Multiple scattering by a planar array of parallel

dielectric cylinders

Steven J. Bever and Jan P. Allebach

The solution of the multiple-scattering problem for N parallel dielectric cylinders is considered for
plane-wave illumination perpendicular to the cylinder axes. We describe a nonlinear programming
approach to solve the multiple-scattering matrix for an arbitrary planar array of N parallel dielectric
cylinders. To our knowledge, no calculations have been made previously for multiple scattering by more
than two parallel dielectric cylinders. Numerical results for four abutting cylinders with end-on
illumination demonstrate damping of internal resonance features similar to previously published results
for two cylinders. Furthermore, we present numerical examples of scattering from eight unequally
spaced, parallel dielectric cylinders with broadside illumination. Because of coupling between the
cylinders, the incident energy is spread evenly between the intensity peaks behind the array of cylinders.
Key words: Multiple scattering, dielectric cylinders, iterative algorithms.

I. Introduction

In 1881 Lord Rayleigh! provided the solution of
Maxwell’s equations for the scattering of a normally
incident plane wave by a single homogeneous dielec-
tric cylinder of an arbitrary radius and refractive
index. Since then, the scattering of a plane wave by
clad, unclad, and inhomogeneous dielectric cylinders
has been thoroughly investigated.2-6 In addition,
Presby” has shown that light scattered at right angles
to the axis of an optical fiber can be used to measure
its refractive index and diameter.

The solution of Maxwell’s equations for the scatter-
ing of a plane wave by several cylinders is much more
complex than the solution for a single cylinder. The
added complexity is a consequence of the coupling
between the cylinders. To solve for the scattered
field, a set of equations that simultaneously enforce
the boundary conditions at the surfaces of all the
cylinders must be formulated. In 1952 Twersky®
demonstrated that the scattering of a plane wave by
an arbitary configuration of parallel cylinders can be
expressed as an infinite sum of orders of scatter-
ing. The first order of scattering is the scattering
from each cylinder owing to only the incident plane

Steven J. Bever is with the Department of Physics, Wabash
College, Crawfordsville, Indiana 47933; Jan P. Allebach is with the
School of Electrical Engineering, Purdue University, West Lafay-
ette, Indiana 47907.

Received 23 July 1991.

0003-6935/92/183524-09$05.00/0.

© 1992 Optical Society of America.

3524 APPLIED OPTICS / Vol. 31, No. 18 / 20 June 1992

wave. The second order results from the scattering
by each cylinder of the first order of scattering, and so
on. In a later derivation,® Twersky demonstrated
that the multiple-scattering coefficients can be gener-
ated from the corresponding single-scattering coeffi-
cients by using an iterative procedure.

In 1970 Olaofe!® applied Twersky’s iterative method
to calculate the extinction and backscattering cross
sections of two dielectric cylinders. He also men-
tioned in his paper that the linear equations involved
could be solved by direct matrix inversion. Young
and Bertrand!! considered the scattering of an acous-
tic plane wave by two parallel, rigid cylinders, and
they solved the resulting system of linear equations
by using both the iterative procedure and direct
matrix inversion. They found good agreement be-
tween their theoretical calculations and experimental
results. However, no experimental results are avail-
able for scattering of light by two parallel dielectric
cylinders. The primary difficulty in performing this
experiment is establishing and maintaining parallel-
ism between the two fibers while changing the separa-
tion between them.!? Schlicht et al.1? circumvented
this problem to some extent by measuring the light
scattered by a glass fiber that is parallel to and at
varying distances from a highly reflective silver mir-
ror. They showed that the multiple-scattering ef-
fects between a fiber and its mirror image are quite
similar to those between two fibers.

In general, the numerical results for scattering by
two cylinders presented in the literature are for
cylinders that correspond to relatively small values of



