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SUMMARY

The diffraction of SH waves by a finite plane crack is studied. The classical Sommerfeld
solution for a semi-infinite straight reflecting screen is used as a building block to
calculate the diffracted field generated by a finite crack. The solution is derived from the
analysis of the behaviour of diffracted waves. These waves, which are first generated
at the edges of the crack, travel along the surfaces and are diffracted/reflected at the
opposite edge. By iteratively taking into account the contribution to the total field of
these travelling waves, an infinite series with a known limit is constructed, leading to an
approximate analytical solution for the case of a finite plane crack. This solution is
virtually exact for large frequencies and it is very good for incoming wavelengths of up
to four times the size of the crack. Since the solution is explicit the computational cost is
very low. Both frequency and time-domain results are included.
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1 I N T R O D U C T I O N

The problem of scattering and diffraction of elastic waves by

cracks or inclusions has gained importance recently as a result

of their emerging applications in seismology and geophysics.

For instance, in the petroleum industry, one of the most relevant

features of naturally fractured reservoirs is the extensive presence

of cracks. Their detection and characterization is crucial for

efficient oil production and recovery. When assuming that

the radii of separation between cracks are small compared to the

wavelength and interactions between cracks are negligible, one

can use statistical hypotheses or homogenization techniques to

differentiate diffraction patterns caused by many cracks from

that of a single crack (see e.g. Hudson 1986). This highlights the

importance of knowing the diffraction caused by a finite crack.

This paper deals with scattering and diffraction of SH waves

produced by the presence of an isolated 2-D crack within an

infinite isotropic and homogeneous elastic medium.

The problem of scattering from a finite length crack is an

old one, hence the existing literature on it is vast. All pre-

vious work approached the problem numerically. For instance,

Loeber & Sih (1968) developed an integral transform method

to obtain dynamic stresses around a finite crack. They reduced

the scattering problem to the numerical evaluation of a system

of coupled integral equations. The problems of diffraction of

vector elastic waves by a clamped strip or by a finite crack have

been treated numerically in Ang & Knopoff (1964a,b). There is

considerable literature on the diffraction of elastic waves by

semi-infinite cracks (or half-planes); see e.g. Mow & Pao (1971).

Reviews of studies of elastic wave propagation in media con-

taining cracks can be found in Kraut (1976) and, from the point

of view of asymptotic ray theory, in Achenbach et al. (1982).

Boström (1987) studied the case of an interface crack between

two homogeneous elastic half-spaces for the case of anti-plane

strain. He used a direct integral equation method with the

crack-opening displacement as the unknown and Chebyshev

polynomials as expansion functions for his numerical approxi-

mation. Recently, the problem of scattering of SH waves by a

finite crack has been addressed in various ways. For instance,

Huang (1995) considered a finite crack embedded in a half-

space. The dislocation density functions and the stress field due

to such discontinuities are expressed as a system of integral

equations. These equations are solved by Galerkin numerical

schemes. A parallel work to this study is the one by De Hoop

(2000), in which an analytical time-domain expression is given

for the 2-D diffraction of SH waves by an imperfection of finite

width. An interesting application of the analytical solution pre-

sented here could be to study scattering effects caused by distri-

buted cracks as in Murai et al. (1995) but with the advantage of

computational speed over all these numerical schemes. Hence

the power of the present solution lays in its simplicity, which

enables a fast computation.

The terms scattering and diffraction are used loosely as

synonyms. The former is suitable to name waves scattered

by an object (with an implicitly high-frequency meaning),

whereas the latter refers to the waves that smooth out discon-

tinuities of the geometrical wavefield (which are stronger at low

frequencies). In our treatment, the diffracted field is computed
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taking advantage of the geometrical structure of the original

Sommerfeld problem. This solution allows for an easy com-

putation of the crack-opening displacement (COD) (the differ-

ence between the displacements on the illuminated and on the

shaded sides). The scattered far field can be computed by means

of a representation theorem. When using a representation

theorem for the case of a finite plane crack, the difference

between displacements (on the illuminated and shaded sides)

is computed analytically; the COD represents exactly this

displacement difference.

In the next section a brief summary of Sommerfeld’s (1949)

classical solution for the screening half-plane is first presented.

