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ABSTRACT: The plane thermoelastic problems of a stationary heat source in an infinite plane with an elliptic
rigid inclusion and an elliptic hole are analyzed under thermally adiabatic and isothermal boundary conditions.
The problems of an elliptic rigid inclusion are derived for the following cases: (1) the case that there are rigid-
body displacement and rotation; and (2) the case that there is no rigid-body displacement or rotation. To analyze
these problems, the following three fundamental solutions are derived: Problem A, in which a point heat source
exists within an infinite domain; Problem B, in which the inclusion has a small amount of rotation; and Problem
C, in which the inclusion is subjected to concentrated loads. Two cases can be obtained by superimposing these
fundamental solutions. For the hole problem, the fundamental solution (Green’s function) is also derived. In
analysis, the complex stress functions, the mapping function, and the thermal dislocation method are used. The
complex stress functions are obtained as a closed form. For analytic examples, the stress distributions are shown
under thermally adiabatic and isothermal boundary conditions. For the crack problem, the stress intensity factors
are shown for the location of the heat source.
INTRODUCTION

The steady-state, plane thermoelastic problem of an infinite
plane with a point heat source is important in engineering, and
a number of technical articles have been dedicated to this sub-
ject. For instance, solutions for a point heat source in a strip
(Nowacki 1962) and a semiinfinite plate (Parkus 1968) have
been shown. Fukui et al. (1970) treated analytically a problem
of an infinite plane having a circular hole, where heat flux
generates from a heat source flowing out by the boundary of
the hole, on which the isothermal boundary condition is pre-
scribed. Fukui et al. (1974) also obtained a solution for an
infinite plane with a circular inclusion, in which heat flux gen-
erates from a heat source, passes through the inclusion, and
flows into a sink. Zhang and Hasebe (1993) solved the prob-
lem of an adiabatic crack contained in an infinite plane that is
thermally deformed in a temperature field caused by a single
heat source. Employing a basic solution for a point heat source
in an infinite plane without a hole, Nisitani et al. (1991) de-
rived a solution for an infinite plane with a circular hole under
uniform heat flow, by summing up the basic solutions for heat
sources of various intensities, distributed over the boundary in
such a manner that the boundary condition on the hole is sat-
isfied (the body force method). Furthermore, the problem of
two nearby cracks in an infinite plane, under a prescribed crack
surface temperature (temperature boundary condition) and as-
suming continuous distributions of edge and quasi-Volterra
dislocations on the crack positions in order to model the crack
and heat sources distributed on it, was solved by Sekine (1979,
1987).

In problems of displacement and mixed boundary condi-
tions, the stress state differs, depending on whether there are
rigid-body displacement and rotation of the inclusion. In gen-
eral, rigid-body displacement and rotations must be considered
in the model of inclusion. On the other hand, when a clamped
column and the rigid reinforcement of an elliptic hole are mod-
eled, reaction force and reaction moment on the boundary
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from the support serve to suppress the rigid-body displacement
and rotation. For instance, in a problem in which there is no
rigid-body displacement of the inclusion, the final solution
must include such a portion, which is the solution to a case
where concentrated loads are applied on the inclusion to cancel
its rigid-body displacement.

This article develops fundamental solutions for the follow-
ing three problems: Problem A, in which a point heat source
exists within an infinite plane containing an elliptic rigid in-
clusion with rigid-body displacement; Problem B, in which the
elliptic rigid inclusion has a small amount of rigid-body ro-
tation; and Problem C, in which concentrated loads are applied
on the elliptic rigid inclusion. By superposing these solutions,
the solution for the problem of a point heat source existing
within an infinite plane containing an elliptic rigid inclusion
with rigid-body displacement and rotation can be obtained.
The mapping function and complex stress functions are used
in the analysis. Employing the solution of complex stress func-
tions for Problem A, stress distributions for zero heat flow
(thermally adiabatic) and prescribed temperature (isothermal)
boundary conditions are worked out and shown graphically in
analytic examples.

Also, an infinite plane with an elliptic hole or a crack is
treated under thermally adiabatic or isothermal boundary con-
ditions. Complex stress functions are derived, and the thermal
stress intensity factors at the tip of the crack are presented in
graphs.

The general solutions developed herein for heat sources can
be used in engineering to model thermal processes in welding
and in the boundary element method as fundamental solutions
(Green’s functions) for thermal problems involving inclusions
and cracks. Indeed, the application of the boundary element
method is continuously extending due to the development of
various fundamental solutions for thermal problems.