the size parameter ka, where o is the radius, 2 =
2m/\, and \ is the incident wavelength. The overall
effect of a dielectric cylinder on an incident plane
wave can be deduced from the value of ka. For
example, when ka is much less than unity (the
Rayleigh limit), the internal fields are uniformly
distributed, and the external near field is only slightly
modulated about the incident field value by a small
scattered field. When ka is much greater than unity
(the geometrical optics limit), the fiber can be mod-
eled as a cylindrical thick lens. A line of focus is
located behind the lens at a focal length that is
dependent on the radius of the lens and the ratio
between the index of refraction of the lens and that of
the surrounding medium.!® Benincasa et al.1® made
exact calculations of the near-field intensities and
verified these results experimentally for a glass fiber
with ka = 488.5. For ka between the Rayleigh and
geometrical optics limits, complex internal and exter-
nal fields are prevalent. For ka values in the range
39-51, calculations of the electric-field distributions
within and around a dielectric cylinder have been
performed.!* Sharp internal resonances were ob-
served when the ka value was in resonance with a
natural mode of the dielectric cylinder. Such natu-
ral modes have been referred to as surface waves,
since the internal fields are characterized by large
peaks near the fiber surface. The solution of the
multiple-scattering problem for two dielectric cylin-
ders with ka in resonance with a natural mode was
studied by Tsuei and Barber.!®> Yousif and Kohler!¢
presented a general solution of the two-cylinder prob-
lem that is expressed in terms of Stokes vectors and
Mueller matrices.

Returning to the model for the geometrical optics
limit, we note that Machida et al.}” showed that an
optical-fiber sheet composed of a monolayer of abut-
ting glass fibers of 25-pm-diameter (ka = 124) func-
tions as a high-efficiency diffraction grating, which
produces several tens of diffraction orders with uni-
form intensity. When a coherent plane wave is
projected perpendicularly upon the fiber sheet, each
fiber focuses its portion of the incident wave to a line
just behind the grating. The far-field intensity pat-
tern then consists of a multitude of uniformly spaced
and uniform intensity points. Magnusson and Shin!8
analyzed the diffraction of plane waves by a periodic
array of dielectric cylinders based on a complex
transmittance approach. They assumed that the
output field could be approximated by the product of
the complex amplitude of the normally incident plane
wave and the fiber grating transmittance function.
Consequently, they found that the incident plane
wave is diffracted into a spectrum of plane waves.

As described above, a common approach to calculat-
ing the field scattered by two parallel cylinders is to
express the multiple-scattering linear equations in
matrix form and then to solve the matrix expression
for the multiple-scattering coefficients by Twersky’s
iterative method or by direct matrix inversion. How-
ever, for cylinders with ka values in resonance with

Fig. 1. Diffractive optical bar code that consists of transparent
bars on an opagqlie background.

natural modes, the iterative method diverges, and
direct matrix inversion must be implemented.!> In
addition, the matrix-inversion approach fails as the
matrices become ill-conditioned. The types of multi-
ple-scattering problems for which an ill-conditioned
matrix occurs are not well-defined.

The results we present are part of a research effort
to develop a new type of diffractive optical bar code.
Two possible designs are shown in Figs. 1 and 2. A
diffractive optical bar code composed of a number of
trangparent bars on an opaque background is shown
in Fig. 1. The spacings between adjacent bars are
chosen so that when the bar code is illuminated by a
cohérent plane wave, the first forward-scattered dif-
fraction order represents a specified binary code.
In Fig: 2 an alternate structure that we refer to as a
modulated ribbon grating also seems well suited for
use as a diffractive optical bar code. It is composed
of a number of parallel equal-diameter transparent
cylindrical fibers joined by flat sections of opaque or
transparent material. For sufficiently large cylindri-
cal fibers, each fiber focuses its portion of the incident
wave to a line just behind the modulated ribbon
grating. Thus the spacing between fibers is varied in
the same manner as the spacing between bars in Fig.
1. And when illuminated by a plane wave, the
resulting forward-scattered diffraction pattern is es-
sentially the same as that observed with the structure
in Fig. 1. .

Here we extend Olaofe’s multiple-scattering analy-
sis for two cylinders to describe scattering from N
identical, parallel, infinitely long circular cylinders.
We describe a quadratic-programming approach to
solve the associated multiple-scattering matrix expres-
sion. We present and compare results generated by
a quadratic-programming algorithm for end-on

o W

Fig. 2. Modulated ribbon grating that could also be used as a
diffractive optical bar code.
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illumination of four cylinders. To our knowledge,
these are the first calculations for multiple scattering
by more than two parallel dielectric cylinders. For
broadside illumination we present numerical exam-
ples of scattering from eight unequally spaced parallel
dielectric cylinders. Finally, we present calculations
of the near-field scattering patterns for an infinite
array of abutting cylinders.