An expression for the total field is given. This is the starting

point of our iterative solution for a finite crack. In Section 3, we

form a finite crack by superimposing incident, reflected and

diffracted fields from two semi-infinite cracks and construct the

analytical solution from the known solution of the two semi-

infinite cracks. To carry out this construct, we shall identify the

diffracted fields on the shaded and on the illuminated sides of

the crack and those generated at the two edges. In Section 4,

some numerical results are presented for the total field at the

crack in both frequency and time domains. The far-field

radiation patterns are shown for various incidence angles and

frequencies.

2 D I F F R A C T I O N B Y A S E M I - I N F I N I T E
C R A C K

Scattered waves are generated when an obstacle of finite dimen-

sion interferes with incident waves. There are two properties to

be considered when studying scattering of elastic waves due to a

crack. First, displacements and/or stresses across the surfaces

of the crack can be discontinuous. Second, its edges generate

diffracted waves. From a theoretical point of view we will con-

sider a crack as being a zero-thickness discontinuity in the

interior of a 2-D elastic solid. The surfaces of the crack are

taken as free surfaces where the traction vanishes. Both faces

are thought of as occupying the same space.

A detailed derivation of Sommerfeld’s original result is

beyond the scope of this work. For further details the reader is

referred to Sommerfeld (1949). A brief sketch of this classical

solution is given below.

Time-harmonic waves of anti-plane strain are defined by a

displacement in the y-direction of the form o(x, z) exp(xivt),

where o(x, z) satisfies Helmholtz’s equation +2o+k2o=0, +2

being the 2-D Laplacian, k=v/b being the wavenumber, v
being the angular frequency, b ¼

ffiffiffiffiffiffiffiffi
k=o

p
being the shear-wave

velocity, m being the shear modulus and r being the density.

Consider the intersection of a semi-infinite crack of uniform

zero thickness with the xz-plane shown in Fig. 1(a). A plane

wave of anti-plane strain, incident upon the crack, is defined by

oðiÞ ¼ o0 exp ½ikx sin cÿ ikz cos c� , (1)

where c is the angle of incidence as shown in Fig. 1. The time

dependence exp(xivt) is omitted hereafter. The presence of a

crack gives rise to both diffracted and reflected fields. The total

displacement field may thus be expressed in the form

oðtÞ ¼ oðiÞ þ oðrÞ þ oðdÞ , (2)

where o(i) is the incident wave, o(r) is the geometrical reflected

wave and o(d) is the scattered field. Eq. (2) describes the overall

effect generated by the presence of a crack for an incident

wavefield. The field o(t) must satisfy the following:

(1) the Helmholtz equation;

(2) the crack faces are traction-free, thus we must have

LoðtÞ

Lz
¼ 0 , x > 0 , z ¼ 0 ; (3)

(3) o(t) is finite and continuous everywhere, including the

edge of the screen, but can be discontinuous across the screen

(crack and screen are used synonymously);

(4) the edge of the screen neither radiates nor absorbs energy;

(5) the diffracted field o(d) must satisfy Sommerfeld’s radiation

condition at infinity.

For a perfectly reflecting plane screen the method of images

leads to the problem of constructing branched solutions of the

wave equation such that the edge of the screen is the branch

line. Sommerfeld’s classical solution to the diffraction problem

is given by

oðtÞ ¼Wðr, hÿ h1Þ þW ðr, hþ h1Þ , (4)

where the function W(r, hxh1) has a period 4p in the variable

hth1.

In his work Sommerfeld proved that W in eq. (4) can be

represented by a Fresnel integral in terms of a function F(z)

Figure 1. An anti-plane wave incident on (a) a semi-infinite and

(b) a finite crack.

750 F. J. Sánchez-Sesma and U. Iturrarán-Viveros

# 2001 RAS, GJI 145, 749–758



defined by

FðzÞ ¼ exp ðÿiz2Þ
ð?

z

exp ðiq2Þdq : (5)

Further properties of function F(z) can be found in Appendix A.

Hence, the total field is given by

oðtÞ ¼ o0
1ffiffiffi
n
p eiðkrÿn=4Þ

�
F

ffiffiffiffiffiffiffi
2kr
p

sin
h1 ÿ h

2

� �� �

þ F
ffiffiffiffiffiffiffi
2kr
p

sin
h1 þ h

2

� �� ��
, (6)

which is the classical and well-known solution obtained by

Sommerfeld for a semi-infinite crack. This solution is complete,

thus it includes the incident, reflected and diffracted fields.