MAPPING FUNCTION

As shown in Fig. 1, the infinite plane with an elliptic hole
in the z-plane can be mapped into the infinite region outside
of a unit circle in the z-plane by the following mapping func-
tion:

E (a 1 b) (a 2 b)1
z = v(z) = E z 1 , E = , E = (1)0 0 1

z 2 2

where a and b = length of the semiaxes of the ellipse on the
x and y axes, respectively. If a = b, the ellipse becomes a
circle; for b = 0, it becomes a crack.
ct to ASCE license or copyright; see http://pubs.asce.org/copyright



FIG. 1. Elliptic Hole and Heat Source in Arbitrary Point and
Sink Source at Infinity

TEMPERATURE ANALYSIS

Basic Formulas for Temperature and Heat Flux

In two-dimensional, steady-state heat conduction, the tem-
perature function Q(x, y), referring to an (x, y) rectangular
coordinate system, should satisfy the Laplace equation. Let us
introduce an analytic function V(z) of complex variable z = x
1 iy:

V(z) = Q(x, y) 1 iT (x, y) (2)

where T(x, y) = harmonic conjugate function of Q. Using V(z)
as well as its complex conjugate, the temperature field Q can
be expressed as

1
Q(z, z̄) = {V(z) 1 V(z)} (3)

2

Denoting the thermal conductivity of the material as k, qx,
and qy, the heat flux in the x and y directions, respectively, can
be written as

­Q ­Q
q 2 iq = 2k 2 i = 2kV9(z) (4)x y H J

­x ­y

Making use of the mapping function v(z), relations (3) and
(4) may be rewritten in the following form (Hasebe et al.
1988):

1
V(z) = V[v(z)] [ C(z); Q(z, z) = [V(z) 1 V(z)] (5a,b)

2

V9(z)
q 2 iq = 2k (6)x y

v9(z)

zv9(z)
q 2 iq = (q 2 iq ) (7)r u x yuzv9(z)u

where qr and qu denote the components of heat flux in the
normal and tangential directions, respectively, in an orthogonal
curvilinear coordinate system given by the mapping function.

Solutions for Heat Source at Arbitrary Point and Heat
Sink at Infinity

If the heat flux qn across the boundary is given, the heat
flux boundary condition can be expressed by the following
formula (Hasebe et al. 1988):

2k{V(s) 2 V(s)} = 2i q ds 1 const (8)nE
where s denotes z on the unit circle; and the integration in
regards to s is carried out along the elliptical boundary.

On the other hand, the temperature boundary condition can
be written from (5) as:
Downloaded 16 Dec 2009 to 140.121.146.140. Redistribution subject 
FIG. 2. Problems of Infinite Plane with Elliptic Rigid Inclusion:
(a) Problem A, Rigid Inclusion Subject to Heat Source (uA Þ 0, vA

Þ 0, XA = 0, YA = 0, «A = 0, MA Þ 0); (b) Problem B, Rigid Inclusion
under Rotation (uB = 0, vB = 0, XB = 0, YB = 0, «B Þ 0, MB Þ 0); (c)
Problem C, Rigid Inclusion under Concentrated Loads (uC Þ 0,
vC Þ 0, XC Þ 0, YC Þ 0, «C = 0, MC = 0)

¯V(s) 1 V(s) = 2Q(s, s) (9)

Without loss of generality, we consider boundary condition (8)
in which qn = 0, that is, when the boundary is thermally adi-
abatic, and boundary condition (9) with temperature Q = 0
(isothermal condition). In such situations, the boundary con-
ditions can be expressed as follows:

V(s) 2 GV(s) = const (10a)

thermally adiabatic condition: G = 1 (10b)

isothermal condition: G = 21 (10c)

Next, we consider the case that the heat source is located
at point za in the z-plane, as shown in Fig. 1, whereas the sink
is at infinity. Point za in the z-plane corresponds to za in the
z-plane. V(z), the complex thermal function to be determined
for the problem, can be put into the following form:

M
V(z) = V (z) 1 V (z), V (z) = 2 log(z 2 z ) (11)1 2 1 a2pk

where M = intensity of the heat source; and V1(z) = temper-
ature function for a point heat source in an infinite region.
Substituting (11) into (10), multiplying both sides of the equa-
tion with ds/[2pi(s 2 z)], and carrying out the Cauchy in-
tegral on the unit circle, V2(z) can be obtained; subsequently
V(z) is expressed as

M z 2 z9a
V(z) = 2 log(z 2 z ) 1 G log 1 C (12)aH S D J2pk z

where [ and C = a constant, which should be fixedz9 1/z ;a a

by the temperature at a referenced base point.

