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Integral Equations Main Classifications

4 main types of integral equations

Fredholm Integral Equations
1. kind ∫ b

a
K (x , y)ϕ(y)dy = g(x), x ∈ I

2. kind

ϕ(x) +

∫ b

a
K (x , y)ϕ(y)dy = g(x), x ∈ I

Volterra Integral Equations
1. kind ∫ x

a
K (x , y)ϕ(y)dy = g(x), x ∈ I

2. kind

ϕ(x) +

∫ x

a
K (x , y)ϕ(y)dy = g(x), x ∈ I
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Integral Equations Historical Remarks

Historical Remarks I

Maxime Bôcher 1908
The theory of integral equations may be regarded as dating back
at least as far as the discovery by Fourier of the theorem
concerning integrals which bears his name; for, though this was
not the point of view of Fourier, this theorem may be regarded as a
statement of the solution of a certain integral equation of the first
kind.
Fourier’s inversion formula

g(x) =

√
2
π

∫ ∞

0
cos(xξ)f (ξ)dξ

f (x) =

√
2
π

∫ ∞

0
cos(xξ)g(ξ)dξ
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Integral Equations Historical Remarks

Historical Remarks II

Abel’s Integral 1826
a mechanical problem : a Tautochrone
the general accepted begin of the theory of integral equations
actually an inverse problem
The problem is to find the unknown path in the plane along which a
particle will fall, under the influence of gravity alone, so that at each
instant the time of fall is a known function of the distance fallen.

g(t) =

∫ t

0

f (y)√
2a(t − y)

dy
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Integral Equations Historical Remarks

Historical Remarks III

Joachimstahl’s attraction problem 1861
also an inverse problem
find the law of attraction if one knows the attraction force

g(h)

2h
=

∫ ∞
h

f (r)√
r2 − h2

dr

at the turn of 20. century :
Volterra, Fredholm, Hilbert, Schmidt, . . . .
Introduction of Hilbert spaces
functional analysis
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Integral Equations Solutions of Integral Equations

Solutions of Integral Equations

Over 99.99 . . .% of integral equations do not have a closed form
solution.
The solvability of integral equations is ensured by functional
analytic approach.
Numerical approximate solutions.
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Integral Equations Basic Linear Functional Analysis

Linear Operators

linear operator
X ,Y linear spaces. A : X → Y is linear iff for all α, β ∈ C

A(αf + βg) = αA(f ) + βA(g), ∀f ,g ∈ X

bounded operator
X ,Y are normed spaces. A is bounded if there exists a constant
C > 0 such that

‖Af‖ ≤ C‖f‖, ∀f ∈ X

compact operator
A is compact if it maps a bounded set to a relatively compact set.
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Integral Equations Basic Linear Functional Analysis

Integral Operators

integral operator

(Aϕ)(x) :=

∫
G

K (x , y)ϕ(y)dy , x ∈ G ⊂ IRm

where K is called the kernel of the integral operator.
K is called weakly singular iff there exists a constant M > 0 and
α ∈ (0,m] such that

|K (x , y)| ≤ M|x − y |α−m, ∀x , y ∈ G ⊂ IRm, x 6= y

A is compact if K is continuous or weakly singular.
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Solution Theory for Second Kind Fredholm Integral Equations Riesz Theory

Riesz Theory I

Consider the following integral equation of the second kind with a
compact A : X → X

ϕ− Aϕ = f

Let L := I − A.
First Riesz Theorem
The nullspace of L is a finite-dimensional subspace.
Second Riesz Theorem
The range of the operator L is a closed linear subspace.
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Solution Theory for Second Kind Fredholm Integral Equations Riesz Theory

Riesz Theory II

Third Riesz Theorem
There exists a uniquely determined nonnegative integer r , called
the Riesz number of A such that

{0} = N(L0)
⊂
6= N(L1)

⊂
6= · · ·

⊂
6= N(Lr ) = N(Lr+1) = . . . ,

and

X = L0(X )
⊃
6= L1(X )

⊃
6= · · ·

⊃
6= Lr (X ) = Lr+1(X ) = . . . ,

Furthermore, we have the direct sum

X = N(Lr )⊕ Lr (X ).
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Solution Theory for Second Kind Fredholm Integral Equations Riesz Theory

Fundamental Result of Riesz Theory

Theorem 1
Let A : X → X be a compact operator on a normed space X. Then
I − A is injective if and only if it is surjective. If I − A is injective, then its
inverse operator (I − A)−1 is bounded.
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Solution Theory for Second Kind Fredholm Integral Equations Riesz Theory

Solvability of a Second Kind Equation I

Theorem 2
If the homogeneous equation

ϕ− Aϕ = 0

has ony the trivial solution ϕ = 0, then for each f ∈ X the
inhomogeneous equation

ϕ− Aϕ = f

has a unique solution ϕ ∈ X and this solution depends continuously on
f .
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Solution Theory for Second Kind Fredholm Integral Equations Riesz Theory

