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STEADY-STATE NONLINEAR HEAT CONDUCTION IN COMPOSITE MATERIALS
USING THE METHOD OF FUNDAMENTAL SOLUTIONS

A. KARAGEORGHIS AND D. LESNIC

Abstract. The steady-state heat conduction in composite (layered) heat conductors with temperature dependent
thermal conductivity and mixed boundary conditions involving convection and radiation is investigated using the
method of fundamental solutions with domain decomposition. The locations of the singularities outside the solu-
tion domain are optimally determined using a nonlinear least-squares procedure. Numerical results for nonlinear
bimaterials are presented and discussed.

1. Introduction

In many heat transfer problems the assumption of constant thermal conductivity, i.e. that the heat conductors are
homogeneous within the whole temperature variation interval, may lead to unacceptable errors in high-temperature
environments or if large temperature differences are present, see [31]. In the steady-state situation, the nonlinearity
associated with the temperature dependence of the thermal conductivity can be removed by employing the Kirchhoff
transformation, which replaces the original nonlinear partial differential equation in divergence form by the Laplace
equation in the transformed space, see [11]. Boundary conditions of the Dirichlet (first kind) or Neumann (second
kind) types pose no problem for the transformation, but the Robin convective (third kind) boundary conditions
become non-linear. Although this non-linearity is not strong, convergence problems may arise if radiative heat
transfer (fourth kind) boundary conditions are also present, see [12]. Since all the non-linearities are transferred
to the boundary conditions, the Kirchhoff transformation approach is very well-suited for applying the boundary
element method (BEM), [7, 20], or, more recently, the method of fundamental solutions (MFS) [22, 23]. In the same
manner these techniques can be extended to composite bodies through the subregion technique. In it, each region
is dealt with separately and then the whole body is linked together by applying compatibility and equilibrium
conditions along the interfaces between subregions.

Two-dimensional boundary value problems of heat conduction in nonlinear composite materials have been the
subject of several studies using the BEM, [2, 6, 8]. However, the implementation of the BEM becomes quite tedious,
especially in three-dimensional irregular domains. Moreover, the evaluation of the gradient of the temperature
solution on the boundary requires the use of finite differences or the evaluation of hypersingular integrals. In order
to alleviate some of these difficulties, we propose the use of the MFS. The merits and drawbacks of the MFS over
the BEM for solving elliptic boundary value problems are thoroughly discussed in [10, 13, 14, 19, 25, 32]. Recently,
the MFS has been made applicable to inhomogeneous elliptic equations [1] and inverse problems [33].

Prior to this study, the MFS was used for the solution of problems of heat conduction in linear layered materials
with linear boundary conditions [3]. It is the purpose of this paper to extend this analysis to nonlinear materials
with nonlinear boundary conditions.
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2 A. KARAGEORGHIS AND D. LESNIC

The mathematical formulation of the problem is given in Section 2. The MFS and its implementation are described
in Section 3. Numerical results are presented in Section 4 and in Section 5 some conclusions and ideas for future
applications are given.

2. Mathematical formulation

Consider a bounded domain Ω ⊂ Rd, d ≥ 2, with piecewise smooth boundary ∂Ω, formed from two (or more)
subregions Ω1 and Ω2 separated by the interfacial surface Γ12 = ∂Ω1 ∩ ∂Ω2. The material of subregion Ω1

has a temperature dependent thermal conductivity k1 > 0 and material of subregion Ω2 has a different thermal
conductivity k2 > 0. The governing steady-state heat conduction equations are

∇ · (ki(Ti)∇Ti) = 0, in Ωi, i = 1, 2, (2.1)

where Ti is the temperature solution in domain Ωi, i = 1, 2, and, for the sake of simplicity, we have assumed that
there is no heat generation within Ω. The technique developed in this paper is valid for bodies Ω consisting of an
arbitrary finite number of subregions.

Boundary conditions of the mixed type can be prescribed at the external surface ∂Ω of the composite body
Ω = Ω1 ∪ Ω2 and they include (dropping for simplicity the region subscript i = 1, 2):

(i) Dirichlet boundary conditions (prescribed temperature f)

T = f, on S1. (2.2)

(ii) Neumann boundary conditions (prescribed heat flux g)

− k(T )
∂T

∂n
= g, on S2, (2.3)

where n is the outward normal to the boundary ∂Ω.

(iii) Robin boundary conditions (prescribed heat transfer coefficient h)

− k(T )
∂T

∂n
= h (T − Tf ), on S3, (2.4)

where Tf is the temperature of fluid exchanging heat with surface S3.

(iv) Radiation condition (prescribed fourth-order power law)

− k(T )
∂T

∂n
= σ ε (T 4 − T 4

s ), on S4, (2.5)

where σ = 5.67051 × 10−8W/(m2K4) is the Stefan-Boltzman constant and ε is the radiation interchange
factor (emissivity) between the irradiated boundary S4 and the environment, having a temperature Ts.

In (2.2)-(2.5) the boundary portions Sj , j = 1, 4, which cover the boundary ∂Ω, i.e. ∂Ω = ∪4
j=1Sj , have no

common parts, i.e. Si ∩Sj = ∅, i 6= j. Also, in the above boundary conditions the nonlinearity occurs mainly
due to the heat radiation (2.5), although the method of solution can also allow nonlinearities to occur from a
temperature dependent heat transfer coefficient h(T ), or from a temperature dependent radiation interchange
factor ε(T ).
In addition to the above boundary conditions (2.2)-(2.5), both imperfect and ideal contact conditions can
occur at the interface Γ12, namely
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THE MFS FOR COMPOSITE MATERIALS PROBLEMS 3

(v) Interface continuity

− k(T1)
∂T1

∂n+
= k(T2)

∂T2

∂n−
, on Γ12, (2.6)

where n+ and n− are the outward normals to the boundaries ∂Ω1∩Γ12 and ∂Ω2∩Γ12, respectively, i.e. since
Γ12 = ∂Ω1 ∩ ∂Ω2 we have n+ = −n−.

(vi) Ideal contact (interface temperature continuity)

T1 = T2, on S5, (2.7)

and imperfect contact (interface temperature jump)

T1 = T2 −R k(T1)
∂T1

∂n+
, on S6, (2.8)

where R is the contact resistance. In (2.7) and (2.8) the interface portions S5 and S6 cover Γ12, i.e.
S5 ∪ S6 = Γ12, and have no common parts, i.e. S5 ∩ S6 = ∅.