THERMAL STRESS ANALYSIS

Heat Source in Infinite Plane with Elliptic Rigid
Inclusion

For an infinite plane with a rigid inclusion, rigid-body
displacement and rigid-body rotation will take place in the
inclusion if the geometry of inclusion and the external loads
in the problem do not have symmetry. To develop solutions
for the problem of a heat source in an infinite plane, containing
an elliptic rigid inclusion with or without rigid-body displace-
ment and rotation, we consider the following three problems
(Fig. 2):

1. Problem A, in which a heat source exists within an in-
finite plane with an elliptic rigid inclusion. Stress func-
tions for this problem are denoted by fA(z) and cA(z).

Rigid-body displacements of the inclusion are allow-
able: uA ≠ 0; vA ≠ 0; XA = 0; YA = 0. Rigid-body rotation
of the inclusion is not allowed: εA = 0; MA ≠ 0.

2. Problem B, in which the elliptic rigid inclusion in the
JOURNAL OF ENGINEERING MECHANICS / JUNE 1999 / 685
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infinite plane rotates at a small angle. Stress functions
for this problem are denoted by fB(z) and cB(z).

Rigid-body displacements of the inclusion are not al-
lowed: uB = 0; vB = 0; XB = 0; YB = 0. Rigid-body rotation
of the inclusion is allowable: εB ≠ 0; MB ≠ 0.

3. Problem C, in which concentrated loads apply on the
elliptic rigid inclusion contained in the infinite plane.
Stress functions for this problem are denoted by fC(z)
and cC(z).

Rigid-body displacements of the inclusion are allow-
able: uC ≠ 0; vC ≠ 0; XC ≠ 0; YC ≠ 0. Rigid-body rotation
of the inclusion is not allowed: εC = 0; MC = 0. (These
two equations are satisfied by the symmetry of the ge-
ometry of the ellipse.)

In the above formulations, ui and vi (i = A, B, C ) stand for
the rigid-body displacements in the x and y directions, respec-
tively; εi (i = A, B, C ) denotes the rotation angle about the
origin; Xi and Yi (i = A, B, C ) are the concentrated loads (the
resultant forces), applied on the inclusion in the x and y di-
rections, respectively; and Mi (i = A, B, C) is the resultant
moment about the origin by the stresses on the boundary of
the inclusion.

Rigid-Body Displacement and Rigid-Body Rotation Taking
Place in Elliptic Rigid Inclusion

When rigid-body displacement and rigid-body rotation take
place in the elliptic rigid inclusion, the solution can be ob-
tained by adding the solution of Problem A to the solution of
Problem B. The angle εB in Problem B is determined from the
condition MA 1 MB = 0, that is, the sum of the resultant mo-
ments in Problems A and B vanishes. This situation fits the
model that no constraints in rigid-body motion are fixed on
the inclusion embedded in the infinite plane. Or, it applies to
the model in which a reinforcing substance of an elliptic shape
is inserted into the hole to strengthen the structure, or in which
the boundary on the elliptic hole is reinforced by a rigid ma-
terial.

No Rigid-Body Displacement and No Rigid-Body Rotation
Taking Place in Elliptic Rigid Inclusion

The solution for the case that there is no rigid-body dis-
placement or rigid-body rotation taking place in the elliptic
rigid inclusion can be obtained by adding the solution of Prob-
lem A to the solution of Problem C. The magnitude of the
concentrated loads applied on the inclusion, XC and YC, are
determined by the requirement of uA 1 uC = 0 and vA 1 vC =
0, that is, the sum of the rigid-body displacements in Problems
A and C is zero. XC and YC represent the resultant forces of
the reactions from the inclusion, and they induce no rigid-body
rotation. On the other hand, MA 1 MC (MC = 0 in this case)
represents the reaction moment. This case fits the model in
which a clamped column or an elliptic pipe passes through the
basic plate.

Derivation of Complex Stress Functions of
Displacement Boundary Value Problem

Problem A

Utilizing the complex stress functions f(z) and c(z), which
are regular outside the unit circle, as well as the temperature
function V(z) just obtained, external traction and displacement
boundary conditions can be written as (Muskhelishvili 1963):
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v(s)
f(s) 1 f9(s) 1 c(s) = i (p 1 ip ) ds (13)x yE

v9(s)

v(s)
kf(s) 2 f9(s) 2 c(s) 1 2Ga9 V(z)v9(z) dzE

v9(s)

= 2G(u 1 iv) (14)

where px and py stand for the boundary tractions in the x and
y directions, respectively; the integral in (13) is along the
boundary; u and v = boundary displacements in the x and y
directions, respectively; G = shear modulus of elasticity; for
plane strain, a9 = a(1 1 n), k = 3 2 4n; and for generalized
plane stress, a9 = a, k = (3 2 n)/(1 1 n), where a = coefficient
of linear expansion and n = Poisson’s ratio. The fourth term
in the left-hand side of (14) stands for the displacements
caused by the temperature V(z).