Solvability of a Second Kind Equation II

Theorem 3
If the homogeneous equation

ϕ− Aϕ = 0

has nontrivial solution ϕ 6= 0, then it has only a finite number m of
linearly independent solutions ϕ1, ϕ2, . . . , ϕm ∈ X and the
inhomogeneous equation is either unsolvable or its general solution is
of the form

ϕ = ϕ̃+
m∑

i=1

αiϕi

where ϕ̃ is a particular solution of the inhomogeneous equation.
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Solution Theory for Second Kind Fredholm Integral Equations Riesz Theory

Remarks

Reduction of the solvability of the equation to the solvability of the
simpler homogeneous equation ϕ− Aϕ = 0.
No answer to the question of whether the inhomogeneous
equation ϕ− Aϕ = f for a given inhomogenity is solvable in the
case where the homogeneous equation has a nontrivial solution.
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Solution Theory for Second Kind Fredholm Integral Equations Fredholm Theory

Bilinear Forms

Definition 1
Let X ,Y be linear spaces. A mapping < ·, · >: X × Y → C is called a
bilinear form if

< α1ϕ1 + α2ϕ2, ψ >= α1 < ϕ1, ψ > +α2 < ϕ2, ψ > (1)
< ϕ, β1ψ1 + β2ψ2 >= β1 < ϕ,ψ1 > +β2 < ϕ,ψ2 > (2)

for all ϕ,ϕ1, ϕ2 ∈ X , ψ, ψ1, ψ2 ∈ Y and α1, α2, β1, β2 ∈ C.
A bilinear form is called nondegenerated if

< ϕ,ψ >= 0, ∀ϕ ∈ X =⇒ ψ = 0

< ϕ,ψ >= 0, ∀ψ ∈ Y =⇒ ϕ = 0
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Solution Theory for Second Kind Fredholm Integral Equations Fredholm Theory

Dual Systems

Definition 2
Two normed spaces X and Y equipped with a nondegenerated bilinear
form < ·, · >: X × Y → C are called a dual system and denoted by
< X ,Y >.

Example 1
< C(G),C(G) > is a dual system with the bilinear form

< ϕ,ψ >:=

∫
G
ϕ(x)ψ(x)dx , ϕ, ψ ∈ C(G)
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Solution Theory for Second Kind Fredholm Integral Equations Fredholm Theory

Adjoint Operators

Definition 3
Let < X1,Y1 > and < X2,Y2 > be two dual systems. Then two
operators A : X1 → X2,B : Y2 → Y1 are called adjoint (w.r.t. dual
systems) if

< Aϕ,ψ >=< ϕ,Bψ >

for all ϕ ∈ X1, ψ ∈ Y2.

Theorem 4
Let < X1,Y1 > and < X2,Y2 > be two dual systems. If an operator
A : X1 → X2 has an adjoint B : Y2 → Y1, then B is uniquely
determined, and A and B are linear.
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Solution Theory for Second Kind Fredholm Integral Equations Fredholm Theory

Adjoint Integral Operators

Theorem 5
If A is compact, then the adjoint of A exists and is also compact.

Theorem 6
Let K be a continuous or a weakly singular kernel. Then in the dual
system < C(G),C(G) > the integral operators defined by

(Aϕ)(X ) :=

∫
G

K (x , y)ϕ(y)dy , , x ∈ G, (3)

(Bψ)(X ) :=

∫
G

K (y , x)ψ(y)dy , , x ∈ G, (4)

are adjoint.
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Solution Theory for Second Kind Fredholm Integral Equations Fredholm Theory

Fredholm Theory I

Let < X ,Y > be a dual system and A : X → X ,B : Y → Y be compact
adjoint operators. We have the following theorems

First Fredholm Theorem

dimN(I− A) = dimN(I− B) <∞

Second Fredholm Theorem

(I − A)(X ) = {f ∈ X :< f , ψ >= 0, ψ ∈ N(I − B)} (5)
(I − B)(Y ) = {g ∈ Y :< ϕ,g >= 0, ϕ ∈ N(I − A)} (6)
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Solution Theory for Second Kind Fredholm Integral Equations Fredholm Theory

Fredholm Theory II

Fredholm Alternative
Either I − A and I − B are bijective
or I − A and I − B have nontrivial nullspaces with finite dimension

dimN(I− A) = dimN(I− B) ∈ IN

and the ranges are given by

(I − A)(X ) = {f ∈ X :< f , ψ >= 0, ψ ∈ N(I − B)} (7)
(I − B)(Y ) = {g ∈ Y :< ϕ,g >= 0, ϕ ∈ N(I − A)} (8)
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Solution Theory for Second Kind Fredholm Integral Equations Fredholm Theory

Fundamental Results from Fredholm Theory I

Either the homogeneous integral equations

ϕ(x)−
∫

G
K (x , y)ϕ(y)dy = 0, , x ∈ G, (9)

ψ(x)−
∫

G
K (y , x)ψ(y)dy = 0, , x ∈ G, (10)

only have the trivial solutions ϕ = 0 and ψ = 0 and the
inhomogeneous equations

ϕ(x)−
∫

G
K (x , y)ϕ(y)dy = f (x), , x ∈ G, (11)