In the next section the COD and the scattered far field will be

computed for a zero-thickness crack of length 2a based upon

Sommerfeld’s result.

3 F O R M U L A T I O N O F T H E P R O B L E M

In this section Sommerfeld’s solution is decomposed into a

sum of the incident, reflected and diffracted fields. The idea

is to superimpose the solution for a semi-infinite crack in the

interval (xa, +?) with the same solution for another semi-

infinite crack in the interval (x?, +a). Therefore, the finite

crack (with edges at x=ta) could be thought of as occupying

the space where the two semi-infinite cracks would intersect.

Since Sommerfeld’s formula is complete, when superimposing

two solutions for two semi-infinite cracks the incident and

reflected waves are repeated at the intersection of the two cracks

and they will be eliminated. The symmetries of the generated

fields are identified and exploited to build the solution for

the finite crack. This construct is iterative and gives rise to a

standard geometrical series, allowing the computation of the

total field at the sides of the crack. We shall identify the side of

the crack which is exposed to the incoming plane SH wave

as the illuminated side (denoted by +); the other side is referred

to as the shaded side (denoted by x). The geometry for the

incidence of plane waves on a finite crack is depicted in Fig. 1(b).

The total displacement field o(t) for the finite crack is

constructed as follows (see Fig. 2).

(i) Add the incident field o
(i) everywhere as if there were no

crack.

(ii) Add the reflected field o(r) with positive sign on the

illuminated side and negative on the shaded side. This reflected

field will cancel the incident field on the shaded side and will

complete the geometric field (o(i)+o(r)) on the illuminated side.

(iii) Add the diffracted field o(d) produced at both edges of

the crack.

This construct will allow us to find a simple expression for the

diffracted field in the case of a finite crack. Let us define the

following auxiliary function:

sðrÞ ¼ 2ffiffiffi
n
p eikrÿi n

4 : (7)

On the shaded side there are neither incident nor reflected

fields as they cancel each other. Therefore, the diffracted field

coincides with the total field o(d)x=o(t)x. We shall compute the

diffracted field on the shaded side (i.e. h=0) generated at the edge

x=xa of a semi-infinite crack. According to Sommerfeld’s

formula, this is given by

oðtÞ
ÿ
¼ o0 eÿika sin csðr1ÞF

ffiffiffiffiffiffiffiffiffi
2kr1

p
sin

h1

2

� �
, (8)

where r1=a+x and h1=(p/2)xc. In order to compute the total

field on the illuminated side (i.e. h=2p), eq. (6) is again applied:

oðtÞ
þ
¼ o0 eÿika sin csðr1ÞF ÿ

ffiffiffiffiffiffiffiffiffi
2kr1

p
sin

h1

2

� �
: (9)

Applying the property of F(xz) given in eq. (A1) and using the

following identity,

1ÿ 2 sin2 ðh1=2Þ ¼ cos ðh1Þ ¼ cos n=2ÿ cð Þ ¼ sin c , (10)

eq. (9) yields

oðtÞ
þ
¼ 2o0 eikx sin c ÿ o0 eÿika sin csðr1ÞF

ffiffiffiffiffiffiffiffiffi
2kr1

p
sin

h1

2

� �
(11)

at the illuminated side. The first term in eq. (11) is the incident

field plus the reflected field o(i)+o(r) (see Fig. 2) and the second

term is the opposite of the diffracted field on the shaded side

given in eq. (8). Therefore,

oðdÞ
þ
¼ ÿoðdÞ

ÿ
: (12)

Hence, once the diffracted field is computed on the shaded

side, the corresponding diffracted field on the illuminated side is

immediately obtained. Since diffracted waves are generated at

both edges of the crack, the same analysis is carried out for the

right edge (x=a). However, the reference system changes depend-

ing on whether we are considering the left or the right edge. As

a result, when considering the edge at x=a the incidence angle

is h2=(p/2+c (see Fig. 3). Hence, a first approximation to the

diffracted field on the shaded side generated by SH waves

Figure 2. Total displacement field computed as o(t)=o(i)to(r)+o(d).

The reflected field o(r) plays an important role in this formulation

because on the shaded side (with the minus sign) it cancels out the

incident field. On the other hand, on the illuminated side it completes

the geometrical field.