The free thermal expansion displacements in the infinite
plane without hole, brought about by a heat source at za, are
given as follows:

a9M
u 1 iv = a9 V (z) dz = 2 (z 2 z ){log(z 2z ) 2 1}0 0 0 a aE 2pk

(15)

where V0(z) = 2(M/2pk)log(z 2 za).
The stress functions corresponding to the heat source in-

ducing the free expansion displacements in (15) can be deter-
mined on the grounds that the stresses as well as the displace-
ments must recover to their original values, after around the
heat source (point za) once. The result (Nisitani et al. 1991)
is:

aMGR
f (z) = (z 2 z ){log(z 2 z ) 2 1} (16a)0 a a4pk

aMGR
c (z) = 2 z log(z 2 z ) (16b)0 a a4pk

where R = (1 1 n)/(1 2 n) for plane strain; and R = 1 1 n
for generalized plane stress.

For the infinite plane with a hole, the displacements induced
by the temperature V(z) in the fourth term of the left-hand
side of (14) contain multivalued functions (logarithmic func-
tions); therefore, after around the hole once, a mismatch in
displacement (thermal dislocation) appears. Consequently, in
order to satisfy the single-valuedness of the displacements, an-
other function that can cancel the effect of these multivalued
functions must be introduced. Invoking log z as the function
to cancel the mismatches in stress and displacements, the re-
quired complex stress functions, fA(z) and cA(z), can be writ-
ten in the following form:

f (z) = f (z) 1 f (z); c (z) = c (z) 1 c (z) (17a,b)A A1 A2 A A1 A2

aMGR
f (z) = [{v(z) 2 v(z )}{log(z 2 z ) 2 1}] 1 A log zA1 a a4pk

(18a)

aMGR
c (z) = 2 [v(z )log(z 2 z )] 1 B log z (18b)A1 a a4pk

where the first terms of fA1(z) and cA1(z) in (18) are the stress
functions corresponding to the heat source at za in (16), with
z being substituted for z according to the mapping function.
The second terms are stress functions that should be deter-
mined as follows: When (17) and (18) are inserted into (13)
and (14), the mismatches in stress and displacement resulting
from around the hole once must vanish. fA2(z) and cA2(z) are
necessarily single-valued functions. Substituting (17) and (18)
into the external traction boundary condition (13), from the
 to ASCE license or copyright; see http://pubs.asce.org/copyright



requirement that the stresses must preserve single-valuedness
after around the hole once, the following relation is obtained:

¯B = A (19)

Substituting (17) and (18) into the displacement boundary
condition (14), and from the requirement that the mismatch in
displacement resulting from around the hole once must vanish,
the coefficient A is fixed as

aMGR E1
A = 2GE z9 1 (20)0 aH J4pk za

Next, the function fA2(z) is sought. Substituting (17) and
(18) into the displacement boundary condition (14) and letting
u = v = 0 without loss of generality, after some arrangement,
we obtain

aMGR aMGR
{v(s) 2 v(z )}log(s 2 z ) 1a a4pk 4pk

1
? {v(s) 2 v(z )}log 2 z 2 v(s) 1 kf (s)a a A2F S D Gs

v(s) aMGR E 11 ¯1 E 2 s 1 As 1 f90 A2F H J S DG4pk z sv9(1/s) a

1 aMGR
1 c 2 k{v(s) 2 v(z )} 2 F(s) = 0A2 aS Ds 4pk (21a)

aMGR s
F(s) = (1 1 k) E Gs log0F H S D4pk s 2 z9a

s E E s1 1
1 s 2 Gz9 log 1 G 1 G loga S DJ S Ds 2 z9 s s s 2 z9a a

E s aMGR1
2 G log 2 CH S DJGz9 s 2 z9 4pka a

E1
? (1 1 k) E s 10H Js (21b)

Multiplication of both sides of (21a) by the factor ds/[2pi(s
2 z)] and integration of the Cauchy type along the unit circle
yields the result of fA2(z).

The stress function fA(z) is eventually given by the follow-
ing equation:

aMGR
f (z) = [{v(z) 2 v(z )}log(z 2 z )A a a4pk

aMGR E1
2 {v(z) 2 v(z )}] 1 A log z 1a 4pk z

1 aMGR E 1 aMGR1
1 log(2z ) 1 {v(z) 2 v(z )}loga aFk 4pk z k 4pk

1 E1
? 2 z 2 E z log(2z ) 2a 0 aS D Gz z

1 aMGR E 1 1 F(s)1
1 2 ds 1 constEk 4pk z k 2pi s 2 z (22a)