ψ(x)−
∫

G
K (y , x)ψ(y)dy = g(x), , x ∈ G, (12)

have a unique solution ϕ ∈ C(G) and ψ ∈ C(G) for each right-hand
side f ∈ C(G) and g ∈ C(G), respectively
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Solution Theory for Second Kind Fredholm Integral Equations Fredholm Theory

Fundamental Results from Fredholm Theory II

or the homogeneous integral equations have the same finite number
m ∈ IN of linearly independent solutions and the inhomogeneous
integral equations are solvable if and only if thr right-hand sides satisfy∫

G
f (x)ψ(x)dx = 0

for all solutions ψ of the homogeneous adjoint equation and∫
G
ϕ(x)g(x)dx = 0

for all solutions ϕ of the homogeneous equation, respectively.
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Solution Theory for First Kind Fredholm Integral Equations First Kind Fredholm Equations

First Kind Fredholm Equations

Consider the following equation

Aϕ = f

In the case of a compact operator, we have the following theorem

Theorem 7
A compact operator defined in an infinite dimensional space can not
have a bounded inverse.

This means that we are encountered with an ill-posed problem.
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Solution Theory for First Kind Fredholm Integral Equations Ill-posed Problems

Hadamard’s Postulation of Well-posedness

Hadamard (1902)
A problem is called well-posed, if it has the following properties

1 Existence of a solution.
2 Uniqueness of the solution.
3 (Stability) Continuous dependence of the solution on the data.

otherwise it is called ill-posed.
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Solution Theory for First Kind Fredholm Integral Equations Ill-posed Problems

Examples of Ill-Posed Problems

Example 2 (Cauchy Problem for the Laplace Equation)
Find a harmonic function u in D := IR× [0,∞] satisfying the following
initial conditions

u(·,0) = 0,
∂

∂y
u(·,0) = f ,

where f is a given continuous function.

Let fn(x) = 1
n sin nx , x ∈ IR.

For n ∈ IN, we obtain the solution

un(x , y) =
1
n2 sin nx sinh ny , (x , y) ∈ D.

Clearly, (fn) → 0, but (un) doesn’t converge in any reasonable norm.
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Solution Theory for First Kind Fredholm Integral Equations Ill-posed Problems

Example 3 (Fredholm Integral Equation of the First Kind)

Aϕ(x) :=

∫ b

a
K (x , y)ϕ(y)dy , x ∈ [c,d ]

Solving Aϕ = f is ill-posed if, for example, the kernel K is continuous.
If K is continuous, then the operator A will be compact. In this case,
the operator A will not have a bounded inverse.
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Solution Theory for First Kind Fredholm Integral Equations Ill-posed Problems

Fredholm integral Equations 2. Kind

ϕ(x)− 1
2

∫ 1

0
(x + 1)e−xyϕ(y)dy = e−x − 1

2
+

1
2

e−(x+1), 0 ≤ x ≤ 1

Trapzoidal rule
n x = 0 x = 0.5 x = 1
4 -0.007146 -0.010816 -0.015479
8 -0.001788 -0.002711 -0.003882

16 -0.000447 -0.000678 -0.000971
32 -0.000112 -0.000170 -0.000243

Simpson’s rule
n x = 0 x = 0.5 x = 1
4 -0.00006652 -0.00010905 -0.00021416
8 -0.00000422 -0.00000692 -0.00001366

16 -0.00000026 -0.00000043 -0.00000086
32 -0.00000002 -0.00000003 -0.00000005
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Solution Theory for First Kind Fredholm Integral Equations Ill-posed Problems

Fredholm integral Equations 1. Kind∫ 1

0
(x + 1)e−xyϕ(y)dy = 1− e−(x+1), 0 ≤ x ≤ 1

Trapzoidal rule
n x = 0 x = 0.5 x = 1
4 0.4057 0.3705 0.1704
8 -4.5989 14.6094 -4.4770

16 -8.5957 2.2626 -153.4805
32 3.8965 -32.2907 22.5570
64 -88.6474 -6.4484 -182.6745

Simpson’s rule
n x = 0 x = 0.5 x = 1
4 0.0997 0.2176 0.0566
8 -0.5463 6.0868 -1.7274

16 -15.4796 50.5015 -53.8837
32 24.5929 -24.1767 67.9655
64 23.7868 -17.5992 419.4284
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Solution Theory for First Kind Fredholm Integral Equations Ill-posed Problems

Well-posedness in Tikhonov Sense

Tikhonov (1943)
The solving of the problem

A : X → Y , Aϕ = f

is called conditionally correct if
1 Existence of a solution in a subset M ⊂ X .
2 Uniqueness of the solution in that subset M.
3 (Stability) Continuous dependence of the solution on the data from

the set AM.
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Solution Theory for First Kind Fredholm Integral Equations Regularization

Ill-Posed Problems : Regularization

Definition 4 (Regularization)
Assume X ,Y are normed spaces.
Let the operator A : X → Y be linear, bounded and injective.
A family of bounded linear operators Rα : Y → X , α > 0 is called
a regularization scheme for