2.1. Kirchhoff transformation. The governing nonlinear partial differential equations (2.1) can be easily trans-
formed into the Laplace equation by employing the Kirchhoff transformation defined as, see e.g. [11] or [27],

Ψi = ψi(Ti) :=
∫ Ti

0

ki(ξ)
k0i

dξ, i = 1, 2, (2.9)

where ki(T ) = k0i
(1 + mi(Ti)), k0i

are positive constants and mi(Ti) > −1 are known functions.
Since ki > 0, the inverse transformation to (2.9) exists and is given by

Ti = ψ−1
i (Ψi), i = 1, 2. (2.10)

Under (2.9), problem (2.1)-(2.8) transforms into the equivalent form

∇2Ψi = 0, in Ωi, i = 1, 2, (2.11)

subject to the boundary conditions (dropping for simplicity the subscript i = 1, 2)

Ψ = ψ(f), on S1, (2.12)

− k0
∂Ψ
∂n

= g, on S2, (2.13)

− k0
∂Ψ
∂n

= h [ψ−1(Ψ)− Tf ], on S3, (2.14)

− k0
∂Ψ
∂n

= σ ε [ψ−1(Ψ)4 − T 4
s ], on S4, (2.15)

and the interface conditions
− k01

∂Ψ1

∂n+
= k02

∂Ψ2

∂n−
, on Γ12, (2.16)

ψ−1
1 (Ψ1) = ψ−1

2 (Ψ2), on S5, (2.17)

ψ−1
1 (Ψ1) = ψ−1

2 (Ψ2)−R k01

∂Ψ1

∂n+
, on S6. (2.18)

It can be seen that in the Kirchhoff space of the transform, the governing equation (2.11), the Dirichlet boundary
condition (2.12), the Neumann boundary condition (2.13) and the flux continuity condition (2.16) are linear,
whilst the convective boundary condition (2.14) and the interface temperature conditions (2.17) and (2.18) become
nonlinear. The nonlinearity caused by the fourth power law radiation (2.5) is also present in the space of transform
(2.15), and furthermore, the Kirchhoff transform is no longer continuous across the interface S5, i.e. a jump in the
transforms occurs there where Ψ1 6= Ψ2.
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4 A. KARAGEORGHIS AND D. LESNIC

The advantage of employing the Kirchhoff transformation (2.9) is that the MFS can now be applied for approxi-
mating the solution of the Laplace equation (2.11). This implies that all the advantages the MFS has over other
methods, which are well-documented [14, 19], can be exploited. In particular, the fact that the MFS is a mesh-
less boundary-type method renders the implementation of the method to problems in irregular domains and to
three-dimensional problems straight-forward.

The solvability of problem (2.1)-(2.8), or equivalently the transformed problem (2.11)-(2.18) depends on the form,
e.g. smoothness, monotonicity, of the input data Ω, ∂Ω, Γ12, ki, f , g, Tf , Ts, h and ε and it may be established
using classical boundary integral equation methods, see e.g. [17].

Once Ψ has been determined, the temperature solution T may be readily obtained from equation (2.10), via (2.9).

3. The method of fundamental solutions (MFS)

As the sources of nonlinearity are associated with the boundary conditions (2.14), (2.15), (2.17) and (2.18) only,
the boundary value problem (2.11)-(2.18) for each subregion can, following [23], be converted into a minimization
problem, or equivalently an algebraic system of nonlinear equations, using the MFS.

From [9, 26], the MFS approximations for the solutions Ψ1 and Ψ2 of the Laplace equation (2.11) have the form

Ψi
N (ci, ξi; x) =

N∑

k=1

ci
k Gd(ξi

k,x), x ∈ Ωi, i = 1, 2, (3.1)

where N is the number of unknown singularities (sources) (ξi
k)k=1,N 6∈ Ωi, (ci

k)k=1,N are unknown real coefficients
and Gd is a fundamental solution for the Laplace equation, given by

Gd(ξ, x) =





ln | ξ − x |, d = 2,

1
| ξ − x | , d = 3.

(3.2)

The heat flux is obtained by differentiating (3.1) with respect to the outward normal n.

In (3.1), the coordinates of the singularities may be either preassigned, or let free and determined as part of
the solution [14]. Here, we adopt the former option, where the singularities are fixed, although their location
is parametrized by a single unknown parameter, as described at the end of this section. Therefore, in equation
(3.1) there are 2N unknowns, namely, the coefficients (ci

k)k=1,N , i = 1, 2. These coefficients can be determined by
collocating (imposing) the boundary and interface conditions (2.12)-(2.18) atM∂Ω distinct points on the boundary
∂Ω1\Γ12, M∂Ω distinct points on the boundary ∂Ω2\Γ12, and MΓ distinct points on the interface Γ12. We denote
the boundary points on each of the four parts (S`)`=1,4 ⊂ ∂Ω in the following way:

(1) On S1 ∩ ∂Ωi we take (xi
j)j=1,M1

(2) On S2 ∩ ∂Ωi we take (xi
j)j=M1+1,M1+M2

(3) On S3 ∩ ∂Ωi we take (xi
j)j=M1+M2+1,M1+M2+M3

(4) On S4 ∩ ∂Ωi we take (xi
j)j=M1+M2+M3+1,M1+M2+M3+M4

On the interface Γ12 we take:
(5) On S5 we take (xj)j=1,M5

and
(6) On S6 we take (xj)j=M5+1,M5+M6
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THE MFS FOR COMPOSITE MATERIALS PROBLEMS 5

Clearly, here we have that M∂Ω = M1 +M2 +M3 +M4 and MΓ = M5 +M6.
We thus have a total number of 2N unknowns and a total of 2M∂Ω + 2MΓ conditions to be satisfied.

Substituting (3.1) into (2.12)-(2.18), we minimize the nonlinear least-squares objective function

S(c1, c2) :=
2∑

i=1




M1∑

j=1

[
Ψi
N (ci, ξi; xi

j)− ψi(f(xi
j))

]2
+
M1+M2∑

j=M1+1

[
−k0i

∂Ψi
N

∂n
(ci, ξi;xi

j)− g(xi
j)

]2

+
M1+M2+M3∑

j=M1+M2+1

[
−k0i

∂Ψi
N

∂n
(ci, ξi;xi

j)− h(xi
j) (ψ−1

i (Ψi
N (ci, ξi;xi

j))− Tf (xi
j))

]2

+
M∂Ω∑

j=M1+M2+M3+1

[
−k0i

∂Ψi
N

∂n
(ci, ξi; xi

j)− σ ε(xi
j) (ψ−1

i (Ψi
N (ci, ξi;xi

j))
4 − Ts(xi

j)
4)

]2




+
M5∑

j=1

[
ψ−1

1 (Ψ1
N (c1, ξ1; xj))− ψ−1

2 (Ψ2
N (c2, ξ2; xj))

]2

+
MΓ∑

j=M5+1

[
ψ−1

1 (Ψ1
N (c1, ξ1; xj))− ψ−1

2 (Ψ2
N (c2, ξ2; xj)) + R k01

∂Ψ1
N (c1, ξ1; xj)

∂n+

]2

+
MΓ∑

j=1

[
−k01

∂Ψ1
N (c1, ξ1; xj)

∂n+
− k02

∂Ψ2
N (c2, ξ2; xj)

∂n−

]2

. (3.3)