Il. Mathematical Formulation

Following Olaofe’s'? derivation, we wish to formulate
the multiple-scattering problem for N identical, paral-
lel, infinitely long circular cylinders C,, with p =
0,..., N — 1. Each cylinder has a radius a, a
uniform refractive index m, and a center located at
the origin O,, withp = 0,..., N — 1, of N parallel
coordinate systems. The separation distance 0,0, is
denoted by d,,, where d,;, > 2a, Vp = q. We also
denote by r,, v,, and z the cylindrical polar coordi-
nates with respect to the origin O,, where it is
assumed that z, = 2, Vp. The polar axes O,Z are the
axes of the cylinders C,, withp = 0,...,N - 1. The
plane z = 0 is shown in Fig. 3.

As described by van de Hulst, !9 the total field can be
expressed as the sum of transverse-magnetic (TM)
and transverse-electric (TE) scalar potential func-
tions. For the TM case the incident electric field is
linearly polarized parallel to the cylinder axes. For
the TE case the incident electric field is linearly
polarized normal to the cylinder axes. Furthermore,
the TM and TE scalar potential functions for the
incident plane wave can be expressed with respect to
the ry, v, 2 coordinate system as

_exp(—imt) .
i 7 exp(ipg cos vy), )]

uoinc = —

Cylinder
Cn—1

Incident
Wave

Cylinder
Co

Fig. 3. Geometry of the problem. The axis of each cylinder is
parallel to the z axis, which points out of the plane of the page.
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) .exp(—iwt) .
v =1 — exp(ipy €os vy), 2)
where py = kry, # = 2mw/\ is the wave number, w is the
angular frequency, and \ is the incident wavelength.
Using the identity

©

exp(ip cos y) = 2 inJ, (p)exp(—iny) 3

n=-w

and assuming that the incident plane wave impinges
at an angle 8 with the line of centers C,Cy_;, we can
expand the incident wave in the coordinate system of
cylinder C, as

‘ exp(—iwt)
u,ime = — %exp(iﬁp cos B)
X 2, ", (p,)exp(—iny,), 4)
) exp(—iot
v,ine = %2 exp(id, cos B)

X D, "4, (p,)exp(—iny,). (5)

Here o, (p,) is the Bessel function of order n, §, =
kdy,, and p, = kr,,.

Similarly, the TM and the TE scattered wave
potentials can be written in the form

=]

n;_w i"*1 b, H,(p,)exp(—invy, ),(6)

. exp(—imt)
u' =

-]

2 i"+1pan Hn(pp)exp("in'Yp)r
& 7

where .0, and ,a, are the scattering coefficients to be
determined by the boundary conditions. H,(p,) is
the Hankel function of the first kind, which corre-
sponds to an exp(—iwt) time variation. Since the
first-kind Hankel function is described by (2/wwp,)1/2
explilp, — @2n + 1)w/4]) as pp — », the radiation
condition at infinity is satisfied.
Inside each cylinder the transmitted waves are

s exp(—int)
W

oo

exp(—int)

1. trans — Z z "+t od, J, (mp,)exp(—iny,).
it (8)

exp(—iot) . .
D, = — —X’ik—— D it e, J (mp,exp(—invy,),

©

where ,d, and ,c, are the transmission coefficients to
be determined by the boundary conditions and m is
the refractive index for the cylinder.

To enforce the boundary conditions that z and
du/dr be continuous across the boundaries r, = aq,
withp = 0,..., N — 1, the scattered field from the



gth cylinder must be expressed as an incident field on
the pth cylinder. This is accomplished by means of
the Graf addition theorem?? as follows:

exp(—in6,)H, (p,)

2 (=1)'H, 11 (3,9)J; (p, )exp(il8,),

l==—x

q <p,

q>p
(10)

(=1 D) Hyy1(8,q)1(p,)exp(ilh,),

==

where 8,, = kd,,.

Applying the boundary conditions at r, = a and
solving for the scattering coefficients of the pth
cylinder leads to

obn = byl exp(id, cos B) + i"*! exp(inp) 2 pgB-n s
q#=p
(11D
where

B

pg—n

2 (Vi by exp(=ilpHun(®), P <,

(=1m D it b, exp(—ilB)H,1(3,), P > q

l=—0
(12)
b = med,(ka)],' (mka) — J,'(ka)J, (mka) 13
"~ mH,(ka)J,'(mka) — H,'(ka)],(mka) (13)
are the single-cylinder scattering coefficients. The

corresponding results for the TE scattering case are

pQn = Gyl €xp(id, cos B) + i"*! exp(inB) 2 pgB-n s
q#p

(14)
where

3 J(ka)], (mka) — md,' (ka)],(mka)
~ H,(ka)J, (mka) — mH,'(ka)J,(mka)

(15)

ap

and where ,b, is replaced by ,a, in Eq. (12).