Aϕ = f ,

if it satisfies the following pointwise convergence

lim
α→0

RαAϕ = ϕ, for all ϕ ∈ X

In this case, the parameter α is called the regularization parameter.
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Solution Theory for First Kind Fredholm Integral Equations Regularization

Regularization : Error

Find a stable approximation to the equation

Aϕ = f

The regularized approximation

ϕδ
α := Rαf δ

The total approximation error

ϕδ
α − ϕ = Rαf δ − Rαf + RαAϕ− ϕ

We have
‖ϕδ

α − ϕ‖ ≤ δ‖Rα‖+ ‖RαAϕ− ϕ‖
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Solution Theory for First Kind Fredholm Integral Equations Regularization

Regularization : Methods

How to choose the regularization parameter α ?
1 a priori choice based on some information of the solution.

In general not available
2 a posteriori choice based on the data error level δ

Discrepancy Principle of Morozov :

‖ARαf δ − f δ‖ = γδ, γ ≥ 1
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Solution Theory for First Kind Fredholm Integral Equations Regularization

Regularization : Example

X ,Y Hilbert spaces.

Theorem 8
Assume A : X → Y compact and linear.
Then for every α > 0, the operator

αI + A∗A : X → X

is bijective and has a bounded inverse.
Furthermore, if the operator A is injective, then

Rα := (αI + A∗A)−1 A∗, α > 0

describes a regularization scheme with ‖Rα‖ ≤ 1
2
√

α
.

Lee, Kuo-Ming ( Department of Mathematics National Chung Cheng University)Integral Equations Academia Sinica 11.08.2006 37 / 77



Solution Theory for First Kind Fredholm Integral Equations Regularization

Regularization : Example

X ,Y Hilbert spaces.

Theorem 8
Assume A : X → Y compact and linear.
Then for every α > 0, the operator

αI + A∗A : X → X

is bijective and has a bounded inverse.
Furthermore, if the operator A is injective, then

Rα := (αI + A∗A)−1 A∗, α > 0

describes a regularization scheme with ‖Rα‖ ≤ 1
2
√

α
.

Lee, Kuo-Ming ( Department of Mathematics National Chung Cheng University)Integral Equations Academia Sinica 11.08.2006 37 / 77



Solution Theory for First Kind Fredholm Integral Equations Regularization

Tikhonov Regularization

Theorem 9
Let A : X → Y be a linear and bounded operator. Assme α > 0. Then
for each f ∈ Y there exists a unique ϕα ∈ X such that

‖Aϕα − f‖+ α‖ϕα‖ = infϕ∈X

{
‖Aϕ− f‖2 + α‖ϕ‖2

}
The minimizer ϕα is given by the unique solution of the equation

αϕα + A∗Aϕα = A∗f

and depends continuously on f .
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Solution Theory for First Kind Fredholm Integral Equations Regularization

Approximate Solution

Definition 5 (Minimum Norm Solution)
Let A : X → Y be a bounded linear operator and let δ > 0. For a given
f ∈ Y an element ϕ0 ∈ X is called a minimum norm solution of Aϕ = f
with discrepancy δ if ‖Aϕ0 − f‖ ≤ δ and

‖ϕ0‖ = inf‖Aϕ−f‖≤δ‖ϕ‖

Remark
ϕ0 is a minimal norm solution to Aϕ = f with discrepancy δ if and only
if ϕ0 is a best approximation to the zero element of X with respect to
Uf := {ϕ ∈ X : ‖Aϕ− f‖ ≤ δ}.
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Solution Theory for First Kind Fredholm Integral Equations Regularization

Theorem 10
Let A : X → Y be a linear and bounded operator with dense range. For
δ > 0, there exists for every f ∈ Y a unique minimal norm solution of
Aϕ = f with discrepancy δ.
Furthermore, the parameter α can be so chosen, that ϕ0 is the solution
of

αϕα + A∗Aϕα = A∗f

with ‖Aϕ0 − f‖ = δ.

Theorem 11
Assume A : X → Y is a linear, bounded and injective operator with
dense range. δ > 0, f ∈ A(X ). For f δ ∈ Y with ‖f δ − f‖ ≤ δ and
δ < ‖f δ‖ we have

ϕδ → A−1f , δ → 0,

where ϕδ is the minimal norm solution with discrepancy δ
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Applications of Integral Equations Inverse Problems

Inverse Problems : Definition

Keller, 1976
Two problems are inverse to each other if the formulation of each of
them requires all or partial knowledge of the other. Often, for historical
reasons, one of the two problems has been studied extensively for
some time, while the other is newer and not so well understood. In
such cases, the former problem is called the direct problem, while the
latter is called the inverse problem.

(Inverse Problems , Joseph B. Keller,
The American Mathematical Monthly, Vol. 83, No. 2. (Feb., 1976), pp.
107-118. )
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Applications of Integral Equations Inverse Problems

Inverse Problems : Examples

Example 4
What are the questions to which the answers are

1 ”Washington Irving” ?
2 ”Nine W”?
3 ”Chicken Sukiyaki”?