Figure 3. Diffracted waves caused by waves incident on the crack

edges, travelling along the shaded side. (a) Reference system for the

semi-infinite crack (xa, +?). (b) As in (a) but for the semi-infinite

crack (x?, +a).
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impinging on a finite crack is given by

o
ðdÞÿ
0 ¼ o0 eÿika sin csðr1ÞF

ffiffiffiffiffiffiffiffiffi
2kr1

p
sin

h1

2

� �

þ o0 eika sin csðr2ÞF
ffiffiffiffiffiffiffiffiffi
2kr2

p
sin

h1

2

� �
, (13)

where r2=axx represents the waves travelling from right to left.

The first term in eq. (13) corresponds to the scattered wave

depicted in Fig. 3(a) and the second corresponds to Fig. 3(b). In

order to have a better approximation, the next step is to consider

the diffracted waves generated by interactions of both edges

of the crack (x=ta). These are cylindrical waves that travel

along the crack, reaching opposite edges impinging with an angle

cptp/2. The question that arises is under what circumstances

these waves can be approximated as plane waves at the tips

to compute the cylindrical waves reflected from the tips. This

is a key point that deserves some explanation. Shortly after

Sommerfeld had delivered his classical solution, Macdonald

(1902) obtained series expansions in terms of Bessel functions for

the total field in a wedge for both plane and cylindrical incoming

waves. Macdonald’s solutions include the limiting case of a half-

plane, thus it is equivalent to Sommerfeld’s formula. Now, let r

be any point on the shaded side of the crack and consider a

source point located on the illuminated side at a distance r0 from

the edge of the crack (see Fig. 4). Since we are interested in the

case of a finite crack this source point will act as one of the edges

(a diffracting point) and will be set to r0=2a (i.e. r0 is the length

of the crack). Macdonald’s solution allows us to compare this

case with Sommerfeld’s result for a semi-infinite crack with an

incidence c that tends to tp/2. In Fig. 4 numerical comparisons

show a very good agreement between these two solutions (results

for four different frequencies are shown). Note that as the fre-

quency decreases, the plane wave approximation for the actual

cylindrical wave deteriorates. However, for such small frequencies

the COD is very close to zero. This implies that even though the

plane wave approximation deteriorates for low frequencies, the

actual contribution of these frequencies to the COD is almost

zero. Hence diffracted cylindrical waves that reach the edge have

produced diffracted waves that can be very accurately approxi-

mated by those produced by grazing plane waves. We will keep

this assumption in what follows. When the incoming plane wave

reaches the edges, waves scattered (on the shaded side) have the

form given in eq. (13). The new phase of the scattered wave at

x=xa is given by applying eq. (8) at x=a, i.e.

o1 ¼ o0 eÿika sin csð2aÞF
ffiffiffiffiffiffiffiffi
4ka
p

sin
h1

2

� �
: (14)

Similarly, the new phase of the scattered wave at x=a is given by

applying eq. (8) at x=xa, i.e.

o2 ¼ o0 eika sin csð2aÞF
ffiffiffiffiffiffiffiffi
4ka
p

sin
h2

2

� �
: (15)

Using an equation similar to eq. (8), but with phase o1 given by

eq. (14) and letting h1pp, the diffracted wave at x=a is then

given by

o01 ¼ o1sðr2ÞFð
ffiffiffiffiffiffiffiffiffi
2kr2

p
Þ : (16)

In the same way for x=xa we obtain

o02 ¼ o2sðr1ÞFð
ffiffiffiffiffiffiffiffiffi
2kr1

p
Þ : (17)

Figure 4. Comparison between diffracted cylindrical waves along the shaded side of the crack. They are calculated using Macdonald’s solution and

Sommerfeld’s result for a plane wave with incident angle c=p /2. Note that as the frequency decreases, the plane wave approximation for the actual

cylindrical wave deteriorates. However, for such small frequencies the COD is very close to zero. This implies that even though the plane wave

approximation deteriorates for low frequencies, the actual contribution of these frequencies to the COD is almost null.
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When diffracted waves reach one of the edges h1=p or h2=p,

each of the reflected diffractions has a new amplitude and phase.