Since Eq. (11) is linear, it can be written in matrix
form as

L=F+ %L, (16)

where L is the vector of multiple-scattering coeffi-
cients, F is the vector of single-scattering coefficients,
and the matrix # is called the coupling matrix, since it
contains the multiple-scattering coupling informa-
tion. For the TM case, L and F are defined as
follows:

L= [Ob—M’ [ ’ N—lb—M, ey

amn

,obo,...,obM,...

T
N—lbO’ ) N-le] ’

F = [b_yeo, - -

.,b0€0,...,bM€0,...,

b_men-1, - -+ boen-1, - - . , byen-11%, (18)

where ¢, = exp(id, cos B), and it is assumed that all
summations have been truncated to 2M + 1 ele-
ments. The entries of the coupling matrix # can be
determined from Egs. (11) and (12).
At this point the advantages of this approach are
evident. The solution to Eq. (16) is given by
L= (7-®'F. 19
Thus the multiple-scattering problem for N cylinders
reduces to a simple problem in linear algebra.

Ill. Numerical Solution Methods

Two common methods to solve Eq. (16) for the vector
of multiple-scattering coefficients are matrix inver-
sion and an iterative procedure.l® From Eq. (19)itis
clear that matrix inversion is the most direct ap-
proach. By substituting the expansion

(F—-B)l=s,+&+&2+... (20)
into Eq. (19), we find that
L=F+&F+%%F +.... 1)

The steps of the iterative procedure can be deduced
from Eq. (21). Starting with the initial estimate of
the multiple-scattering coefficients L. = F, we add
coupling terms ZF, Z2F, etc. to L until the desired
convergence is obtained.

A third method of solving Eq. (16) uses a two-phase
quadratic-programming algorithm?! to find the mini-
mum of the squared error

1
€orr = § IF - (F-®LI% (22)

The algorithm is an iterative procedure that is de-
signed to solve the constrained least-squares prob-
lem:

minimize G(x) (23)
xeR"
subject to
1 x
<lgx/ =W
where

Gx) =%Ib —wx|?

and 9 is a constant coefficient matrix that represents
linear constraints on the unknown variables x. The
vectors 1 and u provide the lower and upper bounds
for the variables and the linear constraints. The two
phases of the quadratic-programming method are:
(1) finding an initial feasible point by minimizing the
sum of feasibilities, and (2) minimizing the quadratic-
objective function within the feasible region.??
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For our problem we let G(X) = e,,, where x = L,
b =F, and & = (F—%). The upper and lower
bounds are set to infinity, and the general constraints
matrix & is not used.

IV. Results

In Section II we considered the solution of the
multiple-scattering problem for two polarizations of
the normally incident wave: TM and TE. The cal-
culation of the scattered field for a normally incident
TM or TE wave can be performed by using the
procedures described in Section III. Furthermore,
for an arbitrary elliptically polarized wave the total
scattered field can be calculated by summing the
corresponding scattered vector fields. In this paper
we consider the TM and TE wave cases separately.

For the TM incident-wave case, the first step in the
numerical solution of the multiple-scattering prob-
lem for a planar array of dielectric cylinders is to
generate the single-cylinder scattering coefficients in
Eq. (13). These values multiplied by the appropriate
factor exp(3, cos B) are the components of the vector
F. The entries of the coupling matrix # are then
determined from Egs. (11) and (12). For these
calculations the Bessel functions of the first kind
were found by using downward recursion. The Bessel
functions of the second kind (the imaginary part of
H,!') were found based on a special series expansion
for small arguments. For moderate arguments an
analytic continuation in the argument based on a
Taylor series with special rational minimax approxi-
mations that provided starting values was employed.
Finally, an asymptotic expansion was used for large
arguments.?? In Egs. (6) and (7) the index n as-
sumes values from —w to . To carry out the
solution procedures discussed in Section III, the
coefficient sequence for each cylinder must be trun-
cated. For our investigation the number of single-
scattering coefficients was selected by truncating the
coefficient sequence after it had achieved a desired
degree of convergence. The number of multiple-
scattering coeflicients for each cylinder was then set
equal to this number. The steps outlined here were
also used to find the numerical solution of the multi-
ple-scattering problem for the TE case.