1 What is the capital of the United States, Max ?
2 Do you spell your name with a ”V”, Herr Wagner ?
3 What is the name of the sole surving Kamikaze pilot ?
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Applications of Integral Equations Inverse Problems

Example 5 (Differentiation)
Direct problem (DP): Given ϕ ∈ C([0,1]), solve

(Tϕ)(x) :=

∫ x

0
ϕ(t)dt , x ∈ [0,1]

Inverse problem (IP) : Given g ∈ C([0,1]) with g(0) = 0, solve

Tϕ = g

Remark
(IP) has a solution ϕ ∈ C([0,1]) if and only if g ∈ C1([0,1]).

Assume gδ ∈ C([0,1]) with ‖gδ − g‖∞ ≤ δ, 0 < δ < 1.
Define gδ

n(x) := g(x) + δ sin nx
δ , x ∈ [0,1]

We have (gδ
n)′(x) := g′(x) + n cos nx

δ , x ∈ [0,1]
It holds ‖(gδ

n)′ − g′‖∞ = n.
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Applications of Integral Equations Inverse Problems

Example 6 (Backward Heat Conduction )
Consider the heat equation

∂u
∂t

=
∂2u
∂2x

in D := [0,1]× [0,T ] with

(BC :) u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T

(IC :) u(x ,0) = ϕ(x), x ∈ [0,1]
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Applications of Integral Equations Inverse Problems

Backward Heat Conduction II

Direct Problem :
Given the initial temperature ϕ ∈ L2([0,1]),
find the final temperature f := u(·,T )

u(x , t) =
√

2
∞∑

n=1

ϕne−π2n2t sin(nπx)

Inverse Problem :
Given the final temperature f , find the initial temperature ϕ.

(THϕ)(x) :=

∫
2
∞∑

n=1

(
e−π2n2T sin(nπx) sin(nπy)

)
ϕ(y)dy

THϕ = f
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Applications of Integral Equations Inverse Problems

Example 7 (Inverse Obstacle Scattering Problem)
Direct Problem :
Given an impenetrable, smooth, bounded obstacle D.
Find the far field pattern u∞ of the scattered field us satisfying the
following conditions :

1 (Helmholtz equation) ∆u + k2u = 0 in IRn \ D
2 (Dirichlet BC) u = 0 on ∂D.
3 (Sommerfeld Radiation Condition, SRC )

lim
r→∞

r (n−1)/2
(
∂us

∂r
− ikus

)
= 0, uniformly for all x̂

where the total field u is the superposition of the unknown scattered
field us and the known incident field ui(x) = eik<x ,d> with incident
direction d ∈ Sn−1.
Inverse Problem :
Find D from the knowledge of u∞
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Applications of Integral Equations Inverse Problems

Mark Kac
Can One Hear the Shape of a Drum?
The American Mathematical Monthly, Vol. 73, No. 4, Part 2: Papers in
Analysis. (Apr., 1966), pp. 1-23.
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Applications of Integral Equations Direct Scattering Problem

Γ ν 

x*
−1

 

x*
1
 

Γ
+
 

Γ
−
 

Γ0 := Γ \ {x∗−1, x
∗
1}
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Applications of Integral Equations Direct Scattering Problem

Direct Impedance Problem

Definition 6 (Direct Impedance Problem, DP)

Find: u ∈ C2(IR2 \ Γ)

1 ∆u + k2u = 0 in IR2 \ Γ, k > 0.
2 (IBC) For λ ∈ C0,α(Γ) with Re(λ) ≥ 0 and f± ∈ C0,α(Γ) :

∂u±
∂ν

± ikλu± = f± auf Γ0 (13)

3 (SRC) limr→∞
√

r
(

∂u
∂ν − iku

)
= 0, r := |x |, x̂ := x

|x |
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Applications of Integral Equations Direct Scattering Problem

Green’s Theorem

Lemma 12
Assume that u is a solution to the homogen impedance BVP for the
open arc. Then for R large enough, we have

1 gradu ∈ L2(BR)

2 Green’s theorem∫
BR

|gradu(y)|2dy − k2
∫

BR

|u(y)|2dy

=

∫
∂BR

u(y)
∂ū(y)

∂ν
ds(y)−ik

∫
Γ
λ̄(y)

(
|u+(y)|2 + |u−(y)|2

)
ds(y).

(14)
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Applications of Integral Equations Direct Scattering Problem

Rellich’s Lemma

Theorem 13 (Rellich)

Assume that u ∈ C2(D+) is a solution of the Helmholtz equation with
k > 0. If

lim
r→∞

∫
|x |=r

|u(x)|2ds(x) = 0

then u = 0 in D+.
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Applications of Integral Equations Direct Scattering Problem

Uniqueness

Theorem 14

The direct Impedance problem (6) has at most one solution.