1 F(s) aMGR z
= (1 1 k) E z log0E F H S D2pi s 2 z 4pk z 2 z9a

z E E z1 1
1 z9 log 1 G 1 G loga S DJ S Dz 2 z9 z z z 2 z9a a

E z aMGR E1 1
2 G log 2 C (1 1 k)H S DJGz9 z 2 z9 4pk za a (22b)
Downloaded 16 Dec 2009 to 140.121.146.140. Redistribution subj
Multiplication of both sides of the conjugate form of (21)
by the factor ds/[2pi(s 2 z)] and integration of the Cauchy
type along the unit circle yields cA2(z). Substituting the solu-
tion cA2(z) and (18b) into (17), cA(z) is obtained as

¯aMGR v(1/z)
c (z) = 2 {v(z )log(z 2 z )} 2 f9(z) 1 B log zA a a

4pk v9(z)

aMGR 1 1
¯1 E z log(2z ) 2 v 2 v(z ) log 2 z1 a a aF H S D J S DG4pk z z

aMGR E E aMGR 10 0 ¯2 log(2z ) 2 1 v {log(z 2 z ) 2 1}a aH J S D4pk z z 4pk z

¯aMGR aMGR E 1 F(1/s)0
1 E z 2 k 1 ds 1 const1 E4pk 4pk z 2pi s 2 z (23a)

where

¯1 F(1/s) aMGR E aMGR E0 0
ds = (1 1 k) 2 C (1 1 k)E2pi s 2 z 4pk z 4pk z

(23b)

Moreover, since on the boundary exists a portion on which
the displacements vanish, analytic continuation on the dis-
placement boundary provides another approach to obtain the
stress function cA(z). The result (Hasebe et al. 1988) is

¯1 v(1/z)
c (z) = kf 2 f9(z) 1 2Ga9 V(z)v9(z) dzA A AS D H E Jz v9(z) z̄=1/z

(24)

Substituting the solution for the heat source and that for the
heat sink (which can be obtained by the substitution of zb for
za and 2M for M in the heat source solution) into (22) and
(23), respectively, and summing up the obtained solutions, we
obtain the solution for the case of a heat source and a heat
sink.

In the case of the isothermal condition, G = 21, if the heat
source exists on the boundary (za = sa, = sa), the term ofz9a
log(z 2 za) disappears in (22) and (23). Therefore, the heat
source is not a singular point for stress and displacement.

The resultant moment M about the origin, formed by the
stresses on the boundary, can be determined by taking z = s
on the unit circle and conducting a contour integration along
the boundary. The result is expressed (Muskhelishvili 1963)
as

1 f9(s)
¯M = Re c(s)v9(s) ds 2 v(s)c(s) 2 v(s)vFR S D Gs v9(s)

(25)

When (24) is substituted into (25), the resultant moment MA

for the case of the heat source turns out to be

1 ds
M = Re k v(s)f9 2 v(s)f9(s) dsA A AF R S D R2s s

1 1 ds¯1 2Ga9 v(s)v9 VR S D S D G2s s s (26)

The rigid-body displacements uA and vA, the relative dis-
placements between the heat source location and the rigid in-
clusion, are obtained by using (22) and (23), i.e., after putting
s = z in the displacement expression (14), evaluating the val-
ues of displacements at point z = za (heat source location) and,
for instance, at point z = 1 (a point on the boundary), then
working out the difference between the two results.

Problem B

In this subsection, the complex stress functions are derived
for the case when the rigid inclusion rotates at a small angle
JOURNAL OF ENGINEERING MECHANICS / JUNE 1999 / 687
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ε in the counterclockwise direction [Fig. 2(b)] (Muskhelishvili
1963).

Letting fB(z) and cB(z) be the required complex stress func-
tions and assuming u = 2εBy, v = εBx on the boundary, the
displacement boundary conditions can be expressed by (14),
excluding the fourth term in its left-hand side, as follows:

v(s)
2 c (s) = 2G(u 1 iv) = 2Gε iv (s)kf (s) 2 f9(s) B BB B

v9(s)
(27)

Multiplication of both sides of (27) by the factor ds/[2pi(s
2 z)] and the integral in the Cauchy type yields fB(z) in the
following form:

2Gε i EB 1
f (z) = 1 const (28)B

k z

As for cB(z), it can be worked out either by multiplying the
conjugate form of (27) by the factor ds/[2pi(s 2 z)] and then
implementing an integral of the Cauchy type on the unit circle,
or by analytic continuation on the displacement boundary to
obtain

1 v̄(1/z) 1
¯c (z) = kf 2 f9(z) 1 2Gε iv (29)B B B BS D S Dz v9(z) z

Taking z = s on the boundary and substituting (28) and (29)
into (25), MB, the resultant moment, is obtained as

E E1 1
M = 4pGε E E 1 (30)B b 0 0H Jk

The angle εB at which the rigid inclusion rotates can be
determined by the condition MA 1 MB = 0; that is, the sum of
the resultant moments, MA in (26) and MB in (30), is zero. The
stress functions then become fA(z) 1 fB(z) and cA(z) 1 cB(z).