It is necessary to multiply them by a factor Z given by

Z ¼ sð2aÞFð
ffiffiffiffiffiffiffiffi
4ka
p

Þ , (18)

where function s(x) is as defined in eq. (7). Factor Z takes into

account the reflections due to diffracted waves on the illuminated

side. The next step is to collect all the terms that correspond to

diffracted waves travelling in both directions. The diffracted field

can then be expressed as

oðdÞ
ÿ
¼ o

ðdÞÿ
0

þ o1

n
Z þ Z3 þ . . .
� �

sðr1ÞF
ffiffiffiffiffiffiffiffiffi
2kr1

p� �
ÿ 1þ Z2 þ . . .
� �

sðr2ÞF
ffiffiffiffiffiffiffiffiffi
2kr2

p� �o
þ o2

n
Z þ Z3 þ . . .
� �

sðr2ÞF
ffiffiffiffiffiffiffiffiffi
2kr2

p� �
ÿ 1þ Z2 þ . . .
� �

sðr1ÞF
ffiffiffiffiffiffiffiffiffi
2kr1

p� �o
, (19)

where o(d)x

0 is given by eq. (13).

From eqs (B1), (B2) and (B3) in Appendix B we con-

clude that if ka>0 then |Z|<1. Therefore, the series in eq. (19)

are standard geometrical series with a known limit. Thus an

analytical expression for the diffracted field can finally be

obtained and this is given by rewriting eq. (19) as

oðdÞ
ÿ
¼ o

ðdÞÿ
0 þ o1Z ÿ o2

1ÿ Z2
sðr1ÞFð

ffiffiffiffiffiffiffiffiffi
2kr1

p
Þ

þ o2Z ÿ o1

1ÿ Z2
sðr2ÞFð

ffiffiffiffiffiffiffiffiffi
2kr2

p
Þ , (20)

where o(d)x

0 is given by eq. (13). This analytical expression for

the diffracted field on the shaded side of the crack, used in

conjunction with the symmetries of the diffracted and reflected

fields, allows us to describe completely the wave motion at both

sides of the crack. An extension of eq. (20) to evaluate the fields

away from the crack is a cumbersome task beyond the scope

of this paper. Instead, we select a simpler, accurate approach

based upon the Somigliana representation theorem.

Let us consider again a finite crack (zero thickness) of length

2a. The displacement field under harmonic excitation can be

written by means of the Somigliana representation theorem

(see e.g. Achenbach 1973; Aki & Richards 1980; Banerjee &

Butterfield 1981) as follows:

oðtÞðîÞ ¼ ÿ
ða

ÿa

Tþðx, îÞ*oðxÞ dSx þ oðiÞðmÞ , (21)

where T+(x, j) is the traction Green’s function at point

x on the illuminated side due to the application of a unit

force at point j and Do(x)=o(x)(t)+xo(x)(t)x is the COD,

Figure 5. Contour map for incident angles c=0u, 30u (top and bottom), illuminated and shaded (left and right) sides. These ( f–x) diagrams display

the total crack displacement amplitudes along the crack sides against the normalized frequency g=va/pb.
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which depends upon the reflected and diffracted fields only,

i.e. Do(x)=2(o(r)+(x)xo(d)x(x)). The subscript in the differential

indicates the space variable over which the integration is

performed.

The traction Green’s function T+(x, j) is given by

Tþðx, îÞ ¼ ik

4

ÿf
r

� �
H
ð1Þ
1 ðkrÞ , (22)

where H(1)
n ( . ) is the Hankel function of the first kind, order n

and r0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ f2
p

is the distance between the receiver and the

centre of the crack. Let r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxÿ mÞ2 þ f2

p
be the distance

between the receiver and a point on the crack x=(x, 0), so that

(for x%r0)

r*r0ð1ÿ xm=r2
0Þ and H

ð1Þ
1 ðkrÞ*H

ð1Þ
1 ðkr0Þ eÿikx cos h : (23)

Figure 6. Scattered radiation far-field patterns for three incident angles. The amplitude of the total diffracted field is plotted for the cases of a plane

wave impinging upon a crack for values of ka=p, 2p, 4p and 6p respectively. Receivers are located at a distance 2a from the origin. The number of

lobes increases with frequency.
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This implies that for a large r0 a cylindrical wave can be

represented as a plane wave in the neighbourhood of the

crack. Hence the traction Green function T+(x, j) can be

approximated by

Tþðx, îÞ* ik

4

ÿf
r0

� �
H
ð1Þ
1 ðkr0Þ eÿikx cos h , (24)

where (j, f) is the location of the receiver on the shaded side

(see Fig. 1). Substituting eq. (22) into the first term of eq. (21),

the full field can be approximated as

oðtÞðmÞ ¼ ÿik

4
H
ð1Þ
1 ðkr0Þ sin h

ða

ÿa

eÿikx cos h *oðxÞdSx þ oðiÞðmÞ :

(25)

In the far field the full diffracted waves given by the first term

in eq. (5) can be viewed as a product of the radial function H1
(1),

which depends on kr0, and an angular function that depends

on h, ka and c. Note that the COD Do(x), which depends on

ka and c, varies along the crack and contributes within the

integral eq. (25) to define the angular modulation function.