Proof:
SRC + Green’s theorem + Rellich’s Lemma
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Applications of Integral Equations Direct Scattering Problem

Solution Ansatz

u(x) :=

∫
Γ

∂Φ(x , y)

∂ν(y)
ϕ1(y)ds(y) +

∫
Γ
Φ(x , y)ϕ2(y)ds(y), x ∈ IR2 \ Γ.

(15)

2

(
∂

∂ν(x)

∫
Γ

∂Φ(x , y)

∂ν(y)
ϕ1(y)ds(y) +

∫
Γ

∂Φ(x ,y)
∂ν(x) ϕ2(y)

)
+ ikλ(x)ϕ1(x)

= f−(x) + f+(x)

ϕ2(x)− 2ikλ(x)
(∫

Γ
∂Φ(x ,y)
∂ν(y) ϕ1(y)ds(y) +

∫
Γ Φ(x , y)ϕ2(y)ds(y)

)
= f−(x)− f+(x)

(16)
for x ∈ Γ0.

Lee, Kuo-Ming ( Department of Mathematics National Chung Cheng University)Integral Equations Academia Sinica 11.08.2006 54 / 77



Applications of Integral Equations Direct Scattering Problem

Solution Ansatz

u(x) :=

∫
Γ

∂Φ(x , y)

∂ν(y)
ϕ1(y)ds(y) +

∫
Γ
Φ(x , y)ϕ2(y)ds(y), x ∈ IR2 \ Γ.

(15)

2

(
∂

∂ν(x)

∫
Γ

∂Φ(x , y)

∂ν(y)
ϕ1(y)ds(y) +

∫
Γ

∂Φ(x ,y)
∂ν(x) ϕ2(y)

)
+ ikλ(x)ϕ1(x)

= f−(x) + f+(x)

ϕ2(x)− 2ikλ(x)
(∫

Γ
∂Φ(x ,y)
∂ν(y) ϕ1(y)ds(y) +

∫
Γ Φ(x , y)ϕ2(y)ds(y)

)
= f−(x)− f+(x)

(16)
for x ∈ Γ0.

Lee, Kuo-Ming ( Department of Mathematics National Chung Cheng University)Integral Equations Academia Sinica 11.08.2006 54 / 77



Applications of Integral Equations Direct Scattering Problem

Theorem 15

The solution substitution (15) solves the impedance BVP provided that
the densities ϕ1, ϕ2 solve the system of equations (16).
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Applications of Integral Equations Direct Scattering Problem

Maue’s identity
For ϕ ∈ C1,α

0,lok (Γ), it holds for x ∈ Γ0

∂

∂ν(x)

∫
Γ

∂Φ(x , y)

∂ν(y)
ϕ(y)ds(y)

=

∫
Γ

∂Φ(x , y)

∂ϑ(x)

∂ϕ(y)

∂ϑ(y)
ds(y)+k2

〈
ν(x),

∫
Γ
Φ(x , y)ϕ(y)ν(y)ds(y)

〉
.

(17)

Parameterization: x = z(s), y = z(t)
Cosine-substitution : s = cos(σ), t = cos(τ)
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Applications of Integral Equations Direct Scattering Problem

Maue’s identity
For ϕ ∈ C1,α

0,lok (Γ), it holds for x ∈ Γ0

∂
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∂ν(y)
ϕ(y)ds(y)

=

∫
Γ

∂Φ(x , y)

∂ϑ(x)

∂ϕ(y)

∂ϑ(y)
ds(y)+k2

〈
ν(x),

∫
Γ
Φ(x , y)ϕ(y)ν(y)ds(y)

〉
.

(17)

Parameterization: x = z(s), y = z(t)
Cosine-substitution : s = cos(σ), t = cos(τ)

Lee, Kuo-Ming ( Department of Mathematics National Chung Cheng University)Integral Equations Academia Sinica 11.08.2006 56 / 77



Applications of Integral Equations Direct Scattering Problem



2
( ∫ π

0

{ 1
2π

sinσ
cos τ − cosσ

ψ′1(τ) − K1(σ, τ)ψ1(τ)− K2(σ, τ)ψ2(τ)
}

dτ
)

−ikλ(z(cos(σ)))ψ1(σ) sinσ|z ′(cosσ))| = g1(σ)

ψ2(σ)− 2ikλ(z(cos(σ)))

∫ π

0

{
K3(σ, τ)ψ1(τ) + K4(σ, τ)ψ2(τ)

}
dτ

= g2(σ),

(18)
for σ ∈ [0, π].
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Applications of Integral Equations Direct Scattering Problem

Operator Equation

(T0ψ)(σ) := −1
π

∫ π

0

sinσ
cosσ − cos τ

ψ′(τ)dτ (19)

X p,q,α := Cp,α
0 [0, π]× Cq,α[0, π], p,q ∈ IN ∪ {0}, α ∈ (0,1)

L− A : X 1,0,α → X 0,0,α

(L− A) Ψ = g (20)

L :=

(
T0 0
0 I2

)
, A is compact

Ψ :=

(
ψ1
ψ2

)
, g :=

(
g1
g2

)
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Applications of Integral Equations Direct Scattering Problem

Theorem 16

The operator L− A : X 1,0,α → X 0,0,α is injective. If Ψ is the solution of
the parameterizied equation (20) , then the solution substitution (15)
solves the direct impedance problem (6).