As we mentioned above, the matrix inversion
method fails as the matrix.# — & becomes ill condi-
tioned. However, during our studies of light scatter-
ing from dielectric cylinders, the coupling matrix
became ill conditioned only when the specified degree
of convergence of the single-scattering coefficient
sequence was extremely small. For these cases the
number of coefficients was large. Since the sequence
of Bessel functions of the second kind diverges as n —
o, the matrix .# — & was ill conditioned. However,
after the number of coefficients was reduced, the
matrix-inversion method produced an acceptable solu-
tion.

For several of the results presented here, abutting
cylinders with ka values in resonance with natural

modes ave considered. The iterative procedure di-
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verged under these circumstances. Moreover, even
though the squared errors for the results generated
by quadratic programming were substantially lower
than the squared errors for the results generated by
matrix inversion, the corresponding intensity plots of
scattering from the cylinders were virtually identical.
Since in general the quadratic-programming algo-
rithm produced solutions with lower squared error
€err, all plots are for results generated by it.

A. Scattering from Four Cylinders with End-On illumination

Owen et al.l* have shown that a dramatic change
occurs in the internal field of a dielectric cylinder as
the size parameter of the cylinder is varied. An
interesting case for which coupling between two
cylinders with ke in resonance with a natural mode
was studied by Tsuei and Barber.!> At resonance
the internal intensity of an isolated cylinder is an
order of magnitude greater than the nonresonant
case, and the intensity is concentrated at the surface
of the cylinder. They found that for two abutting
cylinders the resonant nature of the cylinders was
damped.

For end-on illumination, Figs. 4 and 5 show the
intensity patterns within and around four abutting
cylinders with ka in resonance with a natural mode
for TM and TE polarizations, respectively. Previous
research!* for an isolated dielectric cylinder with an
index of refraction of 1.53 showed that a third-order
resonance of mode 53 occurs when the size parameter
is 45.329 for TM illumination. A third-order reso-
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Fig. 4. Calculated intensity along the line of centers CoCj of four
abutting infinite cylinders with ka in resonance with a natural
mode for end-on illumination and TM polarization (ka = 45.329,
m = 1.530, and 3 = 2ka = 90.658). The location of each cylinder

is shown by a cirele below the kx axis.
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Fig. 5. As in Fig. 4 but with TE polarization (ka = 45.726,
m = 1.530,and 3 = 2ka = 91.452).

nance of mode 53 also occurs when the size parameter
is 45.726 for TE illumination.!* The intensity pat-
terns in Figs. 4 and 5 indicate that damping of the
resonant nature of the cylinders occurs for four
abutting cylinders. The internal and total-external
intensities are given by |E¥[2 and |E™ + 53_o E°[2.
For our calculations the incident intensity has been
set to unity. As a result of the symmetry about the
direction of propagation for end-on illumination
(B = 0°) and the fact that the cylinders are uniformly
spaced, the multiple-scattering coefficients with posi-
tive indices are the same as those with negative
indices. Therefore the number of entries in the
coupling matrix # can be reduced by approximately a
factor of 4. As expected, large-scale similarities are
seen between the scattered intensity patterns for the
two polarizations. However, as found by Abushagur
and George?* for a single cylinder, the fine structures
of the scattered fields differ significantly.

Figures 6-9 show that the resonant character of
the cylinders is no longer damped when the cylinders
in Figs. 4 and 5 are moved apart in the presence of
end-on illumination. However, instead of the inter-
nal intensity of the first cylinder concentrating at the
surface as previously shown for the two-cylinder TM
case,!5 Fig. 6 shows an intensity distribution through-
out the first cylinder. For the TE case the results in
Fig. 7 indicate that the damping effect is negligible for
the first cylinder since large peaks are present near
the fiber surface. The resonant nature of the fourth
cylinder is not strikingly apparent in Figs. 6 and 7,
possibly as a result of this cylinder being in the
shadow of the first three cylinders. Figures 8 and 9
demonstrate the decrease in coupling between the
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Fig. 6. As in Fig. 4 but with TM polarization (ka = 45.239,
m = 1.580,and 3 = 101.99).

cylinders as they are separated for the TM and TE
cases, respectively. Once again, shadow effects are
visible in Figs. 8 and 9.