The minimization of (3.3) is carried out using the MINPACK [16], routines lmdif or lmder which minimize the
sum of the squares of nonlinear functions. In lmder the Jacobian is provided by the user, whilst in lmdif the
Jacobian is calculated internally by forward finite differences. In this work both subroutines were used and it was
found that lmder converged faster than lmdif. A comparison of the performance of the two subroutines may be
found in [23].
In our experience, in the application of the MFS, unless there is good reason not to, the boundary points and
sources are located uniformly, or as uniformly as possible, on the boundary and pseudoboundary, respectively. The
case when it is advisable not to distribute these uniformly is when the method is applied to problems with boundary
singularities, in which case the concentration of boundary points and sources near the boundary singularities leads
to improved results, see e.g. [21]. In general, however, one needs to be careful with a highly non-uniform distribution
of the boundary points and sources, since such a distribution may add to the ill-conditioning of the resulting MFS
system of equations.
In the application of the MFS to bimaterials, two pseudo-boundaries were taken as exterior similar deformations
∂Ω′i of the boundaries of the original domains Ωi ⊂ Ω′i, i = 1, 2. A number of N singularities was placed on each
pseudo-boundary. An important question in the implementation of the MFS is the positioning of these pseudo-
boundaries. We addressed this point by extending the approach used in [30]. In particular, the pseudo-boundaries
∂Ω′i, i = 1, 2 were taken at a distance η > 0 from the boundaries ∂Ωi, i = 1, 2, respectively, see Figures 1, 7, 11
and 14. In order to determine the optimal value of η, the minimization problem was solved for various values of
η` = η0 + ` (δη), ` = 1, L. For each η`, the maximum error in the boundary conditions at a selected set of uniformly
spaced points on the boundary ∂Ω (different from the boundary collocation points) was calculated. The optimal
value of η was chosen the one for which the maximum error was minimized.

The MFS formulation described in this section may be viewed as a domain decomposition technique. Such ap-
proaches have been used, in conjunction with the MFS, in [3, 4, 5, 15].
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6 A. KARAGEORGHIS AND D. LESNIC
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Figure 1. Geometry and boundary conditions for Example 1

4. Numerical results and discussion

In this section we present numerical results obtained from the application of the MFS described in the previous
section.

4.1. Example 1. In order to validate the computational code and assess the accuracy of the numerical solution,
we consider a problem investigated in [8] using the BEM, which possesses an analytical solution. The geometry
and the boundary conditions are shown in Figure 1. The composite material Ω = Ω1 ∪ Ω2 is formed by layering
the heat conductors Ω1 = (0, 1) × (0, 1) and Ω2 = (1, 3) × (0, 1). For many conductors, the thermal conductivity
varies linearly with temperature, see [28], and we take

k1(T1) = k01(1 + m1(T1)) = 1 + 0.1T1,

k2(T2) = k02(1 + m2(T2)) = 2(1 + 0.25T2); W/(mK). (4.1)

The sides ABC and DEF are insulated. On the front face AD the radiation condition with ε = 0.3 and Ts = 800K is
prescribed. The back face CF exchanges heat by convection with the heat transfer coefficient h = 20W/(m2K) and
Tf = 300K. On the interface BE imperfect thermal contact with R = 0.2m2K/W is assumed. The mathematical
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THE MFS FOR COMPOSITE MATERIALS PROBLEMS 7

problem described above and in Figure 1 can be written as

∇ · ((1 + 0.1 T1) ∇T1) = 0, in Ω1 = (0, 1)× (0, 1), (4.2)

∇ · (2 (1 + 0.25 T2)∇T2) = 0, in Ω2 = (1, 3)× (0, 1), (4.3)
∂T1

∂y
(x, 0) =

∂T1

∂y
(x, 1) = 0, x ∈ (0, 1), (4.4)

∂T2

∂y
(x, 0) =

∂T2

∂y
(x, 1) = 0, x ∈ (1, 3), (4.5)

(1 + 0.1 T1(0, y))
∂T1

∂x
(0, y) = 1.701153× 10−8

(
T1(0, y)4 − 8004

)
, y ∈ (0, 1), (4.6)

− 2 (1 + 0.25 T2(3, y))
∂T2

∂x
(3, y) = 20 (T2(3, y)− 300) , y ∈ (0, 1), (4.7)

− (1 + 0.1 T1(1, y))
∂T1

∂x
(1, y) = −2 (1 + 0.25 T2(1, y))

∂T2

∂x
(1, y), y ∈ (0, 1), (4.8)

T1(1, y) = T2(1, y)− 0.2 (1 + 0.1 T1(1, y))
∂T1

∂x
(1, y), y ∈ (0, 1). (4.9)

In order to obtain the analytical solution of this problem, one can observe from (4.4) and (4.5) that the temperature
field is one-dimensional, varying only in the x−direction. Then (4.2), (4.3) and (4.8) yield

− (1 + 0.1 T1(x)) T ′1(x) = q = constant, x ∈ [0, 1],

−2 (1 + 0.25 T2(x)) T ′2(x) = q = constant, x ∈ [1, 3], (4.10)

and from (4.6), (4.7) and (4.9) it follows that

− q = 1.701153× 10−8(a4 − 8004), q = 20(b− 300), c = d + 0.2 q, (4.11)

where

a = T1(0), b = T2(3), c = T1(1), d = T2(1).

Integrating (4.10) we obtain

− q = c− a + 0.05(c2 − a2), −q = b− d + 0.125(b2 − d2). (4.12)

Combining equations (4.11) and (4.12), we obtain a nonlinear system of five equations in the five unknowns q, a, b, c

and d. We solved this system with Newton’s method and obtained

q = 1638.3816070189441 W/m2,

T1(0) = a = 748.14643307239453 K, T1(1) = c = 726.21897682687859 K,

T2(3) = b = 381.91908035094718 K, T2(1) = d = 398.54265542308980 K.

It is noteworthy that the results of Bialecki and Kuhn [8] are slightly different due to some mistakes in writing out
the system of equations (4.11) and (4.12).
The analytical solution of the problem (4.2)-(4.9) is obtained by integrating (4.10) to yield

T1(x) =
−1 +

√
1− 0.2 (q x− a− 0.05 a2)

0.1
, x ∈ [0, 1],

T2(x) =
−1 +

√
1− 0.25 (q (x− 1)− 2 d− 0.25 d2)

0.25
, x ∈ [1, 3]. (4.13)

We next apply the Kirchhoff transformation and the MFS, as described in Sections 2.1 and 3, respectively, in order
to compare the numerical solution with the analytical solution (4.13). Employing transformation (2.9) yields

Ψ1 = ψ1(T1) = T1 + 0.05 T 2
1 , Ψ2 = ψ2(T2) = T2 + 0.125 T 2

2 . (4.14)
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8 A. KARAGEORGHIS AND D. LESNIC