Proof:
Uniqueness of the BVP
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Applications of Integral Equations Direct Scattering Problem

T̃ : C1,α
odd [0,2π] → C0,α

odd [0,2π]

(
T̃ψ
)

(σ) := − 1
2π

∫ 2π

0
cot

τ − σ

2
ψ′(τ)dτ, (21)

Ck ,α
odd [0,2π] :=

{
ψ ∈ Ck ,α[0,2π], ψ odd

}
, k = 0,1.

Lemma 17

ψ ∈ C1,α
0 [0, π]. If ψ̃ is the odd extension of ψ to [0,2π], it holds :

T0ψ = T̃ ψ̃

Theorem 18
The operator L is invertible and has a bounded inverse.
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Applications of Integral Equations Direct Scattering Problem

Unique solvability of the BVP

Theorem 19

For every right hand side g ∈ X 0,0,α, there exists one and only one
solution Ψ ∈ X 1,0,α to the following integral equation

(L− A) Ψ = g

Theorem 20 (Unique solvability of the BVP)
The direct impedance problem is uniquely solvable.
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Applications of Integral Equations Direct Scattering Problem

Numerical Method I - Interpolation

n ∈ IN
Interpolation nodes : σ(n)

j := jπ
n , j = 0, . . . ,n

T1,n :=

{
φ ∈ C0[0, π]|φ(σ) =

n−1∑
k=1

ak sin kσ, ak ∈ C

}

T2,n :=

{
φ ∈ C[0, π]|φ(σ) =

n∑
k=0

bk cos kσ, bk ∈ C

}
The interpolation operator

Pn : C0[0, π]× C[0, π] → Tn := T1,n × T2,n (22)

Lee, Kuo-Ming ( Department of Mathematics National Chung Cheng University)Integral Equations Academia Sinica 11.08.2006 62 / 77



Applications of Integral Equations Direct Scattering Problem

Numerical Method II - Collocation

Approximate integrals in Equation (20) through quadrature formulas :

(Ln − An) Ψ = g, (semi-discrete) (23)

As a result of the following fact

PnLnΨn = LΨn, für Ψn ∈ Tn

we have
LΨn − PnAnΨn = Png, (full-discrete) (24)

for Ψn ∈ Tn.
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Applications of Integral Equations Direct Scattering Problem

Error Analysis
Theorem 21

The approximate equation (24) has a unique solution Ψn for n ∈ IN
large enough. Let Ψ denote the unique solution of the equation (20).
We have the following error estimate

‖Ψn −Ψ‖X 1,0,α ≤ C{‖Png − g‖X 0,0,α + ‖(PnAn − A)Ψ‖X 0,0,α}, (25)

with a constant C, which depends only on α.

Theorem 22

For all α ∈ (0,1) and for all right hand side g ∈ X 0,0,γ with
α < γ < 1,the sequence of the approximate solutions (Ψn) converges
to the real solution. We have additionally the estimate :

‖Ψn −Ψ‖X 1,0,α ≤ C
log n
nγ−α

‖Ψ‖X 0,0,γ (26)

with a constant C, which depends only on α, γ.
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Applications of Integral Equations Direct Scattering Problem

k = 1, Γ = (t, 0), t ∈ [−1, 1] d = 1√
2
(1, 1)

n Reu∞(d) Imu∞(d)
4 0.2188930593 0.7048408180
8 0.2193498394 0.7059285113
16 0.2193498387 0.7059285133
32 0.2193498387 0.7059285133

λ = 0

n Reu∞(d) Imu∞(d)
4 -0.2785431331 0.6380378058
8 -0.2783708059 0.6394323083

16 -0.2783435149 0.6394631981
32 -0.2783418024 0.6394651450
64 -0.2783416956 0.6394652672
128 -0.2783416890 0.6394652748

λ = 0.5

n Reu∞(d) Imu∞(d)
4 -0.2706934161 0.3769022310
8 -0.2770395614 0.3847161552

16 -0.2770367776 0.3847136679
32 -0.2770367755 0.3847136690
64 -0.2770367755 0.3847136690

λ = (1 − t2)2
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Applications of Integral Equations Direct Scattering Problem

k = 5, Γ = (t, 0), t ∈ [−1, 1]

n Reu∞(d) Imu∞(d)
4 -1.2655090731 1.1733478171
8 -0.8232049220 1.4463599064
16 -0.8191108671 1.4477138852
32 -0.8191108727 1.4477138906
64 -0.8191108727 1.4477138906

λ = 0

n Reu∞(d) Imu∞(d)
4 -1.1057449551 1.0073845548
8 -1.0321181482 1.1305992223

16 -1.0318551380 1.1306605046
32 -1.0318486423 1.1306713800
64 -1.0318482505 1.1306720631
128 -1.0318482263 1.1306721059

