
- [menserass [ usn 8 )d3< ) (44)

It the flux along the boundary is to be considered, two methods are suggested to calculate it. One is
the numerical derivative by using the boundary potential of Eq. (42), and the other is to describe an
expression for il as will be claborated upon later. Using the continuity and discontinuity properties of the
tangential derivative of the single- and double-layer potentials as shown in Table 2 [14], the tangential
flux along the boundary can be expressed as the superposition of all the boundary data of the potential
¢ and normal flux d¢/ca as in the following.

Forx & S,
rrﬁ(ﬁ(f) = HPV [;‘l/l‘(.v.x)(f)(.v)dB(s) - CPV /.L“(_s__x)f?is)
: / M(5.0)Ad(s) dB(s)m[ s, qb( )dB( ) (45)
Forx o C',
n(ﬁ(fix) — HPV / M(5.)Ad(s) dB(s) — CPV / RATESS Ef_i‘” dB(s)
+/M (5.X)(s) dB(s) — fL ?’(;U B(s) (46)
where ¢, is the tangential direction at the boundary pomt\ x and
L(s.x) = % (47)
M(s.x) %‘J (48)

According to the above formulations, the general purpose BEPO2D program of this mathematical model
has been developed. The numerical implementation of the mathematical model is suammarized in the
lowchart of Fig. 4.

5. Finite element selution

In order to check the validity of the dual integral formulation, the finite element results are sought
for comparison purposcs. In industry, many commercial programs are available; e.g.. MSC/NASTRAN
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Governing
Equations Bg, (1)
Boundary condition
Bgs. (2),(3)

1

Dual Boundary

Integral BEquations

for Domain Point
Eqgs. (4),(5)

1)

Dual Boundary

Inteqral BEquations

for Boundary Point
Egs. (10),(11}

1

Discretized
Algebraic
Egs.{21},(22)

1

Boundary Unknowns

Solver of Eqg.{42)

1l

Solve Interior
Potential or Flux
Along Boundary

J YES

Solve Interior
Potential Eqj.(4)
Solve Interior
Flux Egq. (5)

1

S0lve Flux Alorg

Boundary Eq.(45)

END

Fig. 4. Flowchart of the dual integral formulation BEM model.

provides the capabilitics of structural analysis and hcat conduction [15]. Using the analogy belween
steady-state heat conduction and the potential flow, the seepage problem can be simulated using the same
Laplace model. In linear steady-state conduction, the time-dependent and nonlinear terms are ignored.
lcaving the following equation [13];

[K1{u}t = {P}

(49)
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where u is the temperature ficld. There are two options, SOL 24 and 61 rigid formats in NASTRAN.
to simulate the steady-statc heat conduction problems. To the authors™ knowledge. the singular ¢lement
of heat conduction has not been cstablished yet; the quarter-point rule of CQUADS clement is used in
this paper. The output is the temperature and flux data. In the present finitc ¢lement modelling, 485
GRID points, 420 CQUAD4, 10 CTRIA3 and 104 CELAS2 clements are used to simulate the four
design cascs (cases 1-4) of Fig. 5 tuken up in the following section. In order to discuss the singular
behavior, the CQUADS element with the quarter-point rule of the last illustrative cxample {casc 5)
which has un analytical solution has been implemented. All the five examples have been solved by the
BEPQ2D) program and compared with the MSC/NASTRAN results and also with BEM supplemented
by the subdomain technique (BEM1 ).

6. Comparisons between FEM and BEM

To simulate the scepage flow, the aforementioned FEM and BEM solvers were arranged as shown in
the Nowchart of Fig. 6 using the same pre-post processor. For the problem of Fig. 1, using the subdomain
method(BEM1) [16] and the BEPO2D program, the results of the pressure head under the dam base
match Lambe—Whiteman solution with a maximum crror of 2% (see Fig. 7). It must be noted that the
Lambe Whitemun solution was obtained by free hand drawing [1]. There is no conclusion about which
one is better beeause no exact solution is available. However, it can be said that the two BEM mcthods
match very well with less than 1% difference. The BEM1 mcthod introduces an artificial boundary by
using the subdomain technique as in Fig. 8 [16], whercas the BEPO2D program is based on the dual
integral formulation and only the true boundary nceds to be discretized. In the design stages, the number
and positions of sheet piles were investigated and optimized. Fig. 9 shows four design cases, The related
meshes of BEM and FEM for four design cases are shown in Figs. 8 and 9, Fig. 10 shows thc pressure

|

(c) (d)

Fig. 5. Four design cascs of flow under a dam: (a) case 1, two sheet piles: (b) case 2, onc right sheet pile; (¢ ¢ase 3, one
lett sheet pile; (d) case 4, no sheet pile.
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$=—1.0

1.0

o¢ =0 - 0
an on
i(é =10 ?2 = 0
on on
Vi(z) =0,zin D
9 g
on
BEM J, FEM
[l 7] T
l 1 IDEAS F——ft
—— SUPERTAB ——

Pre-processor

l

1 Dimensional

2 Dimensional

Post—processor

CBAR Boundary | ¢— | Geometry File —— CQUADS Finite
Element | {.UNV) Element
¥EM ;\mnnm |
BEM Solver P FEM Solver
—> —-
{ BEPOZD) {M5C,/NASTRAN)
l Potential contour l
IDEAS IDEAS
SUPERTAB — £ SUPERTAR