The inverses of (4.14) are given by

T1 = ψ−1
1 (Ψ1) =

−1 +
√

1 + 0.2Ψ1

0.1
, T2 = ψ−1

2 (Ψ2) =
−1 +

√
1 + 0.5Ψ2

0.25
, (4.15)

where the negative roots are discarded since k1(T1) and k2(T2) have to be positive.
In the Kirchhoff transform space problem (4.2)-(4.9) becomes

∇2Ψ1(x, y) = 0, (x, y) ∈ (0, 1)× (0, 1), (4.16)

∇2Ψ2(x, y) = 0, (x, y) ∈ (1, 3)× (0, 1), (4.17)

∂Ψ1

∂y
(x, 0) =

∂Ψ1

∂y
(x, 1) = 0, x ∈ (0, 1), (4.18)

∂Ψ2

∂y
(x, 0) =

∂Ψ2

∂y
(x, 1) = 0, x ∈ (1, 3), (4.19)

∂Ψ1

∂x
(0, y) = 1.701153× 10−8




(
−1 +

√
1 + 0.2Ψ1(0, y)

0.1

)4

− 8004


 , y ∈ (0, 1), (4.20)

− 2
∂Ψ2

∂x
(3, y) = 20

(
−1 +

√
1 + 0.5 Ψ2(3, y)

0.25
− 300

)
, y ∈ (0, 1), (4.21)

− ∂Ψ1

∂x
(1, y) = −2

∂Ψ2

∂x
(1, y), y ∈ (0, 1), (4.22)

−1 +
√

1 + 0.2Ψ1(1, y)
0.1

=
−1 +

√
1 + 0.5Ψ2(1, y)

0.25
− 0.2

∂Ψ1

∂x
(1, y), y ∈ (0, 1). (4.23)

Remark that the linear Robin condition (4.7) has been transformed into the nonlinear Robin condition (4.21).

With the notation of Section 3, for problem (4.16)-(4.23), we have thatM1 = M5 = 0 since no Dirichlet boundary
conditions (2.2) or ideal contact interface temperature conditions (2.7) are present. Further, we chose M2 = 2M ,
M3 = M4 = MΓ = M , which yields a total of 8M boundary conditions. Thus, the nonlinear least-squares
objective function (3.3) takes the form

S(c1, c2) =
2∑

i=1

2M∑

j=1

[
∂Ψi

N
∂y

(ci, ξi; xi
j)

]2

+
3M∑

j=2M+1


2

∂Ψ2
N

∂x
(c2, ξ2; x2

j ) + 20


−1 +

√
1 + 0.5 Ψ2

N (c2, ξ2; x2
j )

0.25
− 300







2

+
3M∑

j=2M+1





∂Ψ1
N

∂x
(c1, ξ1; x1

j )− 1.701153× 10−8





−1 +

√
1 + 0.2Ψ1

N (c1, ξ1; x1
j )

0.1




4

− 8004








2

+
M∑

j=1


−1 +

√
1 + 0.2Ψ1

N (c1, ξ1; xj)

0.1
−
−1 +

√
1 + 0.5 Ψ2

N (c2, ξ2; xj)

0.25
+ 0.2

∂Ψ1
N

∂x
(c1, ξ1;xj)




2

+
M∑

j=1

[
−∂Ψ1

N
∂x

(c1, ξ1; xj) + 2
∂Ψ2

N
∂x

(c2, ξ2; xj)
]2

, (4.24)
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THE MFS FOR COMPOSITE MATERIALS PROBLEMS 9

where the boundary collocation points are given by

x1
j =

(
j

M + 1
, 0

)
, x1

M+j =
(

j

M + 1
, 1

)
, x1

2M+j =
(

0,
j − 1
M − 1

)
, (4.25)

x2
j =

(
1 +

2j

M + 1
, 0

)
, x2

M+j =
(

1 +
2j

M + 1
, 1

)
, x2

2M+j =
(

3,
j − 1
M − 1

)
, (4.26)

and xj =
(

1,
j − 1
M − 1

)
, j = 1,M. (4.27)

With respect to Figure 1, the source points (ξ1
k)k=1,N and (ξ2

k)k=1,N are located on pseudo-boundaries ∂Ω′1 and
∂Ω′2 which enclose and are similar to the domains Ω1 and Ω2, respectively, at a distance η > 0 from them. On each
pseudo-boundary the N sources are distributed in a similar way to the distribution of the boundary points. In
particular we take N = 4N and place N sources on each side of the rectangle ∂Ω′i, i = 1, 2, and thus have a total
number of 8N sources. In our nonlinear problem we therefore need to satisfy 8M equations in 8N unknowns. Once
the approximation ΨN for Ψ has been obtained accurately, equation (4.15) yields immediately the temperature
solution T .
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Figure 2. Boundary temperature error Eb versus distance η for various values of M = N
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Figure 3. Boundary temperature error Eb versus distance η for various values of M = 2N

In Figure 2, we present the logarithms of the maximum errors in the boundary temperatures T1 and T2 versus
the distance of the pseudo-boundary from the boundary for M = N = 2, 4, 8 and 16. These maximum errors
were evaluated on 44 equally spaced points on the boundaries ∂Ω1 and ∂Ω2, respectively. Further, in Figure 3, we
present the same errors for M = 2N = 2, 4, 8 and 16. From Figures 2 and 3 we observe that:

(i) the error Eb decreases as the distance η increases, which is consistent with the theoretical studies on the
convergence of the MFS, see [24, 29];

(ii) the accuracy in predicting T2 is better than that of T1 possibly because the highly nonlinear radiative boundary
condition is present at the upstream face AD;

(iii) the results of Figure 3 are only slightly better than those of Figure 2, implying that the increase in the ratio
of boundary points to singularities has little effect on the accuracy of the method. This is consistent with the
observations reported in [23].

In Figure 4, we present the numerical isotherms inside the solution domains Ω1 and Ω2, obtained with M = N = 16.
These are in very good agreement with the analytical solutions (4.13). In Figure 5, we present the error profiles in
T1 and T2 in Ω for M = N = 2, 4, 8 and 16. From this figure we can see the improvement in the accuracy as M (and
N) increases. In Table 1, we present the approximations obtained for a = T1(0), b = T2(3), c = T1(1), d = T2(1)
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THE MFS FOR COMPOSITE MATERIALS PROBLEMS 11

Figure 4. Isotherms in Ω for M = N = 16

M = N q a b c d

2 1638.38660 748.14674 381.91861 726.21940 398.54208
4 1638.38130 748.14644 381.91916 726.21899 398.54273
8 1638.38161 748.14643 381.91908 726.21898 398.54266
16 1638.38161 748.14643 381.91908 726.21898 398.54266