Problem C

In this subsection, the complex stress functions are derived
for the case when XC and YC, the concentrated loads in x and
y directions, apply on the elliptic rigid inclusion with rigid-
body displacement and without rigid-body rotation [Fig. 2(c)].
Denoting fC(z) and cC(z) the required complex stress func-
tions and employing fC1(z) and cC1(z), the stress functions for
the concentrated loads applying in an infinite plane without a
hole, we obtain

f (z) = f (z) 1 f (z), c (z) = c (z) 1 c (z) (31)C C1 C2 C C1 C2

X 1 iYC C¯f (z) = D log z, C (z) = 2kD log z, D = 2C1 C1 2p(1 1 k)
(32)

Using (14) without the fourth term in its left-hand side, the
displacement boundary condition can be expressed as

v(s)
kf (s) 2 f9(s) 2 c (s) = 2G(u 1 iv) (33)C C C

v9(s)

Substituting (31) and (32) into (33), taking u = v = 0 on
the boundary without loss of generality, multiplying both sides
of the resulted equation by the factor ds/[2pi(s 2 z)], and
implementing an integration of the Cauchy type along the unit
circle, fC2(z) is obtained. Finally, fC(z) can be determined
from (31) to yield

f (z) = D log z 1 const (34)C

Since there is a portion of the boundary on which the dis-
placements vanish (u = v = 0), another stress function cC(z)
688 / JOURNAL OF ENGINEERING MECHANICS / JUNE 1999
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can be determined by analytic continuation on the displace-
ment boundary. The result is

¯1 v(1/z)
c (z) = kf 2 f9(z) (35)C C CS Dz v9(z)

Taking z = s on the boundary and substituting (34) and (35)
into (25), the resultant moment MC about the origin by the
stresses on the boundary is obtained. In the present case of a
rigid inclusion of elliptic shape, MC = 0 due to the symmetry
in geometry. If the geometry is unsymmetric, in general, MC

is not zero.
The rigid-body displacements uC and vC, the relative dis-

placements between the heat source location and the rigid in-
clusion, can be obtained using (33), that is, after putting s =
z in (33), evaluating the values of displacement at point z =
za and, for instance, at point z = 1 (a point on the boundary),
then working out the difference between the two results. The
magnitude of the concentrated loads applied on the inclusion,
XC and YC, can be determined by the conditions uA 1 uC = 0
and vA 1 vC = 0. XC and YC signify the reaction forces applied
on the rigid body. The stress functions then become fA(z) 1
fC(z) and cA(z) 1 cC(z).

Complex Stress Functions of External Boundary
Value Problem

A heat source of intensity M is at point za and a sink is lying
at infinity (Fig. 1). The complex stress functions for this case
are derived in the following.

The complex stress functions to be determined for the prob-
lem are expressed as

f(z) = f (z) 1 f (z), c(z) = c (z) 1 c (z) (36)A1 2 A1 2

where fA1(z) and cA1(z) are expressed by (18), and A and B
in (18) are the same as (19) and (20), respectively.

Substituting (36) into the external traction boundary con-
dition (13), noting that px = py = 0 and = 1/s on the bound-s̄
ary, multiplying both sides of the resulting equation with ds/
[2pi(s 2 z)], and carrying out the integral of Cauchy on the
contour of the unit circle yield f2(z). Finally, stress function
f(z) turns out to be

aMGR
f(z) = A log z 1 [{v(z) 2 v(z )}log(z 2 z )a a4pk

aMGR 1
2 {v(z) 2 v(z )}] 2 {v(z) 2 v(z )}log 2 za a aF S D4pk z

E E1 1
2 E z log(2z ) 1 log(2z ) 20 a a Gz z (37)

where the constant term has been omitted.
Moreover, since the boundary is traction free, by analytic

continuation across the boundary, the following expression can
be obtained (Muskhelishivili 1963):

¯v(1/z)¯c(z) = 2f(1/z) 2 f9(z) (38)
v9(z)

Replacing za and M in (37) with zb and 2M, respectively,
the solution of f(z) for the heat sink is obtained. Adding up
the solutions for the heat source and the heat sink, the solution
is obtained for the case when both the source and the sink
exist in the infinite plane with the elliptic hole.