With the analytical solution the COD is easily computed at a

very low computational cost. Radiation patterns can then be

computed for various frequencies and incidence angles.

4 N U M E R I C A L R E S U L T S

In all numerical tests the finite crack is located within the

interval [xa, a]. Fig. 5 shows contour maps of displacement

amplitudes of o(t) given by eq. (21) for receivers located along

the x-axis between x=xa and x=a on the illuminated side and

on the shaded side (left and right respectively) versus frequency.

The top figures correspond to an incident angle c=0u and the

bottom figures correspond to an incident angle c=30u. These

( f–x) diagrams display the total crack displacement ampli-

tudes along the crack sides against the normalized frequency

g=va/pb. The symmetry in both geometry and excitation can

be seen in the diagram for incident angle c=0u. For the

illuminated (top left) side (c=0u), with increasing frequency

the number of peaks increases following approximately an odd

integer sequence. These peaks are weak and they show small

fluctuations due to the little trapping of energy by the crack.

Figure 7. Synthetic seismograms for c=0u, 30u, 60u (top, middle and bottom figures, respectively) on the illuminated (left) and shaded (right) sides at

51 equally spaced receivers along the x axis. Receivers 13 to 37 are located on the crack. The incident time signal is a Ricker wavelet with characteristic

period tp=0.7 a/b.
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For an incident angle c=30u (bottom left and right) the sym-

metry is lost. The interaction between lateral modes of oscillation

results in progressive changes in the spectral alignment of the

peaks along the profile of frequencies.

Scattered far-field radiation patterns for SH waves are

shown in Fig. 6. The amplitude of the total diffracted field is

plotted for the cases of a plane wave impinging upon a crack

for values of ka=p, 2p, 4p and 6p respectively. Receivers are

located at a distance 2a from the origin. A discretization of

the crack has been used to solve the integral in eq. (25). The

number of lobes increases with frequency. Radiation patterns

provide information about how scattered waves are distributed

in space for a given frequency and incident angle.

Synthetic seismograms are computed from frequency-domain

results using a Fast Fourier Transform (FFT) algorithm.

The traces correspond to the total field for receivers located

along a line that contains the crack. The time variation of the

incoming wavefield is a Ricker wavelet with characteristic period

Figure 8. Snapshots for c=0o at nine different times. A square grid of 101r101 equally spaced receivers within a square of length 8a. The crack is

located at the centre of the square in the interval (xa, a). The effect of diffraction on the shaded side creates a gap or a shadow. On the other hand,

diffraction can be observed on the illuminated side. As time increases the wavefront recovers and the diffraction effect caused by the crack on the plane

wave disappears. Greyscale slightly changed to enhance diffraction.
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tp=0.7 a/b. Fig. 7 shows the synthetic seismograms for both

the illuminated and the shaded sides (left and right respectively)

for incident angles c=0u, 30u, 60u (a, b and c respectively).

Results in time show that the incident wave is not present on

the shaded side, and that it appears doubled on the illuminated

side. The amplitude of the diffracted fields depends on the

characteristic period of the Ricker wavelet and on the angle of

incidence. The examples displayed correspond to wavelengths

that are smaller than the crack length (about 0.7a for the

predominant or characteristic frequency of excitation). For this

relatively high frequency the diffraction is noticeable only for

the first arrivals from the edges. Diffraction is significant at low

frequencies and has to cancel out the so-called reflected field. In

any event, the COD should be null at zero frequency.

Finally, in Fig. 8 we computed snapshots for a mesh with

101r101 equally spaced receivers located within a square of

length 8a. The crack is located on the interval (xa, a). In

these computations instead of using the far-field approximation

for the traction Green’s function T+(x, j) we have used the

expression for T+ given in eq. (22). These results show how

the plane wave reaches the crack and the diffraction caused at

the edges of the crack degenerates the wavefront. The effect of

diffraction on the shaded side creates a gap or a shadow. On the

other hand, diffraction can be observed on the illuminated side.