Initial 1638.38161 748.14643 381.91908 726.21898 398.54266

Table 1. Results for constants q, a, b, c and d for various values of M = N

and q, for various numbers of degrees of freedom. These approximations were obtained by evaluating the MFS
values at 101 equally spaced points on the corresponding vertical sides, and then taking the average. For example,
in the case of a, we took

a =
1

101

101∑

i=1

TMN
1 (0, yi), where yi =

i− 1
100

, i = 1, 2, · · · 101,

where TMN
1 is the MFS approximation for T1. Again we observe the improvement in the accuracy as the number

of degrees of freedom increases.
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12 A. KARAGEORGHIS AND D. LESNIC

Figure 5. Temperature error profiles in Ω for various values of M = N

4.2. Example 2. This example is included in order to show the versatility and possible field of practical application
of both the developed technique and its computer implementation. As in Example 1, the boundary conditions com-
prise radiation, convection, and ideal and non-ideal contact at the interface. The geometry and boundary conditions
of the problem investigated in [8] using the BEM are shown in Figure 6. Unlike Example 1, the temperature field
is two-dimensional and there is no analytical solution available. The composite material Ω = Ω1 ∪ Ω2 = rectangle
ACFDA with the circular hole HG, is formed by layering the heat conductors Ω1 = ABH(left)GEDA and
Ω2 = BCFEG(right)HB. The thermal conductivities in each layer are linear functions of temperature given by

k1(T1) = k01(1 + m1(T1)) = 70
(

1 +
T1 − 300

1050

)
; W/(mK), (4.28)

k2(T2) = k02(1 + m2(T2)) = 30
(

1 +
T2 − 300

525

)
; W/(mK). (4.29)

The sides ABC, DEF and the circular cavity HG are insulated. The front face AD exchanges heat by convection
with the heat transfer coefficient h = 30W/(m2K) and Tf = 350K. On the back face, the radiation condition with
ε = 0.4 and Ts = 1000K is prescribed. The interface GE is at ideal contact, whilst on the interface HB imperfect
thermal contact with R = 0.1m2K/W is assumed.

The mathematical problem described above and depicted in Figure 6 can be written as

∇ ·
(

70
(

1 +
T1 − 300

1050

)
∇T1

)
= 0, in Ω1 = ABH(left)GEDA, (4.30)
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THE MFS FOR COMPOSITE MATERIALS PROBLEMS 13

∇ ·
(

30
(

1 +
T2 − 300

525

)
∇T2

)
= 0, in Ω2 = BCFEG(right)HB, (4.31)

∂T1

∂y
(x, 0) =

∂T1

∂y
(x, 2) = 0, x ∈ (0, 1) (on AB ∪DE), (4.32)

∂T2

∂y
(x, 0) =

∂T2

∂y
(x, 2) = 0, x ∈ (1, 3) (on BC ∪ EF ), (4.33)

70
(

1 +
T1(0, y)− 300

1050

)
∂T1

∂x
(0, y) = 30(T1(0, y)− 350), y ∈ (0, 2) (on AD), (4.34)

− 30
(

1 +
T2(3, y)− 300

525

)
∂T2

∂x
(3, y) = 2.268204× 10−8(T 4

2 (3, y)− 1012), y ∈ (0, 2) (on CF ), (4.35)

T1(1, y) = T2(1, y)− 7
(

1 +
T1(1, y)− 300

1050

)
∂T1

∂x
(1, y), y ∈ (1.5, 2) (on HB), (4.36)

T1(1, y) = T2(1, y), y ∈ (0, 0.5) (on GE), (4.37)

70
(

1 +
T1(1, y)− 300

1050

)
∂T1

∂x
(1, y) = 30

(
1 +

T2(1, y)− 300
525

)
∂T2

∂x
(1, y), y ∈ (0, 0.5) ∪ (1.5, 2) (on HB ∪GE),

(4.38)

(x− 1)
∂T1

∂x
+ (y − 1)

∂T1

∂y
= 0, on HG(left), (4.39)

(x− 1)
∂T2

∂x
+ (y − 1)

∂T2

∂y
= 0, on HG(right). (4.40)

In (4.39) and (4.40)
HG(left) = {(x, y)|(x− 1)2 + (y − 1)2 = 1/4, 0.5 ≤ x ≤ 1}, (4.41)

HG(right) = {(x, y)|(x− 1)2 + (y − 1)2 = 1/4, 1 < x ≤ 1.5}, (4.42)

Employing transformation (2.9) yields

Ψ1 = ψ1(T1) =
150 T1 + 0.1 T 2

1

210
, Ψ2 = ψ2(T2) =

45 T2 + 0.1 T 2
2

105
, (4.43)

while the inverses of (4.43) are given by

T1 =
√

5625 + 21Ψ1 − 75
0.1

, T2 =
√

2025 + 42 Ψ2 − 45
0.2

. (4.44)

In the Kirchhoff transform space, problem (4.30)-(4.40) becomes

∇2Ψ1 = 0, in Ω1 = ABH(left)GEDA, (4.45)

∇2Ψ2 = 0, in Ω2 = BCFEG(right)HB, (4.46)
∂Ψ1

∂y
(x, 0) =

∂Ψ1

∂y
(x, 2) = 0, x ∈ (0, 1) (on AB ∪DE), (4.47)

∂Ψ2

∂y
(x, 0) =

∂Ψ2

∂y
(x, 2) = 0, x ∈ (1, 3) (on BC ∪ EF ), (4.48)

7
∂Ψ1

∂x
(0, y) = 30 (

√
5625 + 21 Ψ1(0, y)− 110), y ∈ (0, 2) (on AD), (4.49)

− ∂Ψ2

∂x
(3, y) = 0.756068× 10−5




(√
2025 + 42 Ψ2(3, y)− 45

2

)4

− 108


 , y ∈ (0, 2) (on CF ), (4.50)

√
5625 + 21 Ψ1(1, y)− 75

0.1
=

√
2025 + 42Ψ2(1, y)− 45

0.2
− 7

∂Ψ1

∂x
(1, y), y ∈ (1.5, 2) (on HB), (4.51)

√
5625 + 21Ψ1(1, y)− 75

0.1
=

√
2025 + 42 Ψ2(1, y)− 45

0.2
, y ∈ (0, 0.5) (on GE), (4.52)

7
∂Ψ1

∂x
(1, y) = 3

∂Ψ2

∂x
(1, y), y ∈ (0, 0.5) ∪ (1.5, 2) (on HB ∪GE), (4.53)
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14 A. KARAGEORGHIS AND D. LESNIC

(x− 1)
∂Ψ1

∂x
+ (y − 1)

∂Ψ1

∂y
= 0, on HG(left), (4.54)

(x− 1)
∂Ψ2

∂x
+ (y − 1)

∂Ψ2

∂y
= 0, on HG(right). (4.55)

In the MFS discretization of problem (4.45)-(4.55), we take M collocation points on each of the segments AD,DE,AB

and GH(left) of ∂Ω1, M collocation points on each of the segments EF, FC,CB and GH(right) of ∂Ω2, and M/2
collocation points on each of the segments EG and HB of the interface Γ12. The total number of equations to be
satisfied is therefore 10M . Thus the nonlinear least-squares functional (3.3) is given by