Furthermore, by replacing za in (37) with sa, = sa andz9a
using the relation = 1/sa, the solution f(z) for the casesa

when the heat source is located on the boundary can be found
as
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FIG. 3. Stress Distributions on x Axis and Elliptic Inclusion
[za(22a, 0), Isothermal Condition, Zero Temperature (Q = 0) on
Boundary]

aMGR
f(z) = A log z 1 [{v(z) 2 v(s )}log z 2 E z] (39)a 04pk

In (39), it can be noted that the point z = sa, at which the heat
source appears, is not a singular point for stress and displace-
ment, because there is no displacement constraint around this
point. Meanwhile, since the boundary is traction free, the other
stress function, c(z), can be expressed by (38).

ANALYTIC EXAMPLES

Stress Distributions

Analytic examples for k = 2 (corresponding to n = 0.25 for
plane strain and 1/3 for generalized plane stress) and a heat
source at point za(22a, 0) are treated. Dimensionless stress
distributions for the isothermal boundary (Q = 0) and the ther-
mally adiabatic boundary (qa = 0; no heat flows across the
boundary) are shown in Figs. 3, 4, and 5, respectively. In Figs.
4 and 5 of the thermally adiabatic case, the referenced base
temperatures are taken from points A and C, respectively, for
the stress distributions. The stress distributions shown in the
figures are those on the elliptic boundary and on the x axis.
On the elliptic boundary, the normal, tangential, and shearing
stresses are denoted by sr, su, and tr u, respectively. On the x
axis, the axial stresses in the x and y directions are denoted
by sx and sy, respectively, and the shearing stress is denoted
by txy. Numerical values of the axial stresses are taken to be
positive for tensile and negative for compressive stress. Shear-
ing stress tr u is regarded as positive in the counterclockwise
direction.

For both the isothermal and the thermally adiabatic cases,
compressive stresses of extremely large magnitudes set up
around the heat source due to the thermal expansion. On the
x axis, because of the symmetry in the problem shearing stress,
txy is zero. Since there is no effect of thermal expansion on
the isothermal boundary Q = 0, the relation between the nor-
mal and tangential stresses su /sr = (3 2 k)/(1 1 k) holds on
the boundary (Hasebe 1979). Furthermore, for the thermally
adiabatic case, the stress distributions shown in Figs. 4 and 5
will be different if different referenced base points for the tem-
perature are selected. This is because different base points
bring about different values of constant C in (12). This con-
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FIG. 4. Stress Distributions on x Axis and Elliptic Inclusion
[za(22a, 0), Adiabatic Condition, Basic Point of Temperature A]

FIG. 5. Stress Distributions on x Axis and Elliptic Inclusion
[za(22a, 0), Adiabatic Condition, Basic Point of Temperature C]

stant is contained in the stress functions [see (22b)]; therefore,
different stress functions are resulted.

Taking G = 1 (the thermally adiabatic condition) in the an-
alytic examples, dimensionless stress distribution for the ellip-
tic hole are shown in Fig. 6.

Stress Intensity Factors

The stress intensity factors at crack tips are calculated by
the following formula, given by the complex stress function
f(z) and the mapping function v(z)(b/a = 0) (Hasebe et al.
1988):

f9(z )02i(l/2)K 2 iK = 2 pe (40)ÏI II
v0(z )Ï 0

where l = angle between the crack and the x axis; and z0

denotes a point on the unit circle mapped from the crack tip.
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ct to ASCE license or copyright; see http://pubs.asce.org/copyright



FIG. 6. Stress Distributions on x Axis and Elliptic Hole

In the present case, for crack tip zA, we have z0 = 1 and l =
0; whereas z0 = 21 and l = p hold for the other tip, zB. The
dimensionless stress intensity factors are given by the follow-
ing expression:

k K 1 iKI II
F 1 iF = (41)I II

aMGR paÏ

In the analytic examples, when both the heat source and the
sink are located on the x axis, the stress intensity factors are
shown in Fig. 7, while in Figs. 8 and 9, the results for a heat
source on the x or y axes and a heat sink at infinity are dem-
onstrated.

Heat Source and Sink Located on x Axis

In Fig. 7, under the condition that the locations of the heat
source and the sink are fixed at the origin and the point (5a,
0) on the x axis, respectively, with the crack translating on the
x axis, the values of the dimensionless stress intensity factors
at crack tip zA are examined. The abscissa of the midpoint of
the crack, L, is used as a parameter to indicate the position of
the crack, and it is made dimensionless by division by a, the
half length of the crack. The resulted parameter, L/a, varies
within the range 220 % L/a % 20 in Fig. 7. Moreover, it is
assumed that once the position of the heat source (sink) falls
on the crack, the source (sink) is located on the upper surface
of the crack, where y = 01. For L/a = 21.0 or 4.0, the crack
tip zA coincides with the heat source at point za or the heat
sink at point zb; in these cases, due to the direct effect of the
source or the sink, the stress intensity factor FI attains a min-
imum (compressive mode) or a maximum (tensile mode), at
za or zb, respectively. For 0 % L/a % 5, that is, when the crack
lying between the heat source and the sink, FI, changes from
negative (compressive mode) to positive (tensile mode), the
crack translates from the compressive zone effected by the heat
source at za towards the tensile zone brought about by the heat
sink at zb. If the crack moves away from za and zb, the effect
of the heat source and the heat sink weakens, and, as a result,
FI converges towards zero.