B. Scattering from Eight Unequally Spaced Cylinders with
Broadside lilumination

Scattering of a TM wave for broadside illumination
(B = 90°) from eight unequally spaced, parallel dielec-
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Fig. 7. As in Fig. 4 but with TE polarization (ka = 45.726,
m = 1.530, and 3 = 102.88).
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tric cylinders of radius 2.52 pm (ka = 25) is shown in
Fig. 10. The relative intensity for each of the peaks
is given. The specular reflection behind the illumi-
nated side of each cylinder gives a complicated pat-
tern that results from the interaction of the scattered
and incident fields. The strong focused intensity
peak on the shadow side of each cylinder demon-
strates the focusing ability of the cylinders. The
corresponding intensity plot for the TE case is shown
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Fig. 9. As in Fig. 4 but with TE polarization (ka = 45.726,
m = 1.530,and § = 151.31).
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800 _100 kx

Fig.10. Near-field intensity distribution over the xy plane of eight
unequally spaced, parallel dielectric cylinders for a = 2.52 pm with
ka = 25 and m = 1.530 for a TM-polarized wave incident from the
left. The internal intensity of each cylinder is set equal to zero.

in Fig. 11. The intensity plot for the TM case that
results from using the isolated-cylinder coefficients
instead of the multiple-scattering coefficients is dis-
playedin Fig. 12. Comparing Figs. 10 and 12, we see
the effects of coupling even for broadside illumina-
tion. The coupling between the eight cylinders con-
tributes both constructively and destructively to the
intensity peaks. Consequently, the incident energy
is spread evenly between the intensity peaks.

C. Scattering from an Infinite Array of Abutting Cylinders

The intensity distribution on the shadow side of a
single fiber from an optical-fiber sheet composed of an
infinite number of abutting glass fibers with diameter
25 pm (ka = 124) for TM illumination is shown in
Fig. 13. Since the fiber sheet is infinite in extent, the
multiple-scattering coefficients for each fiber are iden-
tical and the coefficients with positive indices are the
same as those with negative indices. During our
investigation, we observed that contributions from
fibers more than 10 diameters away added little to the
scattered field by a fiber of the array. Thus, for Fig.
13, contributions from fibers more than 10 diameters

Fig. 11. Asin Fig. 10 but for a TE-polarized wave.



Fig. 12. Asin Fig. 10 except that the isolated-cylinder coefficients
were used instead of the multiple-scattering coefficients.

away were ignored. Furthermore, we assumed that
the kz axis was the axis of the infinitely long fiber.
On the shadow side of the fiber a pair of intensity
peaks along the kx axis and two clusters of intensity
peaks near the surface of the fiber are observed in Fig.
13. This result disagrees with the single intensity
peak of the cylindrical lens model. Moreover, the
intensity region composed of these peaks is relatively
large in comparison to the fiber width. For a slit
grating the number of evenly spaced, uniform inten-
sity peaks in the far-field intensity pattern decreases
as the slit width is increased. In the same manner
the number of uniform intensity peaks in the inten-
sity pattern for a fiber grating decreases as the width
of the intensity peaks increases. Therefore signifi-
cant roll-off of the intensity peaks in the diffraction
pattern will be observed for a fiber sheet composed of
glass fibers with a diameter of 25 pm. An exact
method of calculating the far-field intensity pattern
for a fiber grating is currently under development.

VI. Conclusions

Following a method originally developed by Olaofe,
we have shown that the multiple-scattering problem

Cluster

t lr»\"’?*‘ '
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Fig. 13. Near-field intensity distribution over the xy plane on the
shadow side of a single fiber from an optical-fiber sheet fora = 12.5
wm with 2Za = 124 and m = 1.530 for a TM-polarized wave incident
from the left. The internal intensity of the fiber is set equal to
Zero.

for N cylinders reduces to a simple problem in linear
algebra. For cylinders with size parameter ka in
resonance with a natural mode both direct matrix
inversion and a quadratic-programming algorithm
may be used to calculate the multiple-scattering
coefficients. Since in general the squared error was
substantially lower for solutions generated by the
quadratic-programming algorithm, all results were
generated by this method. We have presented calcu-
lations for multiple scattering by four cylinders with
end-on illumination. The results demonstrated
damping of internal resonance features similar to
previously published results for two cylinders. Fur-
thermore, we have presented results for scattering
from eight unequally spaced, parallel dielectric cylin-
ders with broadside illumination. Because of cou-
pling between the cylinders, the incident energy was
spread evenly between the intensity peaks behind the
array of cylinders. Finally, the near-field intensity
pattern for an infinite array of abutting cylinders was
shown. On the shadow side of a cylinder from the
array a pair of intensity peaks along the kx axis and
two clusters of intensity peaks near the surface of the
cylinder were observed instead of the single intensity
peak that is predicted by the cylindrical lens model.
Considerably further research is needed to calculate
the exact far-field intensity pattern for an infinite
array of abutting cylinders.
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