S(c1, c2) =
2∑

i=1





2M∑

j=1

[
∂Ψi

N
∂y

(ci, ξi; xi
j)

]2


 +

3M∑

j=2M+1

[
7
∂Ψ1

N
∂x

(c1, ξ1; x1
j )− 30(

√
5625 + 21Ψ1

N (c1, ξ1; x1
j )− 110)

]2

+
3M∑

j=2M+1





∂Ψ2
N

∂x
(c2, ξ2; x2

j ) + 0.756068× 10−5







√
2025 + 42Ψ2

N (c2, ξ2;x2
j )− 45

2




4

− 108








2

+
2∑

i=1





4M∑

j=3M+1

[
(xi

j − 1)
∂Ψi

N
∂x

(ci, ξi;xi
j) + (yi

j − 1)
∂Ψi

N
∂y

(ci, ξi; xi
j)

]2




+
M∑

j=1

[
7
∂Ψ1

N
∂x

(c1, ξ1;xj)− 3
∂Ψ2

N
∂x

(c2, ξ2; xj)
]2

+
M/2∑

j=1




√
5625 + 21Ψ1

N (c1, ξ1;xj)− 75

0.1
−

√
2025 + 42Ψ2

N (c2, ξ2;xj)− 45

0.2




2

+
M∑

j=M/2+1




√
5625 + 21Ψ1

N (c1, ξ1; xj)− 75

0.1
−

√
2025 + 42Ψ2

N (c2, ξ2; xj)− 45

0.2
+ 7

∂Ψ1
N

∂x
(c1, ξ1; xj)




2

, (4.56)

where the boundary collocation points are given by

x1
j =

(
j

M + 1
, 0

)
, x1

M+j =
(

j

M + 1
, 2

)
, x1

2M+j =
(

0,
2(j − 1)
M − 1

)
, (4.57)

x1
3M+j =

(
1 +

1
2

cos
(

π

2
+

πj

M + 1

)
, 1 +

1
2

sin
(

π

2
+

πj

M + 1

))
, (4.58)

x2
j =

(
1 +

2j

M + 1
, 0

)
, x2

M+j =
(

1 +
2j

M + 1
, 2

)
, x2

2M+j =
(

3,
2(j − 1)
M − 1

)
, (4.59)

x2
3M+j =

(
1 +

1
2

cos
(
−π

2
+

πj

M + 1

)
, 1 +

1
2

sin
(
−π

2
+

πj

M + 1

))
, j = 1,M, (4.60)

and

xj =
(

1,
j − 1
M − 2

)
, xM/2+j =

(
1, 1.5 +

j − 1
M − 2

)
, j = 1, M/2. (4.61)

The presence of an insulated circular cavity prevents the temperature from being one-dimensional. Once the
approximation ΨN for Ψ is calculated, the temperature solution is readily obtained from equation (4.44). As in the
case of Example 1, the source points are located on pseudo-boundaries ∂Ω′1 and ∂Ω′2 which enclose and are similar
to the domains Ω1 and Ω2, respectively, at a distance η > 0 from them. On each pseudo-boundary the sources are
distributed in a similar way to the distribution of the boundary points. More specifically, we take N source points
on each of the segments of ∂Ω′1 which correspond to AD, DE,AB and GH(left), and N/2 source points on each
of the segments that correspond to EG and HB. On ∂Ω′2, we take N source points on each of the segments which
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THE MFS FOR COMPOSITE MATERIALS PROBLEMS 15

correspond to EF, FC,CB and GH(right) and N/2 source points on each of the segments that correspond to EG

and HB. Thus the total number of sources is 2N = 10N . A typical distribution of boundary points and sources,
for each subdomain is depicted in Figure 7.
In Figure 8, we present the logarithms of the maximum relative errors in the satisfaction of the boundary conditions
for M = N = 4, 8, 12, 16 and 24. These maximum errors were evaluated on 96 equally spaced points on the bound-
aries of each subregion. From this figure we observe that as M = N increases the maximum error decreases. The
two- and three-dimensional isotherms obtained with M = N = 24 are presented in Figures 9 and 10, respectively.
These are in very good agreement with the corresponding results of [7] obtained using the BEM. As expected, there
is a jump in the temperature field along imperfectly contact interface HB, whereas at the remaining portion of the
ideal contact interface EG the temperature field is smooth.

D(0,0) E(1,0)
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/ ∂ n = 0 ∂ T

2
/ ∂ n = 0

Figure 6. Geometry and boundary conditions for Example 2

4.3. Example 3. The two examples considered so far have been two-dimensional and the materials possessed
thermal conductivities which varied linearly with the temperature. In this example we consider a case when
the thermal conductivity of one of the two layers varies nonlinearly with the temperature. More precisely, let
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Ω
1

Ω
2

Figure 7. Typical distribution of boundary points (+) and sources (∗) in Example 2
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Figure 8. Convergence of maximum error in the satisfaction of boundary conditions for Example 2

Ω1 = (0, 1)× (0, 1), Ω2 = (0, 1)× (−1, 0) and take k1(T1) = 1 + eT1 , k2(T2) = 2.



 

 

 

ACCEPTED MANUSCRIPT 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

THE MFS FOR COMPOSITE MATERIALS PROBLEMS 17

D E F

CBA

450

500

550

600

650

700

750

800

850

900

950

Figure 9. Two-dimensional isotherm map for Example 2

We consider the problem (Figure 11)

∇ · ((1 + eT1)∇T1

)
= 0, in Ω1, (4.62)

∇2T2 = 0, in Ω2, (4.63)

−
(
1 + eT1(0,y)

) ∂T1

∂x
(0, y) = −y, y ∈ (0, 1], (4.64)

(
1 + eT1(x,1)

) ∂T1

∂y
(x, 1) = x, x ∈ (0, 1], (4.65)

(
1 + eT1(1,y)

) ∂T1

∂x
(1, y) = y, y ∈ (0, 1), (4.66)

T2(0, y) = 0, y ∈ [−1, 0), (4.67)

T2(x,−1) = −x/2, x ∈ [0, 1), (4.68)

T2(1, y) = y/2, y ∈ [−1, 0), (4.69)

T1(x, 0) = T2(x, 0), x ∈ [0, 1], (4.70)

(1 + eT1(x,0))
∂T1

∂y
(x, 0) = 2

∂T2

∂y
(x, 0), x ∈ (0, 1). (4.71)

Then upon the Kirchhoff transformations (2.9)

Ψ1 = ψ1(T1) = T1 + eT1 − 1, (4.72)

Ψ2 = ψ2(T2) = T2, (4.73)
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18 A. KARAGEORGHIS AND D. LESNIC

Figure 10. Three-dimensional isotherm map for Example 2

the problem (4.62)-(4.71) transforms into

∇2Ψ1 = 0, in Ω1, (4.74)

∇2Ψ2 = 0, in Ω2, (4.75)