λ = 0.5

n Reu∞(d) Imu∞(d)
4 -0.8563180981 0.6392250142
8 -0.7649731169 0.8765565147

16 -0.7675574178 0.8710482182
32 -0.7675574890 0.8710481333
64 -0.7675574889 0.8710481334
128 -0.7675574889 0.8710481334

λ = (1 − t2)2
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Applications of Integral Equations Direct Scattering Problem

k = 1,d = (1,0)
Γ = (cos(5t) + 0.1t ,2 sin(3t)− 0.2t), t ∈ [−1,1]
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Applications of Integral Equations Direct Scattering Problem

n Reu∞(d) Imu∞(d)
16 -1.0270849962 1.1833403947
32 -0.9471404714 1.2008539862
64 -0.9477179020 1.2005689586
128 -0.9477177121 1.2005691135
256 -0.9477177121 1.2005691135

λ = 0

n Reu∞(d) Imu∞(d)
16 -1.1208195318 1.1805107232
32 -1.0877388284 1.1946305225
64 -1.0879938741 1.1943662399
128 -1.0879939475 1.1943663130
256 -1.0879939559 1.1943663160

λ = 0.5

n Reu∞(d) Imu∞(d)
16 -1.3751723167 1.1685067430
32 -1.3415425975 1.1896861321
64 -1.3418197983 1.1893501329
128 -1.3418197160 1.1893501474
256 -1.3418197159 1.1893501474

λ = (1 − t2)2
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Applications of Integral Equations Inverse Scattering Problem

Inverse Impedance Problem

Definition 7 (Inverse Impedance Problem, IP)

Given : Γ, ui(x) := eik<x ,d>, u∞,
find : λ

Theorem 23 (Uniqueness)

If us
1,u

s
2 are solutions to the inverse impedance problem with

impedance λ1, λ2 respectively and if the corresponding far field
patterns u1,∞, u2,∞ are identical, then λ1 = λ2. In another word, the
impedance is uniquely determined by the far field pattern.
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Applications of Integral Equations Inverse Scattering Problem

Numerical Method I - Information

∂u±
∂ν

± ikλu± = 0 on Γ0 (27)

us(x) :=

∫
Γ

∂Φ(x , y)

∂ν(y)
ψ1(y)ds(y) +

∫
Γ
Φ(x , y)ψ2(y)ds(y), x ∈ IR2 \ Γ.

(28)

u∞(x̂) = C1

∫
Γ
< ν(y), x̂ > e−ik<x̂ ,y>ψ1(y)ds(y)+C2

∫
Γ

e−ik<x̂ ,y>ψ2(y)ds(y),

(29)
Far field operator

F : L2(Γ)× L2(Γ) → L2(Ω),Ψ = (ψ1, ψ2) 7→ u∞

Theorem 24
F is injective and has dense range.
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Applications of Integral Equations Inverse Scattering Problem

Numerical Method II - Procedure

F is compact ! Solving FΨ = u∞ is ill-posed.
Regularization needed.

(αI + F ∗F )Ψα = F ∗u∞, α > 0, (30)

Solve λ from the boundary condition,

λ =
ψ2

2iku
(31)

Least square method

λ =
M∑

m=1

amϕm (32)

Determine the coefficients am

min :
N∑

n=1

∣∣∣∣∣ψ2(σn)− 2iku(σn)
M∑

m=1

amϕm(σn)

∣∣∣∣∣
2

(33)
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Applications of Integral Equations Inverse Scattering Problem

k = 1, Γ = (t, 0), t ∈ [−1, 1], d = (0, 1)
λ λ32 −− λ∗....

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.01

−0.005

0

0.005

0.01

λ = 0, α = 1.8 E−14, ‖λ32 − λ‖2 = 1.3 E−3

λ = 1, α = 1.0 E−12, ‖λ32 − λ‖2 = 8.6 E−3
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Applications of Integral Equations Inverse Scattering Problem
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λ = (1− t2)2, α = 3.1 E−14 ‖λ32 − λ‖2 = 3.8 E−3
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Applications of Integral Equations Inverse Scattering Problem

k = 1, Γ = (cos(t), sin(t)), t ∈ [−1, 1]

fδi := (1 + ((−1)i + 2
5 )δ)fi .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

λ = 0, α = 4 E−15
, ‖λ32 − λ‖2 = 6.7 E−3

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

λ = 0, δ = 0.1, α = 4 E−15‖λ32 − λ‖2 = 7.2 E−3
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Applications of Integral Equations Inverse Scattering Problem
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1

1.1

1.2

λ = 1, α = 8.0 E−15
, ‖λ32 − λ‖2 = 6.1 E−2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.9

1

1.1

1.2

λ = 1, δ = 0.1, α = 8.0 E−15‖λ32 − λ‖2 = 6.5 E−2
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Applications of Integral Equations Inverse Scattering Problem
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*

λ = (1− t2)2, α = 2 E−15‖λ32 − λ‖2 = 1.3 E−1
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Applications of Integral Equations Inverse Scattering Problem
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*

λ = (1− t2)2, δ = 0.1, α = 3 E−15 ‖λ32 − λ‖2 = 1.4 E−1
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