The other stress intensity factor, FII, becomes different from
zero when the heat source (sink) lies on the upper surface of
690 / JOURNAL OF ENGINEERING MECHANICS / JUNE 1999
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FIG. 9. Nondimensional Stress Intensity Factors at Point zc:
(a) Heat Source on x Axis; (b) Heat Source on y Axis

FIG. 8. Nondimensional Stress Intensity Factors at Point zA:
(a) Heat Source on x Axis; (b) Heat Source on y Axis

FIG. 7. Nondimensional Stress Intensity Factors at Point zA

the crack and attains a maximum (minimum) once the mid-
point of the crack and the position of heat source (sink) co-
incide. Due to the symmetry about the x axis, FII vanishes
when the heat source (sink) is outside the crack.

Heat Source on x or y Axis and Heat Sink at Infinity

Assuming that the heat source za is on the x (xa/a ^ 0, ya/
a = 0) or y axis (xa/a = 0, ya/a ^ 0), values of the dimen-
sionless stress intensity factor for tips zA and zC of the crack
are shown in Figs. 8 and 9, respectively. In Figs. 8(a) and 9(a),
the value xa/a is taken on the horizontal axis, whereas in Figs.
8(b) and 9(b), ya/a is taken. In these figures, the case that the
heat source lies on the upper surface of the crack where ya/a
= 01 is also considered and demonstrated.

Stress Intensity Factors at Point za (Fig. 8)

When the heat source lies on the x axis, FI becomes zero at
a point near xa/a = 0.5 and attains a minimum (compressive
mode) under the action of the heat source at xa/a = 1.0, the
crack tip. After that, with the increase of xa/a, the heat source
moves forward and FI increases monotonically. This phenom-
 to ASCE license or copyright; see http://pubs.asce.org/copyright



enon can be explained as follows: The relative temperature at
the crack tip for the base temperature becomes lower, when
the heat source is moving away from the tip. This temperature
induces an excessive amount of shrinkage deformation, which
increases the stress intensity factor of tensile mode. The other
stress intensity factor, FII, vanishes for xa/a ^ 1.0, due to the
symmetry about the x axis.

When the heat source lies on the y axis, based on the reason
given above, FI increases monotonically as ya/a increases.
However, since for a remote heat source, the unsymmetry of
the temperature field about the x axis weakens, FII converges
to zero for increasing ya/a.

Stress Intensity Factors at Point zC (Fig. 9)

Based on the reason given above, FI increases monotoni-
cally as xa/a or ya/a increases. If the heat source is on the x
axis and xa/a ^ 1.0, FII vanishes due to symmetry, and when
the heat source lies on the y axis, FII is negative; otherwise, it
behaves like FII as demonstrated in Fig. 8(b).

CONCLUSIONS

Complex stress functions for an infinite plane containing an
elliptic rigid inclusion, hole, and crack are developed for a
point heat source. For the inclusion problem, the relative rigid
displacement (Problem C) and the rotation (Problem B) were
considered. The general solution of the inclusion problem can
be obtained by superposition. The resultant moments about the
origin formed by the stresses on the boundary are also worked
out. All of the general solutions are closed form without in-
tegral terms. Stress distributions for the isothermal and ther-
mally adiabatic boundary conditions were worked out in the
analytic examples and were demonstrated by the figures. The
stress distributions are different, due to the location of the base
temperature adopted in the inclusion problem.

In the case of the isothermal condition (G = 21) of the
inclusion problem, the heat source on the boundary is not a
singular point for stress and displacement. When the heat
source lies on the boundary of the hole, it is also not a singular
Downloaded 16 Dec 2009 to 140.121.146.140. Redistribution subjec
point for stress and displacement, because there is no displace-
ment constraint around the point.

Furthermore, for an infinite plane with a crack (b/a = 0),
values of the stress intensity factors have been shown graph-
ically, and the effects of the position of the heat source on
them have been examined and discussed. The values of the
intensity factor Mode I become larger and larger when the heat
source moves away from the crack tip, because the tempera-
ture at the crack tip becomes lower and lower. However the
values of the stress intensity factor Mode II become smaller
and smaller, because the field of temperature around the crack
tip becomes uniform.

The solution of the heat source can be used as the funda-
mental solution of the boundary element method in the thermal
problem.
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