− ∂Ψ1

∂x
(0, y) = −y, y ∈ (0, 1], (4.76)

∂Ψ1

∂y
(x, 1) = x, x ∈ (0, 1], (4.77)

∂Ψ1

∂x
(1, y) = y, y ∈ (0, 1), (4.78)

Ψ2(0, y) = 0, y ∈ [−1, 0), (4.79)

Ψ2(x,−1) = −x, x ∈ [0, 1), (4.80)

Ψ2(1, y) = y, y ∈ [−1, 0), (4.81)

ψ−1
1 (Ψ1(x, 0)) = Ψ2(x, 0), x ∈ [0, 1], (4.82)

∂Ψ1

∂y
(x, 0) = 2

∂Ψ2

∂y
(x, 0), x ∈ (0, 1). (4.83)

We solve problem (4.74)-(4.83) using the MFS with condition (4.82) replaced by

Ψ1(x, 0) = Ψ2(x, 0) + eΨ2(x,0) − 1, x ∈ [0, 1] (4.84)
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THE MFS FOR COMPOSITE MATERIALS PROBLEMS 19

and compare the numerical results with the analytical solution

Ψ1(x, y) = xy, (x, y) ∈ Ω1, (4.85)

Ψ2(x, y) =
xy

2
, (x, y) ∈ Ω2. (4.86)

(4.87)

We placed M collocation points on each side of the squares Ω1 and Ω2 yielding a total of 8M collocations points.
Similarly, we placed N sources on each side of each of the pseudoboundaries ∂Ω′1 and ∂Ω′2. In particular, we took

x1
j =

(
0,

j − 1
M − 1

)
, x2

j =
(

0,− j − 1
M − 1

)
, (4.88)

x1
M+j =

(
j

M + 1
, 1

)
, x2

M+j =
(

j

M + 1
,−1

)
, (4.89)

x1
2M+j =

(
1, 1− j − 1

M − 1

)
, x2

2M+j =
(

1,−1 +
j − 1
M − 1

)
, (4.90)

and

xj =
(

j

M + 1
, 0

)
, j = 1, M. (4.91)

The nonlinear least-squares objective function (3.3) takes the form

S(c1, c2) =
3M∑

j=1

[
Ψ2
N (c2, ξ2; x2

j )−Ψ2(x2
j )

]2
+

3M∑

j=1

[
∂Ψ1

N
∂n

(c1, ξ1;x1
j )−

∂Ψ1(x1
j )

∂n

]2

+
M∑

j=1

[
Ψ1
N (c1, ξ1; xj)−Ψ2

N (c2, ξ2; xj)− eΨ2
N (c2,ξ2;xj) + 1,

]2

+
M∑

j=1

[
∂Ψ1

N
∂y

(c1, ξ1; xj)− 2
∂Ψ2

N
∂y

(c2, ξ2; xj)
]2

. (4.92)

After solving boundary value problem (4.74)-(4.83) for Ψ1
N and Ψ2

N , to recover T1(x) for each x ∈ Ω1 we need to
solve numerically the nonlinear equation

T1(x) + eT1(x) − 1 = Ψ1
N (c1, ξ1; x) (4.93)

which always has a unique solution since the function F : R → R, f(a) = a + ea − 1 is bijective and strictly
increasing. This can be done using the matlab function fzero which finds a zero of a function of one variable.

The absolute error in T2 was calculated on a uniform 20× 20 grid in Ω2 and in Figure 12 we present the absolute
error profiles for M = N = 2, 4 and 8. As the number of degrees of freedom increases, the error decreases.

Further, in Figure 13 we present a plot of the isotherms throughout the whole of the composite solution domain
Ω1 ∪ Ω2. Note that there is no closed form analytical solution for T1(x, y) available to compare with.

In cases of thermal conductivities whose primitive (indefinite integral) cannot be calculated explicitly, such as
k(T ) = eT 2

, the integral in the Kirchhoff transformation has to be calculated numerically. However, such conduc-
tivity variations are seldom encountered in the engineering practice. It is more likely, that in such cases one first
approximates k(T ) by a piecewise linear function and then applies the Kirchhoff transformation over each linear
portion [2], as described globally for Examples 1 and 2. The same piecewise linear approximation can be adopted
if the thermal conductivity is given at a set of discrete nodes rather than as an explicit function.
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Figure 11. Geometry and boundary conditions for Example 3

4.4. Example 4. The examples considered so far have been two-dimensional. In this example, we consider a
three-dimensional composite heat conductor formed with two layers of material Ω1 = (0, 1) × (0, 1) × (0, 1) and
Ω2 = (0, 1)×(0, 1)×(−1, 0) as shown in Figure 14. Further, we consider that the layer Ω1 has a thermal conductivity
which varies exponentially with the temperature, namely, see e.g. [31],

k1(T1) = eT1 , (4.94)

whilst the other layer Ω2 is homogeneous with uniform thermal conductivity

k2(T2) = 1. (4.95)

We consider the problem

∇ · (eT1 ∇T1

)
= 0, in Ω1 = (0, 1)× (0, 1)× (0, 1), (4.96)

∇2T2 = 0, in Ω2 = (0, 1)× (0, 1)× (−1, 0) (4.97)

with interface conditions

T1(x, y, 0) = T2(x, y, 0), (x, y) ∈ [0, 1]× [0, 1], (4.98)

eT1(x,y,0) ∂T1

∂z
(x, y, 0) =

∂T2

∂z
(x, y, 0), (x, y) ∈ [0, 1]× [0, 1], (4.99)

and subject to Dirichlet boundary conditions (2.2) given by

T1(x, 0, z) = ln(2 + x + z), T1(0, y, z) = ln(2 + y + z),

T1(x, 1, z) = ln(3 + x + z), T1(1, y, z) = ln(3 + y + z),
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Figure 12. Absolute error profiles for T2 in for Example 3

T1(x, y, 1) = ln(3 + x + y), (x, y, z) ∈ [0, 1]× [0, 1]× [0, 1], (4.100)

and

T2(x, 0, z) = z + ln(2 + x) +
1
2

ln
(

1 +
2z2

(2 + x)2

)
, T2(0, y, z) = z + ln(2 + y) +

1
2

ln
(

1 +
2z2

(2 + y)2

)
,

T2(x, 1, z) = z + ln(3 + x) +
1
2

ln
(

1 +
2z2

(3 + x)2

)
, T2(1, y, z) = z + ln(3 + y) +

1
2

ln
(

1 +
2z2

(3 + y)2

)
,

T2(x, y,−1) = −1 + ln(2 + x + y) +
1
2

ln
(

1 +
2

(2 + x + y)2

)
, (x, y, z) ∈ [0, 1]× [−1, 0]. (4.101)

The boundary value problem (4.96)-(4.101) has the analytical solution

T1(x, y, z) = ln(2 + x + y + z), (x, y, z) in Ω1, (4.102)