As time increases the wavefront recovers and the scattering

effect caused by the crack on the plane wave diminishes.

5 C O N C L U S I O N S

We have constructed an analytical solution for the scattering

and diffraction of SH waves by a finite crack. The solution has

been obtained based upon the classical Sommerfeld approach

for the half-plane screen. Based on a local approximation of

cylindrical waves by plane waves and the symmetries at the

edges and at both sides of the crack, diffracted waves are taken

into account to constitute the complete solution. This enables

us to include easily their contribution as explicit terms in the

convergent series eq. (20) for the displacement field, leading to

a virtually exact solution for the scalar case. This analytical

solution is a powerful tool to study the effects of a single crack

under the incidence of plane SH waves. It can be used to

validate numerical methods, and opens up the possibility of

studying scattering and diffraction of SH waves in a medium

with multiple crack configurations. Since the goal of inversion

of seismic reflection data is to retrieve a detailed image of

the underlying geology and to quantify physical parameters,

a further issue along these lines is to classify the response of

single cracks with different sizes, orientations and frequencies

to provide reliable models in the inversion process. In addition,

the computation of this solution is very fast; this is a promising

approach to numerous applications.
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A P P E N D I X A : F U N C T I O N F ( z )

Function W in eq. (4) can be represented by a Fresnel integral

in terms of function F(z) given in eq. (5). Here we discuss

some properties of F(z) needed to prove (in Appendix B) the

convergence of series eq. (19). This function has the following

property:

FðÿzÞ ¼
ffiffiffi
n
p

eÿiðz2ÿn=4Þ ÿ FðzÞ : (A1)

For the problem at hand, z is real-valued. In order to study the

asymptotic behaviour of F for large arguments one has

FðzÞ ¼ i

2z
þOðzÿ3Þ for z&0 : (A2)

Scattering by a finite crack 757

# 2001 RAS, GJI 145, 749–758



Following the analysis in Achenbach & Gautesen (1986, p. 356)

for |z|%1, we obtain

FðzÞ ¼
ffiffiffi
n
p

2
ein=4 ÿ zþOðz2Þ : (A3)

Function F(z) can be written as

FðzÞ ¼
ffiffiffiffiffiffiffiffi
n=2

p
gðz

ffiffiffiffiffiffiffiffi
2=n

p
Þ þ i f ðz

ffiffiffiffiffiffiffiffi
2=n

p
Þ

n o
: (A4)

We use the rational approximation for functions f (x) and g(x)

given in Abramowitz & Stegun (1970, p. 302). Function f (x) is

given by

f ðxÞ ¼ 1þ :926x

2þ xð1:792þ 3:104xÞ (A5)

and g(x) is given by

gðxÞ ¼ 1

2þ xð4:142þ 3:492xþ 6:670x2Þ : (A6)

Other possible approximations for these functions can be derived

by means of the t-method of Lanczos given in Boersma (1960).

A P P E N D I X B : P R O O F O F |Z |< 1

In order to ensure convergence of the series in eq. (19), we must

prove that |Z|<1. For an arbitrary ka we have

jFðzÞjinf jZj¼ 2ffiffiffi
n
p e2ikaÿin=4

���� ���� Fð
ffiffiffiffiffiffiffiffi
4ka
p

Þ
��� ���¼ 2ffiffiffi

n
p Fð

ffiffiffiffiffiffiffiffi
4ka
p

Þ
��� ��� : (B1)

Let us analyse the asymptotic behaviour of |F(
ffiffiffiffiffiffiffiffi
4ka
p

)| when

kap0 and when kap?. On the one hand, eq. (A2) yields

lim
ka??

Fð
ffiffiffiffiffiffiffiffi
4ka
p

Þ
��� ��� ¼ 0 : (B2)

On the other hand, from eq. (A3) we obtain

lim
ka?0

Fð
ffiffiffiffiffiffiffiffi
4ka
p

Þ
��� ��� ¼ ffiffiffi

n
p

2
: (B3)

In addition, we note that ks(0, ?), hence for positive

arguments the function F(z) is bounded and is in fact

monotonically decreasing. Therefore, the series in eq. (19) is

convergent since |Z|<1.
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