POSt—processor

l

Velocity contour

l

Comparison (3)

(1}
(2)

ACCUracy

CPUJ time

Singqular Behavior
Boundary eftfect
Nos. of Nodes and

(4)
(5)

Elements

Fig. 6. Flowchart of the BEM and FEM solver system.
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heads onrthe dam bases for different design cases. Fig. 11 shows the velocity in the x direction on
the center plane under the dam. The boundary effect is present as usval and will be discussed in the
following section. Fig. 12 shows the pressure head on the center planc under the dam. The difference in
the velocities predicted by BEPO2D and MSC/NASTRAN is larger while the predicted difference of the
potential heads is smaller, as is usual. The comparison among BEPO2D, BEM1 and MSC/NASTRAN
is satisfactory. Based on the calculated turning moment for the four cases, case 3 is the stablest, After
considering the safely of stability and seepage quantitics, the best choice of design is suggested in
Table 3.

The BEPQO2D program was executed on a VAX system and also on a CRAY X-MP system. The
comparisons of MSC/NASTRAN and BEM in data preparation and CPU time are shown in Table 4.
The casy data preparation and efficiency of the present model in casc 5 with the analytical solution
can be found under the samc request of accuracy. Owing to the absence of the analytical solutions for
cases |1—4, the CPU timc is only for refercnce. For casc 5, the analytical solution [17] is compared in
Tabie 4 with th¢ FEM and BEM solutions. The mathematical and numerical models are shown in
Fig. 6. The prcssure head and velocity contour of BEM and FEM are also presented in Fig. 6. After
comparing the singular behavior with the analytical solution [17], it is found that FEM underestimates
the velocity near the tip, but BEM overestimates as shown in Fig. 13. An cxplanation for the results is
that the analytical 1//r singular asymptotic behavior is approximated by a + br in the FEM modcl and
1/r in the present dual integral BEM model. The results of subdomain analysis using linear elements
for this probicm oscillate seriously near the tip |17]. Using the present formulation, even the constant
clement without singularity consideration can express the = continuity properties of the flux along
FB~*.

7. Discussions on boundary laver effect

{t is known that the accuracy of the BEM solutions of the domain points near a boundury deteriorates
rapidly as shown in Fig. I1, cspecially for the fluxes of the potential flow and the traction gquantities of
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Fig. 7. Flow under a dam.
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Fig. 9. The related FEM meshes of four design cases: (a) case 1. two sheet piles: (b) case 2, one right sheet pile; (¢) ease
3. one left sheet pile: (d) case 4, no sheet pile.

clasticity. The details of the behaviors depend on the numerical models used and are similar to those
of the Gibbs phenomenon. This may be termed the boundary layer effect of the numerical model. To
understand this phenomenon, the results of numerical experiments for the exact solution ¢ = 0.5x are
shown in Fig. 4, where it is seen that the domain of influence due to the boundary eifect is about onc
characteristic boundary element length near the boundary, The region of influence provides the crite-
rion of data selection for post-processing. MSC/NASTRAN can compensate for the boundary effect in
Fig. 14. This ¢xample can explain why the boundary effect in Fig. 11 is present for BEM in com-
parison with the FEM results, which show no boundary layer effect. Using the criterion of data
selection, the boundary effect cun be smoothed if the boundury data arc correct enough.
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8. Conclusions

The dual integral formulation of a seepage flow through porous media has been presented here.
Comparisons between the MSC/NASTRAN and the BEM programs were discussced with respect to four
design cases. It has been ensured that the capabilities of BEPO2D in seepagc flow analysis are acceptable
after comparison with the analytical solution and MSC/NASTRAN results. Tt has been found that the
BEM in the context of the present formulation is particularly suitable for the problem with singularity
arising from a degenerate houndary. For a flow ficld with singularity in a homogencous medium, BEM
is superior to FEM not only in data preparation but also in accuracy and CPU time as shown in case 5 of
Table 4. For engineering practices, since model creation requires the main effort, the present BEM, free
from the development of an artificial boundary, is strongly recommended for industrial applications.
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Table 3
The choice of optimum design

Case 1 Case 2 Case 3 Case 4
o, of sheet piles 2 Viright} [{left) [}
Seepage quantity Best Fair Fair Worst
Stability of dam Fair Fair Best Worst

Table 4
The comparisons of FEM and BEM

Casc |1 Casc 2 Case 3 Case 4 Case 5
No. of sheet piles 2 1(right) I{left) 0] I{center)
No. of nodes {FEM) 485 479 479 473 871
No. of nodes {BFEM) 72 64 64 56 40
No. of elements (FEM) 430 430 430 430 200
No. of clements {BEM) 72 64 64 56 40
CPU(min:sec) FEM on VAXTES 02:20.29 02:17.51 (2:17.61 02:17.46 02:56.88
CPU(min:scc) BEM on VAX783 06:10.87 04:52.07 04:53.75 03:43.73 01:54.75
CPU(min:scc) BEM on CRAY 44530 0,370} 0.3699 .2935 0.1697

" The comparison is fair under the same request of accuracy, since the analytical solution for this case is available.
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