T2(x, y, z) = z + ln(2 + x + y) +
1
2

(
1 +

2z2

(2 + x + y)2

)
, (x, y, z) in Ω2. (4.103)

Employing the Kirchhoff transformation (2.9) we obtain

Ψ1 = ψ1(T1) = eT1 − 1, Ψ2 = ψ2(T2) = T2 , (4.104)

with the inverses of (4.104) given by

T1 = ln(Ψ1 + 1), T2 = Ψ2 . (4.105)
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Figure 13. Two-dimensional isotherm map for Example 3

In the Kirchhoff transform space, problem (4.96)-(4.101) becomes

∇2Ψ1 = 0, in Ω1, (4.106)

∇2Ψ2 = 0, in Ω2, (4.107)

ln (Ψ1(x, y, 0) + 1) = Ψ2(x, y, 0), (x, y) ∈ [0, 1]× [0, 1], (4.108)
∂Ψ1

∂z
(x, y, 0) =

∂Ψ2

∂z
(x, y, 0), (x, y) ∈ [0, 1]× [0, 1], (4.109)

with

Ψ1(x, 0, z) = 1 + x + z, Ψ1(0, y, z) = 1 + y + z,

Ψ1(x, 1, z) = 2 + x + z, Ψ1(1, y, z) = 2 + y + z,

Ψ1(x, y, 1) = 2 + x + y, (x, y, z) ∈ [0, 1]× [0, 1]× [0, 1], (4.110)

and

Ψ2(x, 0, z) = z + ln(2 + x) +
1
2

ln
(

1 +
2z2

(2 + x)2

)
, Ψ2(0, y, z) = z + ln(2 + y) +

1
2

ln
(

1 +
2z2

(2 + y)2

)
,

Ψ2(x, 1, z) = z + ln(3 + x) +
1
2

ln
(

1 +
2z2

(3 + x)2

)
, Ψ2(1, y, z) = z + ln(3 + y) +

1
2

ln
(

1 +
2z2

(3 + y)2

)
,

Ψ2(x, y,−1) = −1 + ln(2 + x + y) +
1
2

ln
(

1 +
2

(2 + x + y)2

)
, (x, y, z) ∈ [0, 1]× [0, 1]× [−1, 0]. (4.111)



 

 

 

ACCEPTED MANUSCRIPT 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

THE MFS FOR COMPOSITE MATERIALS PROBLEMS 23

The boundary value problem (4.106)-(4.111) has the analytical solution

Ψ1(x, y, z) = 1 + x + y + z, in Ω1, (4.112)

Ψ2(x, y, z) = z + ln(2 + x + y) +
1
2

(
1 +

2z2

(2 + x + y)2

)
, in Ω2. (4.113)

We chose M ×M boundary collocation points on each of the faces of each cube and similarly N ×N sources on
the corresponding pseudoboundaries. Thus, in this case M = 6M2 and N = 6N2, yielding a total number of
2M = 12M2 equations in 2N = 12N2 unknowns. If the interface is denoted by Γ12 then the number of boundary
collocation points on ∂Ωi\Γ12, i = 1, 2 is M∂Ω = 5M2 and the number on the interface Γ12 of each subdomain
is MΓ = M2. Further, the boundary points on ∂Ωi\Γ12, i = 1, 2 are denoted by (xi

j)j=1,M∂Ω
, i = 1, 2 while the

points on the interface Γ12 are denoted by (xj)j=1,MΓ
.

More precisely, we take

x1
` =

(
0,

i− 1
M − 1

,
j − 1
M − 1

)
, x2

` =
(

0,
i− 1

M − 1
,−1 +

j − 1
M − 1

)
,

x1
M2+` =

(
1,

i− 1
M − 1

,
j − 1
M − 1

)
, x2

M2+` =
(

1,
i− 1

M − 1
,−1 +

j − 1
M − 1

)
,

x1
2M2+` =

(
i

M + 1
, 0,

j − 1
M − 1

)
, x2

2M2+` =
(

i

M + 1
, 0,−1 +

j − 1
M − 1

)
,

x1
3M2+` =

(
i

M + 1
, 1,

j − 1
M − 1

)
, x2

3M2+` =
(

i

M + 1
, 1,−1 +

j − 1
M − 1

)
,

x1
4M2+` =

(
i

M + 1
,

j

M + 1
, 1

)
, x2

4M2+` =
(

i

M + 1
,

j

M + 1
,−1

)
,

and

x` =
(

i

M + 1
,

j

M + 1
, 0

)
, i, j = 1,M, ` = (i− 1)M + j . (4.114)

The solutions Ψi(x), i = 1, 2 are approximated by Ψi
N (ci, ξi;x) defined in (3.1) with d = 3.

The nonlinear least-squares functional corresponding to (3.3) is given by

S(c1, c2) :=
2∑

i=1




M∂Ω∑

j=1

[
Ψi
N (ci, ξi; xi

j)−Ψi(xi
j)

]2


 +

MΓ∑

j=1

[
ln

(
Ψ1
N (c1, ξ1; xj) + 1

)−Ψ2
N (c2, ξ2; xj)

]2

+
MΓ∑

j=1

[
Ψ1
N

∂z
(c1, ξ1; xj)− Ψ2

N
∂z

(c2, ξ2;xj)
]2

. (4.115)

In Figures 15–17 we present the absolute errors in the temperature T (x, y, z) on the planes z = −0.5, z = 0 and
z = 0.5, respectively, obtained for M = N = 4, 6 and 8 (corresponding to 2M = 192, 432 and 768, respectively).
As can be observed from each of these three figures the error diminishes as the number of degrees of freedom
increases.

5. Conclusions

In this paper, the application of the MFS to steady-state nonlinear heat conduction problems in composite heat
conductors has been investigated. The MFS is used in conjunction with a domain decomposition technique and
the method recasts the problem as a nonlinear minimization problem. The numerical results obtained are in good
agreement with the available analytical solutions showing high accuracy and stable convergence, and probably with
the BEM results of [8] if these were to be corrected. Further, it is demonstrated that the current formulation of
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(1,1,0)
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(0,0,1)Ω
1

(0,1,0)
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(1,0,−1)
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(1,1,−1)

(0,0,−1)

(0,0,0)Ω
2

(0,1,−1)

(0,1,0)

Figure 14. Geometry and domain decomposition for Example 4

the MFS can be easily applied to problems in irregular domains and to three-dimensional nonlinear steady-state
heat conduction problems. It is also shown that the nature of the Kirchhoff transformation (and particularly its
inverse) is not very restrictive and that one may easily revert to the original solution. Moreover, if a heat source is
present in equation (2.1), then one can apply a modification of the MFS, as described in [18]. The proposed MFS
domain decomposition technique can be implemented in a commercial code aimed at solving general convective,
radiative, steady-state, nonlinear heat transfer in layered (ideal or non-ideal interface contact) heat conductors.
Possible future work will concern extending the MFS analysis of [4] for linearly layered elastic materials to nonlinear
elasticity.
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